Midterm Exam

- In-class exam
 - Closed book/note exam
 - "cheat sheet" - one page front & back
 - Bring a simple calculator (no wireless devices, e.g., phones)

- Topics: anything we cover before the exam

- Format
 - Short answer, calculations, performance analysis, etc.

- Exam from last few years will be posted (via blackboard)
 - My midterm exam from last year
 - Also, perhaps a few from Prof. Roth (note: somewhat different)

Course Topics Thus Far...

- Introduction
- ISAs
- Digital logic & datapath
- Performance
- Integer and floating point arithmetic
- Pipelining
- Superscalar

Introduction

- Binary tree motivating example
 - Average lookup time vs size of tree
 - Distribution of repeated lookups of each leaf in tree

- Abstraction & the hardware/software interface

- Analogy with building architecture
 - Technology, design constraints/goals, applications/domains

- Moore’s law
 - Rapid technology change

ISAs

- ISA as hardware/software interface
- Sequential (fetch/execute) model
- Comparative ISAs
 - LC4 vs MIPS vs x86 vs …
- Performance
 - instruction/program * cycles/instruction * seconds/cycle
- Impact/role of the compiler
- CISC vs RISC
- ISA choices
 - Data types, registers, memory, addressing modes, branching types, instruction encoding
- Micro-operations
Digital Logic & Single-Cycle Datapath

- Digital logic review
 - Common structures (mux, decoder, PLAs, etc.)
 - Register file

- Simple datapath (single-cycle)
 - Implementing control

Performance

- Latency vs bandwidth (throughput)
- Comparing performance
 - Benchmarks
- Amdahl’s Law
- Clock frequency vs CPI

Integer Arithmetic

- Integer
 - Addition (ripple carry)
 - Addition (carry select)
 - Shift and rotation
 - Multiplication (multi-cycle & tree based)
 - Division (software & hardware)
 - Latency of the above

Pipelining

- Basic pipelining vs multi-cycle vs single-cycle
- Pipeline diagrams
- Performance calculations
- Structural hazards (& ways to deal with them)
- Data dependences (& ways to deal with them)
- Bypassing
- Load-use delay
- Multi-cycle operations (multiply)
- Control dependencies (branches & branch prediction)
- Pipeline depth
Superscalar

- Basic idea of multiple issue (CPI < 1)