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f(1) = 2 ^ f(3) = 6
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f(x) = 2x
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Existing	General-Purpose	Strategies
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• Enumerative:	search	with	pruning	
		-	EUSolver:	Udupa	et	al.	(PLDI’13)  

• Symbolic:	constraint	solving	
		-	CVC4:	Reynolds	et	al.	(CAV’15) 

• Stochastic:	probabilistic	walk	
		-	STOKE:	Schkufza	et	al.	(ASPLOS’13)



Key limitation:   
search not guided towards likely programs
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Statistical	Regularities	in	Programs

• Programs	contain	repetitive	and	predictable	patterns.		

  for (i = 0; i < 100; ??) 

• Statistical	program	models	define	a	probability	distribution	 
over	programs.	

Pr (?? → i++ | for (i = 0; i < 100; ??)	)		=		0.80  
Pr (?? → i-- | for (i = 0; i < 100; ??)	)		=		0.01	

		-	e.g.,	n-gram,	probabilistic	context-free	grammar	(PCFG),	…	

• Applications:	code	completion,	deobfuscation,	program	repair…
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Exploiting	Statistical	Regularities

Key	Challenges:	

1. How	to	guide	the	search	given	a	statistical	model?	

2. How	to	learn	a	good	statistical	model?	
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Can we leverage statistical program models  
to accelerate program synthesis? 



Our	Contributions

• A	general	approach	to	accelerate	CEGIS-based	program	synthesis	

		-	by	using	a	probabilistic	model	to	guide	the	search 
		-	supports	a	wide	range	of	models	(e.g.,	n-gram,	PCFG,	PHOG,	…)	

• Transfer	learning-based	method	to	mitigate	overfitting	

• Tool	(Euphony)	and	evaluation	on	widely	applicable	domains	

				https://github.com/wslee/euphony
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Abstract
A key challenge in program synthesis concerns how to effi-
ciently search for the desired program in the space of possi-
ble programs. We propose a general approach to accelerate
search-based program synthesis by biasing the search to-
wards likely programs. Our approach targets a standard for-
mulation, syntax-guided synthesis (SyGuS), by extending the
grammar of possible programs with a probabilistic model dic-
tating the likelihood of each program.We develop a weighted
search algorithm to efficiently enumerate programs in order
of their likelihood. We also propose a method based on trans-
fer learning that enables to effectively learn a powerful model,
called probabilistic higher order grammar, from known solu-
tions in a domain. We have implemented our approach in a
tool called Euphony and evaluate it on SyGuS benchmark
problems from a variety of domains. We show that Euphony
can learn good models using easily obtainable solutions,
and achieves significant performance gains over existing
general-purpose as well as domain-specific synthesizers.

CCS Concepts • Computing methodologies → Trans-
fer learning; • Software and its engineering→Domain
specific languages; Programming by example;

Keywords Synthesis, Domain-specific languages, Statisti-
cal methods, Transfer learning
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1 Introduction
The goal of program synthesis is to automatically synthesize
a program that satisfies a given high-level specification. A
central challenge in program synthesis concerns how to effi-
ciently search for the desired program in the space of possible
programs. Various strategies have been proposed to address
this challenge [3, 4, 12, 16, 30]. As a result, recent years have
witnessed a surge of interest in applying this technology to
a wide range of problems, including end-user programming
[11], intelligent tutoring [25], circuit transformation [8], and
program repair [18], among many others.
Despite significant strides, however, a key limitation of

these strategies is that they do not bias the search towards
likely programs. As a result, they explore many undesirable
candidates in practice, which hinders their performance and
limits the kinds of programs they are able to synthesize.

It is well known that desired programs contain repetitive
and predictable patterns [14]. We propose a new approach
to accelerate search-based program synthesis based on this
observation. Our key insight is to learn a probabilistic model
of programs and use it to guide the search. To this end, our
approach modularly addresses two orthogonal but comple-
mentary challenges: 1) how to guide the search given a proba-
bilistic model, and 2) how to learn a good probabilistic model.
We next elaborate on each of these challenges.

