
Abstractions from Tests

Mayur Naik
Georgia Institute of Technology, USA

naik@cc.gatech.edu

Hongseok Yang
University of Oxford, UK

hongseok.yang@cs.ox.ac.uk

Ghila Castelnuovo
Tel-Aviv University, Israel

ghila.castelnuovo@gmail.com

Mooly Sagiv
Tel-Aviv University, Israel
mooly.sagiv@gmail.com

Abstract
We present a framework for leveraging dynamic analysis to find
good abstractions for static analysis. A static analysis in our frame-
work is parametrised. Our main insight is to directly and efficiently
compute from a concrete trace, a necessary condition on the param-
eter configurations to prove a given query, and thereby prune the
space of parameter configurations that the static analysis must con-
sider. We provide constructive algorithms for two instance analyses
in our framework: a flow- and context-sensitive thread-escape anal-
ysis and a flow- and context-insensitive points-to analysis. We show
the efficacy of these analyses, and our approach, on six Java pro-
grams comprising two million bytecodes: the thread-escape analy-
sis resolves 80% of queries on average, disproving 28% and prov-
ing 52%; the points-to analysis resolves 99% of queries on average,
disproving 29% and proving 70%.

Categories and Subject Descriptors D.2.4 [SOFTWARE EN-
GINEERING]: Software/Program Verification; F.3.2 [LOGICS
AND MEANINGS OF PROGRAMS]: Semantics of Programming
Languages—Program analysis

General Terms Languages, Verification

Keywords Parametrised Static Analysis, Testing, Thread-Escape
Analysis, Points-to Analysis, Necessary-Condition Problem

1. Introduction
Static analyses based on the Abstract Interpretation technique [6]
are guaranteed to be sound: if such an analysis reports that a given
query holds for a given program, it must indeed hold. In practice,
however, the analysis may not be cheap enough to apply to the
program, or it may not be precise enough to prove the query. This
problem is inherent with the undecidability of static analysis.

One of the most interesting questions in static analysis concerns
how to specialise a given static analysis to prove a given query.
The idea is to make the analysis cheap yet precise by tailoring
it to prove a specific query. Counterexample-guided abstraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27,2012,Philadelphia,PA,USA.
Copyright c© 2012 ACM 978-1-4503-1083/12/01. . . $10.00

refinement (CEGAR) [1, 5, 13, 19] aims to solve this problem. The
idea is to gradually refine the abstraction until either a concrete
counterexample is found or the query is proven. Despite many
advances, the CEGAR approach includes many limitations which
hinder its practicality: it is costly and may fail due to limitations
of the theorem prover, the inability to appropriately refine the
abstraction, the huge size of the counterexample, and the cost of
the static analysis to compute the intermediate abstractions.

This paper takes a radically different approach: it uses dynamic
analysis to compute good abstractions for static analysis. The static
analysis is parametrised, and the space of parameter configurations
is typically large, e.g., exponential in program size or even infinite.
Given a query, a set of parameter configurations, and a concrete
trace, our dynamic analysis computes a necessary condition on
the parameter configurations for proving the query. Our limited
experience shows that this condition can be used to choose, from
among the remaining parameter configurations, one that yields an
abstraction that is cheap enough to drastically cut the cost of the
static analysis yet precise enough to prove the query.

One advantage of our approach is that the necessary condition
is inferred efficiently and directly from the concrete trace without
the need to run the static analysis on the whole program, which
may be infeasible. Additionally, our method can be seen as an
auditing procedure for static analysis: when an abstraction fails to
satisfy our condition, it can neither prove nor disprove the query,
independently of the existence of the counterexample. This means
that some abstractions are pruned even before they are computed,
which is in contrast to the CEGAR approach.

We do not provide a general algorithm to compute the necessary
condition from a given trace. Instead, we provide a formal, non-
constructive definition of the necessary-condition problem, and
algorithms that compute the condition directly from the trace for
two instance analyses: a flow- and context-sensitive thread-escape
analysis, and a flow- and context-insensitive points-to analysis.

We have evaluated our approach on six real-world Java pro-
grams comprising two million bytecodes in total, the largest being
500K bytecodes. For thread-escape analysis, our approach resolves
80% of queries on average, disproving 28% and proving 52%. For
points-to analysis, it resolves 99% of queries on average, disprov-
ing 29% and proving 70%. The fact that the vast majority of queries
are resolved—and, more significantly, proven—shows that our ap-
proach is precise in practice. It is also scalable: despite being top-
down, inter-procedural, and fully flow- and context-sensitive, our
thread-escape analysis takes only 7 seconds on average over 1,750
invocations, with a maximum of 20 seconds.

To summarise, the key contributions of this paper are as follows:

1 2011/11/10

1. We present a novel approach for using concrete traces in order
to obtain good abstractions in certain cases for static analysis.

