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Introduction

Broad goal: verify correctness properties of software

Motivating domain: multi-threaded programs (race and deadlock detection)

client query

program Static Analysis heap abstraction

no OR possible
(false positives ⇒ imprecision!)

Heap abstraction affects precision and scalabilty

Question: what heap abstractions should one use?
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Example client: ThreadEscape

Query: Does a variable point to a thread-escaping object at a program point?

getnew() {
return new

}
x = getnew()
y = getnew()
y.f = new
z = new
spawn y

p: ... ? ...

x
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z
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Heap abstractions

Heap abstraction: partitioning of concrete objects
P1

P2

P3

Property holds of partition ⇔ ∃o ∈ partition such that property holds of o

Formally: heap abstraction is function α

concrete object o abstract object α(o)

Example:

α(o) = 〈alloc-site(o), other-information(o)〉
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The heap abstraction landscape

Tradeoff:

imprecise, fast

(e.g., 0-CFA)

precise, slow

(e.g., ∞-CFA)

How much precision is necessary for the given client?

But it’s expensive to implement precise abstractions...

Many dimensions:

k-CFA: call stack information
Object recency
Heap connectivity
etc.

Question: how can we explore all these abstractions cheaply?
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Methodology

1. Run program dynamically with instrumentation

2. Compute heap abstraction on each state

3. Answer query under abstraction

Query is true ⇔ true on any state in trace

Concrete trace: ω1 ω2 ω3 ω4 ω5

Abstract trace: ωα
1 ωα

2 ωα
3 ωα

4 ωα
5

Abstract query answer: no yes no yes no ⇒ yes
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What does this tell us?

Note: no approximation on primitive data, method summarization, etc.

(focus exclusively on the heap abstraction)

⇒ performing the most precise analysis using a given heap abstraction α

⇒ provides upper bound on precision of any static analysis using α

8



Outline

• Abstractions: augment allocation sites with more context

– call stack

– object recency

– heap connectivity

9



Outline

• Abstractions: augment allocation sites with more context

– call stack

– object recency

– heap connectivity

• Clients: motivated by concurrency

– ThreadEscape

– SharedAccess

– SharedLock

– NonStationaryField

9



Outline

• Abstractions: augment allocation sites with more context

– call stack

– object recency

– heap connectivity

• Clients: motivated by concurrency

– ThreadEscape

– SharedAccess

– SharedLock

– NonStationaryField

• Benchmarks: 9 programs from the standard Dacapo suite

9



Outline

• Abstractions: augment allocation sites with more context

– call stack

– object recency

– heap connectivity

• Clients: motivated by concurrency

– ThreadEscape

– SharedAccess

– SharedLock

– NonStationaryField

• Benchmarks: 9 programs from the standard Dacapo suite

• Results: investigate all combinations
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Abstraction: call stack [Shivers, 1988]

Abstraction Allock (k is call stack depth):

call-stack-during-allocation-of(o)[1..k]

Common pattern: factory constructor methods

getnew() {
h1: return new

}
p2: x = getnew()
p3: y = getnew()

spawn y
p1: ... x ...

x

y

h1

Alloc

x

y

h1,p2

h1,p3 Allock=1

Allocation sites are too weak

Adding one level of calling context is sufficient
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Objects allocated: o1 o2 o3 o4 o5
Allock: h2 h4 h4 h2 h4

recency-bit: 0 0 0 1 1

Common pattern: server programs construct data, release to new thread

while (*) {
x = new

p1: ... x ...
spawn x

}

x

h1 Allock=∞

x

h1,1 h1,0 Recencyr=1

No amount of calling context helps

Recency makes the proper distinctions
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Common pattern: build linked list data structures

h1: s = new
spawn s

h2: x = new
y = x
while (*) {

h3: z = new
y.f = z
if (x.f == y)

s.f = z
y = z

}
x = x.f

p1: ... x ...

x s
h1,0

h2,0 h3,1 h3,0 Recencyr=∞

x s
{h1}

{h2} {h2,h3} {h1,h2,h3} ReachFromk=0

No amount of recency helps

Reachability makes proper distinctions
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Clients

ThreadEscape: Does variable v

point to an object potentially reachable from another thread?