To address the first challenge, we target a standard formu-
lation, syntax-guided synthesis (SyGuS) [3], that has estab-
lished various synthesis benchmarks through annual compe-
titions. SyGuS employs a context-free grammar to describe
the space of possible programs. We extend the grammar
with a probabilistic model that determines the likelihood
of each program. We reduce the problem of enumerating
programs by likelihood to the problem of enumerating target
nodes by shortest distance from a source node in an infinite
weighted graph. We solve the resulting problem efficiently
using A* search [13]. While A* is significantly faster than
other path finding algorithms, however, it requires a good
cost-estimating heuristic to guide its search. We show how

436

https://github.com/wslee/euphony
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-		Problem:	overfitting	

-		Our	solution:	generalize	to	unseen	programs	better	 
					using	a	feature	map	designed	by	domain	expert
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•Goal:	Replacing	a	hyphen	(-)	by	a	dot	(.)	in	a	given	string		

• 									Specification	

			Syntactic	specification:		

				Semantic	specification:	

• 										Solution:	

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’17, , New York, NY, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

* f(“-.”) = “..”
<latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit>

“-.”
<latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit>
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Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

In the second iteration, the algorithm �rst enumerates
all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

Figure 1. Graph of sentential forms derived from a PCFG.

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a
wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by

* f(“308-916”) = “308.916”