2. We present a formulation of a necessary condition for an ab-
straction to be precise enough for a given concrete trace.

3. We provide constructive algorithms to compute the necessary
condition from a concrete trace for two static analyses (thread-
escape analysis and points-to analysis).

4. We provide empirical evidence that our approach can be effi-
ciently implemented and that the resulting static analysis is both
precise and scalable.

2. Example
In this section, we provide the reader a flavour of our approach
using thread-escape analysis.

2.1 The thread-escape analysis problem
We introduce the thread-escape analysis problem using the example
Java program in Figure 1. Object allocation sites have unique labels
h1, h2, and so on, and we elide all types. Variables u, v, and w are
locals and g is a global (i.e., static field). The program is multi-
threaded: in each iteration of the loop, the main thread executes the
statement u.start(), which calls the start() method of class
java.lang.Thread, which asynchronously starts a new thread
corresponding to the object pointed to by u. Thus, after the call, the
main thread proceeds to the next loop iteration while the freshly
started child thread runs code not shown in the figure.

The graph at the top of Figures 1(a)–(c) (ignoring the dotted
boxes) shows the concrete data structure created just before pro-
gram position pc in any iteration i ≥ 1 of the loop. For conve-
nience, each object is labeled with the site at which it was cre-
ated (h1, h2, etc.). The clear nodes denote thread-local objects
and the shaded nodes denote thread-escaping objects. An object is
thread-local if it is reachable from at most one thread, and thread-
escaping otherwise. An object becomes reachable from multiple
threads if it is assigned to a global or if the start() method of
class java.lang.Thread is invoked on it: in the former case, the
object becomes reachable from all threads in the program, while
in the latter case, the object becomes reachable from at least the
parent thread and the freshly started child thread. Moreover, any
object reachable in the heap from a thread-escaping object is also
thread-escaping. Finally, once an object thread-escapes, it remains
thread-escaping for the rest of the execution. In our example, the
statement g = new h3 which writes to global g causes the freshly
created object to thread-escape (depicted by the shaded object la-
beled h3). Likewise, the call u.start() causes the object pointed
to by u to thread-escape (depicted by the shaded object labeled h1
from an earlier iteration). Moreover, the object pointed to by w is
reachable from this object in the heap via field f2; hence, that ob-
ject also thread-escapes (depicted by the shaded object labeled h4
from an earlier iteration).

We formulate the thread-escape analysis problem in the form
of program queries. The query we focus on in our example is
qlocal(pc, w), which is true if, whenever any thread reaches program
position pc, the object pointed to by local variable w in that thread’s
environment is thread-local. It is easy to see that this query is true
in our example: the only thread that reaches pc is the main thread,
and whenever it does, w points to the object most recently created at
site h4, which is thread-local (note that this object thread-escapes
only after the following statement u.start() is executed). Many
clients in verification, testing, optimisation, and program under-
standing for multi-threaded programs can benefit from answering
such queries. For instance, proving our example query enables a
static race detector to prove that field id is race-free.

2.2 Parametrised thread-escape analysis
A key challenge in proving thread-escape analysis queries lies in
choosing a heap abstraction that separates thread-local objects from
thread-escaping objects. One class of heap abstractions involves
partitioning all objects based on some static program property. A
natural way is to use a separate partition for all objects created at
the same allocation site. But even this simple heap abstraction can
be too costly when applied to a large program with procedures.
Our goal is to derive cheaper heap abstractions that in most cases
are still precise enough to prove the given query.

The first step in our approach is to parameterise the static anal-
ysis in a manner that admits a large (possibly infinite) family
of abstractions, and cast the problem as a search for a good pa-
rameter configuration to use for proving a given query. Examples
of such analyses abound: a safety model checker can be viewed
as parametrised by a set of program predicates that dictates the
predicate abstraction it computes, shape analysis is parametric in
which predicates to use as abstraction predicates, and cloning-
based points-to analyses (k-CFA, etc.) are parametrised by a vector
of integers that dictate the degree of context- and object-sensitivity
the analysis must use for each call site and each allocation site.

Our thread-escape analysis uses heap abstractions with two par-
titions, denoted L and E, that summarise “definitely thread-local”
objects and “possibly thread-escaping” objects, respectively. The
analysis is parametrised by the partition to be used for summarising
objects created at each allocation site. A parameter configuration η
thus maps each allocation site in the program to either L or E. Each
object created at a particular site starts in the partition dictated by
η for that site, and may subsequently migrate from L to E but not
vice versa. The analysis succeeds in proving a query qlocal(pc, x) if
variable x does not point to an object summarised by the E partition
in any abstract state at program position pc.

Our goal in the parametrised analysis setting is to efficiently find
a parameter configuration that is cheap yet precise enough to prove
a given query. In practice, most configurations yield abstractions
that are not cheap enough to apply to the given program, or not
precise enough to prove the given query. Moreover, proving differ-
ent queries can require different configurations. We next illustrate
the difficulty in efficiently finding good configurations. We begin
by noting that enumerating and testing configurations is infeasible
due to the large space from which they can be chosen.