SharedAccess: Does variable v

point to an object actually accessed by multiple threads?

SharedLock: Does variable v

point to an object which is locked by multiple threads?

NonStationaryField: for a field f , does there exist an object o such that

o.f is written to after o.f is read from?

(generalization of final in Java from [Unkel & Lam, 2008])

Motivated by race and deadlock detection.
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Benchmarks

9 Java programs from the DaCapo benchmark suite (version 9.12):

antlr A parser generator and translator generator
avrora A simulation and analysis framework for

AVR microcontrollers
batik A Scalable Vector Graphics (SVG) toolkit
fop An output-independent print formatter
hsqldb An SQL relational-database engine
luindex A text indexing tool
lusearch A text search tool
pmd A source-code analyzer
xalan An XSLT processor for transforming XML

290–1357 classes, 1.7K–6.8K methods, 133K–512K bytecodes, 5–46 threads
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0% ≤ number of queries q such that q is true (concrete)

number of queries q such that qα is true (abstract)
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Experiments

Precision:

0% ≤ number of queries q such that q is true (concrete)

number of queries q such that qα is true (abstract)
≤ 100%

Questions:

• What abstraction works best for a given client?

• What is the effect of the k in k-CFA?

• What is the effect of the recency depth r?

• How scalable are the high-precision abstractions?
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General results: ThreadEscape

benchmark Alloc Allock=5 Recency ReachFrom

antlr 48.6 85.0 81.0 100.0
avrora 54.7 62.3 69.2 77.8
batik 13.5 15.1 20.9 20.6
fop 36.3 99.3 42.8 41.3
hsqldb 62.6 69.0 94.3 ?
luindex 6.3 97.2 6.8 6.8
lusearch 14.3 90.0 19.0 19.6
pmd 12.4 87.1 14.9 14.6
xalan 64.0 78.9 78.7 76.6
average 34.8 76.0 47.5 44.7

Main points:

• Alloc can be very imprecise

• Allock=5 works best most of the time
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General results: NonStationaryField

benchmark Alloc Allock=5 Recency ReachFrom

antlr 59.1 60.1 91.0 78.3
avrora 33.2 33.6 93.6 77.2
batik 35.8 36.1 99.5 65.3
fop 42.0 44.9 90.9 68.2
hsqldb 45.4 49.5 94.6 ?
luindex 78.0 84.2 94.8 94.8
lusearch 38.2 38.2 64.9 56.5
pmd 37.8 39.9 96.4 69.4
xalan 44.0 44.5 90.4 74.2
average 45.9 47.9 90.7 73.0

Main points:

• Call stack useless, reachability helps a bit

• Recency offers huge improvement: captures temporal properties
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Effect of call stack depth k
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Main points:

• Phase transition: sharp increase in precision beyond k ≈ 5

• Synergy of information: ReachFrom requires high k to be precise
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Effect of recency depth

ThreadEscape on batik:

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
k = 0 13.5 20.9 21.4 22.1 22.5 22.6
k =∞ 15.1 23.4 99.0 99.0 99.0 99.0

Main points:

• Increasing recency depth beyond 1 helps, but maxes out quickly

• Synergy of information: need both large k and large r for success
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Tradeoff between precision and size
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Main points:

• Reachability is quite expensive, Recency is cheap

• Random is surprisingly effective on NonStationaryField,
but Recency is better
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Summary

• Goal: determine good heap abstractions to use in static analysis

• Dynamic analysis enables us to quickly explore many heap abstractions

• Heap abstraction has large impact on precision

– Best abstraction depends on how its properties fit the client

– Non-trivial interactions between dimensions

• Hopefully will serve as a useful guide for developers of static analyses

Thank you!
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