<latexit sha1_base64="PcKJcWiU3yBdiu4y/fkrMYS25NE=">AAACHHicbZDJSgNBEIZ7XGPcRj16aQxiPBhmjGg8CEEvHiOYREhC0tOp0caehe4aMQx5EC++ihcPinjxIPg2dpZDXH5o+Pmqiur6vVgKjY7zZU1Nz8zOzWcWsotLyyur9tp6TUeJ4lDlkYzUlcc0SBFCFQVKuIoVsMCTUPduzwb1+h0oLaLwEnsxtAJ2HQpfcIYGte1i0wPOEg3UzzcR7jHtdIpOae/YPdzZ6e/SEzpBCyPatnNOwRmK/jXu2OTIWJW2/dHsRjwJIEQumdYN14mxlTKFgkvoZ5tmf8z4LbuGhrEhC0C30uFxfbptSJf6kTIvRDqkkxMpC7TuBZ7pDBje6N+1Afyv1kjQL7VSEcYJQshHi/xEUozoICnaFQo4yp4xjCth/kr5DVOMo8kza0Jwf5/819T2C65TcC8OcuXTcRwZskm2SJ645IiUyTmpkCrh5IE8kRfyaj1az9ab9T5qnbLGMxvkh6zPb0lanlA=</latexit><latexit sha1_base64="PcKJcWiU3yBdiu4y/fkrMYS25NE=">AAACHHicbZDJSgNBEIZ7XGPcRj16aQxiPBhmjGg8CEEvHiOYREhC0tOp0caehe4aMQx5EC++ihcPinjxIPg2dpZDXH5o+Pmqiur6vVgKjY7zZU1Nz8zOzWcWsotLyyur9tp6TUeJ4lDlkYzUlcc0SBFCFQVKuIoVsMCTUPduzwb1+h0oLaLwEnsxtAJ2HQpfcIYGte1i0wPOEg3UzzcR7jHtdIpOae/YPdzZ6e/SEzpBCyPatnNOwRmK/jXu2OTIWJW2/dHsRjwJIEQumdYN14mxlTKFgkvoZ5tmf8z4LbuGhrEhC0C30uFxfbptSJf6kTIvRDqkkxMpC7TuBZ7pDBje6N+1Afyv1kjQL7VSEcYJQshHi/xEUozoICnaFQo4yp4xjCth/kr5DVOMo8kza0Jwf5/819T2C65TcC8OcuXTcRwZskm2SJ645IiUyTmpkCrh5IE8kRfyaj1az9ab9T5qnbLGMxvkh6zPb0lanlA=</latexit><latexit sha1_base64="PcKJcWiU3yBdiu4y/fkrMYS25NE=">AAACHHicbZDJSgNBEIZ7XGPcRj16aQxiPBhmjGg8CEEvHiOYREhC0tOp0caehe4aMQx5EC++ihcPinjxIPg2dpZDXH5o+Pmqiur6vVgKjY7zZU1Nz8zOzWcWsotLyyur9tp6TUeJ4lDlkYzUlcc0SBFCFQVKuIoVsMCTUPduzwb1+h0oLaLwEnsxtAJ2HQpfcIYGte1i0wPOEg3UzzcR7jHtdIpOae/YPdzZ6e/SEzpBCyPatnNOwRmK/jXu2OTIWJW2/dHsRjwJIEQumdYN14mxlTKFgkvoZ5tmf8z4LbuGhrEhC0C30uFxfbptSJf6kTIvRDqkkxMpC7TuBZ7pDBje6N+1Afyv1kjQL7VSEcYJQshHi/xEUozoICnaFQo4yp4xjCth/kr5DVOMo8kza0Jwf5/819T2C65TcC8OcuXTcRwZskm2SJ645IiUyTmpkCrh5IE8kRfyaj1az9ab9T5qnbLGMxvkh6zPb0lanlA=</latexit><latexit sha1_base64="PcKJcWiU3yBdiu4y/fkrMYS25NE=">AAACHHicbZDJSgNBEIZ7XGPcRj16aQxiPBhmjGg8CEEvHiOYREhC0tOp0caehe4aMQx5EC++ihcPinjxIPg2dpZDXH5o+Pmqiur6vVgKjY7zZU1Nz8zOzWcWsotLyyur9tp6TUeJ4lDlkYzUlcc0SBFCFQVKuIoVsMCTUPduzwb1+h0oLaLwEnsxtAJ2HQpfcIYGte1i0wPOEg3UzzcR7jHtdIpOae/YPdzZ6e/SEzpBCyPatnNOwRmK/jXu2OTIWJW2/dHsRjwJIEQumdYN14mxlTKFgkvoZ5tmf8z4LbuGhrEhC0C30uFxfbptSJf6kTIvRDqkkxMpC7TuBZ7pDBje6N+1Afyv1kjQL7VSEcYJQshHi/xEUozoICnaFQo4yp4xjCth/kr5DVOMo8kza0Jwf5/819T2C65TcC8OcuXTcRwZskm2SJ645IiUyTmpkCrh5IE8kRfyaj1az9ab9T5qnbLGMxvkh6zPb0lanlA=</latexit>