Consider the trivial η1 in Figure 1(a), which maps each site to
L. The analysis using η1 computes at position pc the abstract state
shown at the bottom of the figure, with the corresponding concrete
state shown above it. This analysis fails to prove our query because
variable w points to partition E in the abstract state at position pc,
despite all objects starting in partition L. This is because statement
g = new h3 “pollutes” the L partition since η1 maps h3 to L (recall
that objects can migrate from partition L to partition E).

This leads us to η2 in Figure 1(b), which is similar to η1 but
maps h3 to E. The analysis using η2 proves our query, but it is
not the cheapest configuration. Our analysis reasons about reads
from objects that are summarised by the L partition and so it tracks
outgoing fields from such objects. Being fully flow- and context-
sensitive, the analysis is exponential in the number of such fields.
Hence, it is cheapest to map as few sites as possible in η to L,
and thereby limit the number of such fields. In particular, it is not
necessary to map h2 to L, which causes field f to be tracked.

This leads us to η3 in Figure 1(c) which is the cheapest config-
uration that proves our query. Note that further coarsening it fails
to prove the query: mapping h4 to E clearly fails because query
variable w is allocated at site h4, but mapping h1 to E also fails
because variable u is allocated at site h1 and statement u.f2 = w
will “pollute” the L partition.

2 2011/11/10

// u, v, w are local variables
// g is a global variable
// start() spawns a new thread

for (i = 0; i < *; i++) {
u = new h1;
v = new h2;
g = new h3;
v.f = g;
w = new h4;
u.f2 = w;

pc: w.id = i;
u.start();

}

thread-escape query: qlocal(pc, w)
η1 = [h1 7→ L, h2 7→ L,

h3 7→ L, h4 7→ L]

(a) fails to prove query

η2 = [h1 7→ L, h2 7→ L,
h3 7→ E, h4 7→ L]

(b) proves query but not cheapest

η3 = [h1 7→ L, h2 7→ E,
h3 7→ E, h4 7→ L]

(c) proves query and cheapest

Figure 1. Example Java program and abstract states computed by our thread-escape analysis at pc using different parameter configurations.

2.3 Parameter configurations from tests
We have seen that choosing a good parameter configuration for
a given query requires striking a delicate balance between preci-
sion and scalability. The key insight in our work is to directly and
efficiently infer from a concrete program trace a necessary con-
dition on the parameter configurations for proving the query. Our
work does not provide a general algorithm for computing the nec-
essary condition but it serves as a principle for designing good ab-
stractions. We provide constructive algorithms using the principle
for two instance analyses: a thread-escape analysis and a points-
to analysis. We also prove that these algorithms indeed compute a
necessary condition: any parameter configuration not satisfying the
condition will fail to prove the query.

In the case of our thread-escape analysis, the necessary condi-
tion is computed using an algorithm we call backward pointer
reachability: Given a query qlocal(pc, x) and a concrete program
state (ρ, π, σ) at location pc, where ρ and π are the environments
providing the values of local and global variables respectively and
σ is the heap, this algorithm dictates that any parameter configura-
tion that can prove this query must map the allocation site of each
object from which the object ρ(x) is reachable in σ to L. For our
example query, this algorithm outputs [h1 7→ L, h4 7→ L]. This
is because, whenever program position pc is reached, variable w
points to an object allocated at site h4, and the only other object
from which that object is reachable in the heap is the one pointed
to by variable u, which is allocated at site h1.

Note that the configuration output by the algorithm does not
constrain the values of h2 and h3. Moreover, many allocation sites
in the program may not even be visited in the trace. Since it is
cheaper to summarise objects using the E partition instead of the
L partition (recall that the analysis tracks outgoing fields of only
objects in the L partition), we simply map all unconstrained sites
to E. Thus, our approach yields configuration η3 shown in Figure
1(c), which is the cheapest configuration that proves the query.

Our backward pointer reachability algorithm is not the only al-
gorithm that satisfies our necessary condition principle. In the ex-
treme, one could envision an algorithm that also infers a condition
that is sufficient for the given trace. Such an algorithm, for instance,
would map h3 to E (recall from Figure 1(a) that any configura-
tion that maps h3 to L fails to prove the query). However, there is
a trade-off between the amount of computation that the dynamic
analysis does and the quality of the configuration it infers, and the

motivation underlying our backward pointer reachability algorithm
is to strike a good balance.

3. Necessary-condition problem
In this section, we explain the formal setting of our result. In par-
ticular, we define the necessary-condition problem, whose solution
plays a crucial role in our approach.

DEFINITION 1. A transition system is a triple (S, T, I) where
T ⊆ S ×S and I ⊆ S. A query q on a transition system (S, T, I)
is a function from S to {true, false}.