Examples:

“308-916”
<latexit sha1_base64="jiXHSCZ1gZHGIHtl+PTm4T6TmxY=">AAAB+3icbVDLTgJBEJzFF+JrxaOXicTgRbKrRvFG4sUjJvJIYAOzwyxMmH1kptdANvsrXjxojFd/xJt/4wB7ULCSTipV3enuciPBFVjWt5FbW9/Y3MpvF3Z29/YPzMNiU4WxpKxBQxHKtksUEzxgDeAgWDuSjPiuYC13fDfzW09MKh4GjzCNmOOTYcA9TgloqWcWu8AmkPT7l1b1/Na+LpfTnlmyKtYceJXYGSmhDPWe+dUdhDT2WQBUEKU6thWBkxAJnAqWFrqxYhGhYzJkHU0D4jPlJPPbU3yqlQH2QqkrADxXf08kxFdq6ru60ycwUsveTPzP68TgVZ2EB1EMLKCLRV4sMIR4FgQecMkoiKkmhEqub8V0RCShoOMq6BDs5ZdXSfOiYlsV++GqVKtkceTRMTpBZ8hGN6iG7lEdNRBFE/SMXtGbkRovxrvxsWjNGdnMEfoD4/MHujSS2g==</latexit><latexit sha1_base64="jiXHSCZ1gZHGIHtl+PTm4T6TmxY=">AAAB+3icbVDLTgJBEJzFF+JrxaOXicTgRbKrRvFG4sUjJvJIYAOzwyxMmH1kptdANvsrXjxojFd/xJt/4wB7ULCSTipV3enuciPBFVjWt5FbW9/Y3MpvF3Z29/YPzMNiU4WxpKxBQxHKtksUEzxgDeAgWDuSjPiuYC13fDfzW09MKh4GjzCNmOOTYcA9TgloqWcWu8AmkPT7l1b1/Na+LpfTnlmyKtYceJXYGSmhDPWe+dUdhDT2WQBUEKU6thWBkxAJnAqWFrqxYhGhYzJkHU0D4jPlJPPbU3yqlQH2QqkrADxXf08kxFdq6ru60ycwUsveTPzP68TgVZ2EB1EMLKCLRV4sMIR4FgQecMkoiKkmhEqub8V0RCShoOMq6BDs5ZdXSfOiYlsV++GqVKtkceTRMTpBZ8hGN6iG7lEdNRBFE/SMXtGbkRovxrvxsWjNGdnMEfoD4/MHujSS2g==</latexit><latexit sha1_base64="jiXHSCZ1gZHGIHtl+PTm4T6TmxY=">AAAB+3icbVDLTgJBEJzFF+JrxaOXicTgRbKrRvFG4sUjJvJIYAOzwyxMmH1kptdANvsrXjxojFd/xJt/4wB7ULCSTipV3enuciPBFVjWt5FbW9/Y3MpvF3Z29/YPzMNiU4WxpKxBQxHKtksUEzxgDeAgWDuSjPiuYC13fDfzW09MKh4GjzCNmOOTYcA9TgloqWcWu8AmkPT7l1b1/Na+LpfTnlmyKtYceJXYGSmhDPWe+dUdhDT2WQBUEKU6thWBkxAJnAqWFrqxYhGhYzJkHU0D4jPlJPPbU3yqlQH2QqkrADxXf08kxFdq6ru60ycwUsveTPzP68TgVZ2EB1EMLKCLRV4sMIR4FgQecMkoiKkmhEqub8V0RCShoOMq6BDs5ZdXSfOiYlsV++GqVKtkceTRMTpBZ8hGN6iG7lEdNRBFE/SMXtGbkRovxrvxsWjNGdnMEfoD4/MHujSS2g==</latexit><latexit sha1_base64="jiXHSCZ1gZHGIHtl+PTm4T6TmxY=">AAAB+3icbVDLTgJBEJzFF+JrxaOXicTgRbKrRvFG4sUjJvJIYAOzwyxMmH1kptdANvsrXjxojFd/xJt/4wB7ULCSTipV3enuciPBFVjWt5FbW9/Y3MpvF3Z29/YPzMNiU4WxpKxBQxHKtksUEzxgDeAgWDuSjPiuYC13fDfzW09MKh4GjzCNmOOTYcA9TgloqWcWu8AmkPT7l1b1/Na+LpfTnlmyKtYceJXYGSmhDPWe+dUdhDT2WQBUEKU6thWBkxAJnAqWFrqxYhGhYzJkHU0D4jPlJPPbU3yqlQH2QqkrADxXf08kxFdq6ru60ycwUsveTPzP68TgVZ2EB1EMLKCLRV4sMIR4FgQecMkoiKkmhEqub8V0RCShoOMq6BDs5ZdXSfOiYlsV++GqVKtkceTRMTpBZ8hGN6iG7lEdNRBFE/SMXtGbkRovxrvxsWjNGdnMEfoD4/MHujSS2g==</latexit>
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Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

In the second iteration, the algorithm �rst enumerates
all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

Figure 1. Graph of sentential forms derived from a PCFG.

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a
wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
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represents a sentential form that can be derived from the
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probability of its corresponding production rule provided by
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We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
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Pruning	optimization:		“-”	+	“.”	is	not	explored.

Enumerative	Search:	Unguided
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Many	unlikely	programs	(e.g.,	“.”	+	“.”)	are	explored.

Generator Verifier
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
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, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3
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, “-” + “-”, · · · ,x + “.”|                   {z                   }
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, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.
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Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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Generator Verifier

Counterexample

;
<latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit><latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit><latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit><latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit>

Examples:

* f(“-.”) = “..”
<latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit>

“-.”
<latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit>
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Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [32] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a

Figure 1. Graph of sentential forms derived from a PCFG.

wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small
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Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [32] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a

Figure 1. Graph of sentential forms derived from a PCFG.

wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [32] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a

Figure 1. Graph of sentential forms derived from a PCFG.

wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small

•Avoids	many	unlikely	candidates		

•Preserves	the	pruning	optimization	
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A	Uniform	Interface	to	Statistical	Program	Models

• Given	a	sequence	of	terminal/nonterminal	symbols	

(i.e.,	sentential	form),	provide	a	probability	for	each	

production	rule
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Pr(S ! “.” | Rep(x, “-”, S)) = 0.72
Pr(S ! “-” | Rep(x, “-”, S)) = 0.001

· · ·



•Nodes:		sentential	forms		

• s1	→	s2:		s1	expands	to	s2	by	 
applying	a	production	rule	r	

•w(s1	→	s2)	=	-	log	(	Pr (r	|	s1)	)	

Guided	Enumeration	via	Path	Finding

Given	a	model,		we	construct	a	directed	graph.
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•Start	node:		S	

•Goal	nodes:		all	programs		

•A	heuristic	function	designed	to	
work	with	any	model

Idea:		solving	a	shortest	pathfinding	problem	via	A*	search
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Talk	Outline

• 		Overall	Architecture	

• 		Illustrative	Example	

• 		Empirical	Evaluation
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Evaluation	Setup

• Benchmarks:		

		-		1,167	problems	from	2017	SyGuS	competition	and	online	forums	

• Comparison	to	two	baselines:	

		-		EUSolver	(general-purpose):	winner	of	2017	SyGuS	competition	

		-		FlashFill	(domain-specific):	string	processing	in	spreadsheets
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Benchmarks
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STRING: End-user Programming 
205 problems

BITVEC: Efficient low-level algorithm 
750 problems

CIRCUIT: Attack-resistant crypto circuits  
212 problems



Comparison	with	EUSolver

• Training:	762	solved	by	EUSolver	in	10	m	

• Testing:	405	(timeout:	1	hour)	

• #	solved:		Euphony	236,		EUSolver	87

 25

Accelerating Program Synthesis using Learned Probabilistic Models PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

0 5 10 15 20 25
# Solved Instances (total = 82)

0

100

200

300

400

500

600

Ti
m

e 
(m

)

STRING
Euphony
EUSolver

Figure 7. Comparison between E������ and EUS����� on di�erent domains. The timeout for both solvers is set to one hour.

Figure 8. Comparison of di�erent variants of E������.

Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.

Acknowledgments
We thank the reviewers for insightful comments. We are also
grateful to Mukund Raghothaman and Arjun Radhakrishna
for their helpful suggestions. The �rst author is also a�li-
ated with Hanyang University. This research was supported
by DARPA under agreement #FA8750-15-2-0009 and NSF
awards #1138996, #1253867, and #1526270.

References
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.

2015. Suggesting Accurate Method and Class Names. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015).

[2] Miltiadis Allamanis and Charles Sutton. 2014. Mining Idioms from
Source Code. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014).

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design (FM-
CAD ’13).

[4] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling
Enumerative Program Synthesis via Divide and Conquer. In Proceed-
ings of 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’17).

[5] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow.
2017. DeepCoder: Learning to Write Programs. In 5th International
Conference on Learning Representations (ICLR ’17).

Accelerating Program Synthesis using Learned Probabilistic Models PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

0 2 4 6 8 10 12 14 16 18
# Solved Instances (total = 34)

0

50

100

150

200

250

300

350

Ti
m

e 
(m

)

CIRCUIT
Euphony
EUSolver

Figure 7. Comparison between E������ and EUS����� on di�erent domains. The timeout for both solvers is set to one hour.

Figure 8. Comparison of di�erent variants of E������.
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Result	for	STRING	benchmarks

• Euphony	solved	78%	within	1	min	

• solved	8	on	which	EUSolver	
timed	out	

• outperformed	EUSolver	on	all
 26

205 problems (training 123 / testing 82)
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Comparison	with	FlashFill	(STRING)

• 113	problems	handled	by	FlashFill	

• Training:	91	solved	by	FlashFill	in	10	s	

• Testing:	22	(timeout:	10	m)	

• Euphony	outperforms	in	20	/	22
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Thank	you!

•General	heuristic	function	for	A*	search		

•How	to	preserve	orthogonal	search	optimizations	

•Feature	maps	for	the	three	application	domains	

•Effectiveness	of	different	models

In	the	paper	…