Intuitively, S defines the state space of the transition system, T all
the possible state changes, and I the set of initial states. A query q
specifies a particular safety property of the transition system.

We assume that a transition system (S, T, I) and a query q are
given as input to a static analysis. The goal is to prove that the query
is true in all reachable states: ∀s ∈ T ∗(I). q(s) = true.

We solve this problem by using a dynamic analysis together
with a parametrised static analysis. A dynamic analysis here is
simply a run of the given transition system from some initial state.
In our combination, this dynamic analysis is run first, and it either
disproves the query or discovers a condition on the parameters of
the static analysis, which should hold in order for the analysis to
prove the query at all. In the latter case, this condition is converted
to a particular parameter setting, and the static analysis is run with
this setting to attempt to prove the query.

The transition system used by the dynamic analysis is often
instrumented to track extra information about program execution
in its states. One example is to record in each object the timestamp
of its creation. Then, just looking at a single state provides the order
of creation of objects in the state. Note that finding such an order
in a standard semantics requires looking at a concrete trace. The
instrumentation transforms such trace properties to state properties,
which can be better exploited by our dynamic analyses.

In the following subsections, we describe our parametrised
static analysis and how we combine dynamic and static analyses in
detail. We fix a transition system (Sc, Tc, Ic) and a query qc, and
call this transition system the concrete program.

3.1 Parameterised static analysis
We remind the reader of a standard definition of a sound static anal-
ysis and a well-known consequence of the soundness condition:

3 2011/11/10

DEFINITION 2. A static analysis is a tuple (D, T], I], γ) of a
complete lattice D, a monotone function T] : D → D, an element
I] ∈ D representing the set of initial states, and a monotone
function γ : D → P(Sc). We call the function γ concretisation
map, and it gives the meaning of elements in D as sets of states in
the concrete program. A static analysis is sound iff

Ic ⊆ γ(I]) ∧ ∀d ∈ D. Tc(γ(d)) ⊆ γ(T](d)).

LEMMA 3. If a static analysis (D, T], I], γ) is sound, every pre-
fixpoint of λd. I] t T](d) overapproximates the set T ∗c (Ic) of
reachable states in the concrete program:

∀d ∈ D. (I] t T](d)) v d =⇒ T ∗c (Ic) ⊆ γ(d).

We consider static analyses with multiple parameters. We for-
malise the domain of parameter settings as follows:

DEFINITION 4. A domain PConfig of parameter configurations
is a set of functions from a set Param of parameters to a set PVal
of parameter values. The domain does not necessarily contain all
such functions, and it is ranged over using symbol η.

Intuitively, parameters p in Param decide parts of the analysis to
be controlled, such as the abstract semantics of a particular mem-
ory allocation in the given program. A parameter configuration η
maps such p’s to elements in PVal, which determine an abstraction
strategy to employ for the p part of the analysis. We allow the possi-
bility that multiple parameter configurations essentially express the
same abstraction strategy, and we make this duplication explicit as-
suming an equivalence relation ∼ on PConfig.

DEFINITION 5. A parametrised static analysis is a family of
static analyses {(Dη, T]η , I]η, γη)}η∈PConfig indexed by parameter
configurations in some (PConfig,∼). We require that equivalent
components of the analysis satisfy the condition:

η ∼ η′ =⇒ {γη(d) | d ∈ Dη} = {γη′(d) | d ∈ Dη′}.

A parametrised static analysis is sound if all of its component
analyses are sound.

3.2 Problem description
Assume that we are given a sound parametrised static analysis
{(Dη, T]η , I]η, γη)}η∈PConfig. We now formulate the necessary-
condition problem for this parametrised static analysis. A solution
extracts useful information for a parametrised static analysis from
results of a dynamic analysis, and it forms the main component of
our combination of dynamic and static analyses.

We say that a finite subset Sd of Sc validates the query qc when
qc(s) = true for every s ∈ Sd. In our setting, such a validating
set Sd of states is obtained from multiple runs performed during
dynamic analysis, and it carries information potentially useful for
the following static analysis. One example of such information
is formalised by our predicate cannotProve(η, Sd) on parameter
configurations η ∈ PConfig:1

cannotProve(η, Sd) ⇐⇒
(∀d ∈ Dη. Sd ⊆ γη(d) =⇒ ∃s′ ∈ γη(d). qc(s′) = false).

Intuitively, the predicate holds for η, when the η-component anal-
ysis cannot separate Sd from states violating the query qc. As a
result, cannotProve(η, Sd) implies that the η component cannot

1 The cannotProve predicate is related to so called supervaluation of ab-
stract elements. The formula ¬cannotProve(η, Sd) holds iff there is an
abstract element d in Dη overapproximating Sd and containing only those
concrete states where qc evaluates to true. The latter property of d is the
definition of qc having the super-truth at d.

prove that the query holds for all the states in Sd. Using this predi-
cate, we describe our necessary-condition problem:

Necessary-condition problem (in short, NC problem).
Find an algorithm that takes a finite set Sd validating the
query qc and returns a set N ⊆ Param × PVal satisfying
the conditions below: for all η ∈ PConfig,

¬(∃η′ ∈ PConfig. η ∼ η′ ∧ ∀(p, v) ∈ N. η′(p) = v)

⇐⇒ cannotProve(η, Sd) (1)

The left-to-right implication implies that if η is not equivalent to
any parameter configuration that realises all the parameter bindings
(p, v) in N , we can skip the option of setting parameters to η,
because the resulting η analysis cannot prove the query. Hence,
to have any hope for proving the query with the static analysis,
we should ensure that some parameter configuration equivalent to
our setting η respects all the bindings (p, v) in N . The phrase
“necessary condition” mirrors this property of N . The other right-
to-left direction is a completeness requirement, and it asks the
algorithm to discover all the binding pairs that can be used to detect
the satisfaction of cannotProve(−, Sd).

We make two further remarks on the NC problem. First, if every
parameter configuration η ∈ PConfig satisfies cannotProve(η, Sd)
so that no parameter settings can make the static analysis prove the
query, the problem requires that the algorithm should return an un-
satisfiable set N up to the equivalence ∼: for every η, no η′ equiv-
alent to η follows all the bindings inN . This usually happens when
N contains two different bindings (p, v) and (p, v′) for the same
parameter p. Second, even if some parameter configuration equiva-
lent to η respects all the bindings in N , the analysis with η can fail
to prove the query. According to the equivalence, such η satisfies
¬cannotProve(η, Sd), but this just means that the η-component
analysis has an abstract element inDη that can overapproximate Sd
without including bad states (i.e., those violating the given query).
In practice, however, we found that¬cannotProve(η, Sd) is a good
indicator of the success of the analysis with η, especially when
states Sd are instrumented and carry additional information about
concrete traces.

A solution to the NC problem enables an interesting combina-
tion of a dynamic analysis and a parametrised static analysis. In
this combination, a dynamic analysis is first run, and it gives a set
of states s1, . . . , sn that are reachable from some initial states in
Ic. If the given query qc does not hold for some si, we have found
a counterexample, and the combined analysis terminates with this
counterexample si. Otherwise, the solution to the NC problem is
run for s1, . . . , sn, and then it computes a set N . The combined
analysis then checks the unsatisfiability of N as follows:

∃p ∈ Param. ∃v, v′ ∈ PVal. (p, v) ∈ N ∧ (p, v′) ∈ N ∧ v 6= v′.

If the check goes through, the analysis stops and returns “impossi-
ble to prove”. Otherwise, it picks one element v0 from PVal (which
normally makes the static analysis run fast), and constructs a pa-
rameter configuration ηN as follows:

ηN (p) = if ((p, v) ∈ N for some v) then v else v0. (2)

The element v0 is chosen carefully so that ηN belongs to PConfig.
Finally, the analysis with the parameter setting ηN is run on the
given program. In what follows, we explain how to solve the NC
problem for instance analyses.

4. Generic solution
We have developed solutions to the NC problem for two instance
analyses. This section is a prelude of the description of these solu-
tions, where we explain their commonalities. In particular, we clar-

4 2011/11/10

ify an assumption made by both solutions on parametrised static
analyses and queries, and describe a recipe for developing an al-
gorithm for the NC problem, called generic solution, from which
the solutions can be derived. This recipe can also be used for other
instance analyses. As in the previous section, we assume a fixed
concrete program (Sc, Tc, Ic) and a fixed query qc on Sc.

Our generic solution requires that a parametrised static analy-
sis {(Dη, T]η , I]η, γη)}η∈PConfig should have coupled components,
which means that the following three conditions hold:

1. The component static analyses use the same abstract domain.
That is, Dη0 = Dη1 for all η0, η1 ∈ PConfig. We let D be this
common abstract domain. Note that we do not impose a similar
requirement on γη and component analyses can, therefore, use
different concretisation maps. This means that although the
components share the same set D of abstract representations,
they can still have different abstract domains, because they
might interpret these representations differently.

2. For all η0, η1 ∈ PConfig and all d ∈ D,

(∀s∈ γη0(d). qc(s)= true) ⇐⇒ (∀s∈ γη1(d). qc(s)= true).

Note that both sides of the equivalence are the same except the
subscripts η0 and η1. The common part

∀s ∈ γ−(d). qc(s) = true (3)

means that query qc holds for all states abstracted by d. Hence,
if the static analysis with a certain parameter configuration
returns such d, it can prove that query qc holds for all the
reachable states of the given concrete program. For this reason,
we call d satisfying formula (3) a good abstract element.
Because of the equivalence above, the identification of such
good abstract elements does not depend on the choice of a
parameter configuration η, and we use some η ∈ PConfig and
define the set of good elements Dg as follows:

Dg = {d | ∀s ∈ γη(d). qc(s) = true}

3. There are a finite lattice Auxs, and monotone functions Fs :
Auxs → Auxs and Gs : Auxs → P(Param × PVal) for each
s ∈ Sc, such that the equivalence below holds for all finite
subsets Sd ⊆ Sc:

(∃d ∈ Dg. Sd ⊆ γη(d)) ⇐⇒
∃η′. η ∼ η′ ∧ (∀s ∈ Sd.∃a ∈ Auxs. (Fs(a) v a)

∧ ∀(p, v) ∈ Gs(a). η′(p) = v).

The left side of the equivalence means that the static analysis
with η can use a good abstract element d ∈ Dg to abstract a
given set of states Sd. Hence, it can at least separate Sd from
bad states where query qc gets evaluated to false. According
to the equivalence, this property on η can be checked using
F and G. That is, we iterate over all parameter configurations
η′ equivalent to η, and do the following. For every state s ∈
Sd, we compute some pre-fixpoint of Fs over Auxs, map this
pre-fixpoint to a subset N0 of Param × PVal using Gs, and
check whether η′ respects all the bindings in N0. If the check
succeeds, we stop the iteration, and return “yes”. If the iteration
finishes without any successful check, we return “no”.

Assume that we are given a sound parametrised analysis that
has coupled components. Our generic algorithm for solving the
NC problem is given in Figure 2. Given a finite set Sd validating
query qc, the algorithm iterates over every element s ∈ Sd, and
computes the least fixpoint leastFix Fs, which is mapped to a
subset Ns of Param×PVal by Gs. The resulting subsets Ns from
iterations are combined, and become the result N =

⋃
s∈Sd

Ns.

Input: a finite subset Sd ⊆ Sc such that ∀s ∈ Sd. qc(s) = true
Output: the finite subset N ⊆ Param× PVal computed by

N =
⋃
{Gs(a) | s ∈ Sd ∧ a = leastFixFs}

Figure 2. Generic algorithm for solving the NC problem.

Note that the least fixpoint of Fs exists and can be computed by
the standard method (which generates ⊥, Fs(⊥), Fs(Fs(⊥)), . . .
until the fixpoint is reached), because Auxs is a finite lattice (hence
complete) and Fs is monotone.

THEOREM 6. Our generic algorithm solves the NC problem.

Proof: Let N be the result of our algorithm when it is given a set
Sd of states as the input. We need to prove that for every parameter
configuration η ∈ PConfig, cannotProve(η, Sd) holds if and only
if we cannot find η′ equivalent to η such that η′(p) = v for all
(p, v) ∈ N . We will discharge this proof obligation by showing:

¬cannotProve(η, Sd) ⇐⇒ ∃η′. η∼ η′∧∀(p, v)∈N. η′(p)= v.

We first transform the left side of the equivalence by unrolling
the definition of cannotProve and using the first condition of hav-
ing coupled components, which says that Dη = D for all η:

¬cannotProve(η, Sd)

⇐⇒ ¬(∀d ∈ D. Sd ⊆ γη(d) =⇒ ∃s′ ∈ γη(d). qc(s′) = false)

⇐⇒ ∃d ∈ D. Sd ⊆ γη(d) ∧ ∀s′ ∈ γη(d). qc(s′) = true.

In the first equivalence, we unroll the definition of cannotProve
and replace Dη by D in the result of unrolling. The second equiva-
lence is the standard one from classical logic.

Next, we use the second condition of having coupled compo-
nents, which allows us to define the set Dg of good abstract ele-
ments independently of a parameter configuration η:

∃d ∈ D. Sd ⊆ γη(d) ∧ ∀s′ ∈ γη(d). qc(s′) = true

⇐⇒ ∃d ∈ D. Sd ⊆ γη(d) ∧ d ∈ Dg
⇐⇒ ∃d ∈ Dg. Sd ⊆ γη(d)
⇐⇒ ∃η′. η ∼ η′ ∧ ∃d ∈ Dg. Sd ⊆ γη′(d) (4)

The first equivalence uses the definition of Dg , and the second
equivalence and the left-to-right implication of the third follow
from standard reasoning in classical logic. The remaining right-
to-left implication in the last equivalence relies on the following
condition on ∼:

η ∼ η′ =⇒ {γη(d) | d ∈ D} = {γη′(d) | d ∈ D}

as well as the fact that if γη(d) = γη′(d
′), then both d and d′

belong to Dg , or neither does so.
Finally, we use the last condition of having coupled components

to reach the property on the result N of our generic algorithm. By
the third condition of having coupled components, the property in
(4) is equivalent to

∃η′, η′′. η∼ η′ ∧ η′∼ η′′ ∧ (∀s∈Sd.∃a∈Auxs. Fs(a)v a
∧ ∀(p, v)∈Gs(a). η′′(p)= v).

Since ∼ is an equivalence relation, the property above means the
same as the following condition:

∃η′. η∼ η′ ∧∀s∈Sd.∃a. Fs(a)v a∧∀(p, v)∈Gs(a). η′(p)= v.

5 2011/11/10

In what follows, we transform the second conjunct of the condition
until we reach our target property for N :

(∀s∈Sd. ∃a. Fs(a)v a ∧ ∀(p, v)∈Gs(a). η′(p)= v)

⇐⇒ ∀s∈Sd. ∀(p, v)∈Gs(leastFix Fs). η
′(p) = v

⇐⇒ ∀(p, v)∈{Gs(leastFix Fs) | s ∈ Sd}. η′(p) = v

⇐⇒ ∀(p, v)∈N. η′(p) = v.

The last two equivalences are standard equivalence-preserving
steps from logic. The right-to-left direction of the first equivalence
holds, because Fs(leastFixFs) v leastFixFs. Now, it remains to
show the left-to-right direction of the same equivalence. To do so,
we pick s ∈ Sd, and assume that for some a0 ∈ Auxs,

Fs(a0) v a0 ∧ ∀(p, v) ∈ Gs(a0). η(p) = v. (5)

Since Fs is monotone on a complete lattice, leastFix Fs is the least
element in Auxs satisfying Fs(a) v a. Hence,

leastFix Fs v a. (6)

Furthermore, since Gs is monotone, Gs(leastFix Fs) is a subset
of Gs(a). This subset relationship and the second conjunct of the
property (5) for a0 imply that

∀(p, v) ∈ Gs(leastFix Fs). η(p) = v (7)

We get the right side of the second equivalence from (6) and (7). �

5. Instance analyses
Following our general recipe for solving the NC problem, we have
developed algorithms for solving the problem for two instance
analyses. In this section, we describe these algorithms. We start
with a model of concrete program states. This storage model is used
by both instance analyses, as it is or in a slightly adjusted form.

Our storage model defines a set of concrete states of a given
heap-manipulating program. It assumes the nonempty set PC of
program positions in the given program. Also, the model assumes
five nonempty disjoint sets: a finite set LVar for local variables,
another finite set GVar for global variables, yet another finite set
Fld for fields, and two countable sets, Loc for objects and AllocSite
for allocation sites2. The formal definition of our model is given by
these equations:

ILoc = AllocSite× Loc Val = ILoc ∪ {nil}
Local = LVar→ Val Global = GVar→ Val

Heap = ILoc× Fld ⇀fin Val

Sbase = {(pc, ρ, π, σ) ∈ PC× Local× Global× Heap |
there are no dangling pointers in ρ, π and σ}

Intuitively, (h, o) ∈ ILoc means an object o instrumented with
its allocation site h. Such instrumented objects and nil form the
set of values. The storage model defines states as tuples of four
components. 3 The first is the current program position pc, and the
other two, denoted ρ and π, hold the values of local variables and
global variables, respectively. The last component is the heap σ
with finitely many allocated objects. Note that we treat local and
global variables separately. This separation helps formulate one of
our instance analyses below.

We consider two analyses over the storage model:

2 Although there are infinitely many values for denoting allocation sites,
only a finite subset of them are used in a given program, because the
program includes only finitely many instructions for memory allocations
3 The formal statement of the absence of dangling pointers is:
range(ρ) ∪ range(π) ∪ range(σ) ⊆ {l | ∃f. (l, f) ∈ dom(σ)} ∪ {nil}.

1. Thread-escape analysis: It attempts to prove that at a given
program position pc, a particular local variable x never stores
an object that is reachable from any global variable. Note the
use of our separation of local variables from global variables.

2. Points-to analysis: This analysis tries to show that program
variables x and y always point to different heap objects at all
program positions.

The objectives of both analyses have the same format, and de-
mand the proof that a certain query should hold for all reach-
able program states. We denote these queries by qlocal(pcq, xq) and
qnoalias(xq, yq).

5.1 Thread-escape analysis
Our first instance analysis is a fully flow- and context-sensitive
thread-escape analysis. It answers the query qlocal(pcq, xq), which
asks whether, at program position pcq , local variable xq never
points to an object that is reachable from global variables.

The thread-escape analysis summarises objects in a program
state using two abstract locations L and E, such that L abstracts
nil and a set of objects that are not reachable from global variables,
and E abstracts the set of all remaining objects in the state. Thus,
E includes all objects reachable from any global variable, and
possibly more. The abstract domain tracks outgoing fields from
objects summarised by L, and it is defined as follows:

Val] = {L, E} Local] = LVar→ P(Val])

Heap] = Fld→ P(Val]) D = PC→ Local] × Heap]

An abstract heap is a map from fields to sets of abstract locations.
This map concerns only the objects summarised by L, and overap-
proximates the values stored in the fields of these objects. Note that
we do not track values stored in global variables or objects sum-
marised by E. This is our intentional choice based on the following
observation: if an object is reachable from a global variable, it usu-
ally remains so, and as a result, tracking what are stored in such
escaping objects does not normally help improve precision of the
analysis.

The thread-escape analysis is an instance of our parametrised
static analysis that has coupled components. Its parameters are
defined as follows:

Param = AllocSite PVal = {L, E}
PConfig = Param→PVal η ∼ η′ ⇐⇒ η = η′

Parameters are allocation sites, and parameter configurations η map
them to one of the abstract locations L and E. Setting an allocation
site h to v ∈ PVal entails that objects allocated at h are summarised
initially by v. This initial membership of a newly created object
can change, but only in a limited manner: an object can move from
L to E but not vice versa. In this way, a parameter configuration
controls how objects are abstracted using L and E, and it affects
the precision and scalability of the analysis, because the analysis
generally tracks information about L more precisely but at a higher
cost. Finally, the thread-escape analysis does not have symmetry
among component analyses, so that the equivalence relation on
parameter configurations is simply the equality.

The intuition described so far on the analysis is formalised by
our concretisation map γη , which we will now explain. For a set
L ∈ P(ILoc) of objects, let absL : Val → Val] be the following
function, which abstracts concrete values in Val:

absL(v) = if (v ∈ L ∪ {nil}) then L else E.

The subscript L here provides the meaning of the abstract location
L, which our abstraction function abs exploits in a standard way
to abstract concrete values. Using this value abstraction, we define

6 2011/11/10

concretisation maps γη : D → P(Sbase) as follows:

(pc, ρ, π, σ) ∈ γη(d) ⇐⇒ ∃ρ], σ]. d(pc) = (ρ], σ]) ∧
(∃L∈P(ILoc). (∀x∈ LVar. absL(ρ(x)) ∈ ρ](x))
∧ (∀(l, f)∈ (L×Fld) ∩ dom(σ). absL(σ(l, f)) ∈ σ](f))
∧ (∀(l, f)∈ (ILoc×Fld)∩ dom(σ). σ(l, f) ∈ L =⇒ l∈L)
∧ (∀g ∈GVar. π(g) 6∈ L) ∧ (∀(h, a)∈L. η(h) = L)).

This definition requires that the abstract location L should have an
appropriate interpretation as a set L of objects, with respect to the
abstract stack ρ] and heap σ] at pc. By the word “appropriate”,
we mean that L should satisfy the five conjuncts given above. The
first two of these conjuncts express that ρ] and σ] overapproximate
values that are stored in local variables and in fields of objects in
L. The next two are concerned with L containing only objects that
are unreachable from global variables. They say that L is closed
under backward pointer reachability and it does not contain any
object stored in any global variable. Hence, when these conjuncts
hold, no object in L can be reached from global variables. Finally,
the last conjunct says that all objects in L are allocated at sites
mapped by η to L. Equivalently, it says that L never contains
objects from sites mapped by η to E. This is the place where the
concretisation depends on the parameter configuration η, and the
conjunct describes a unique property of the η-component analysis,
which holds because objects from sites mapped to E are abstracted
using E and this membership in E never changes during the analysis.

We order P(Val]) using the subset relation, and Local] and
Heap] by the pointwise extension of this subset order. Then, from
these order relations of Local] and Heap], we construct the order
on our abstract domain D, again using a standard pointwise exten-
sion for the product and function spaces.

LEMMA 7. The abstract domain D is a complete lattice. Further-
more, γη is monotone for every η ∈ PConfig.

Proof: Since every powerset with the subset order forms a com-
plete lattice, P(Val]) is a complete lattice. Furthermore, the stan-
dard constructions for function and product spaces with the point-
wise order preserve the property of being a complete lattice. For
instance, P(Val]) with the subset order is a complete lattice, and
this preservation result ensures that the function space Local] =
LVar → P(Val]) with the pointwise order is also a complete lat-
tice. Note that our abstract domain D is constructed from the com-
plete lattice P(Val]) by the combination of function and product
spaces. By the preservation result just mentioned,D should also be
a complete lattice.

Regarding the claimed monotonicity of the concretisation map
γη , we note that ρ] and σ] are used only in the positive position in
the constraints appearing in the definition of γη(d). Hence, making
them bigger (i.e., enlarging their ranges) weakens these constraints,
and the monotonicity of γη follows. �

5.1.1 NC algorithm
Assume that we are given a query qlocal(pcq, xq) for some program
position pcq and a local variable xq . Our NC algorithm for this
query takes a finite set Sd ⊆ Sbase such that every state s ∈ Sd
satisfies the query. Then, the algorithm computes a subset N of
Param× PVal, which describes a necessary condition for proving
the query, as formulated by the equivalence (1) in Section 3.

Our algorithm works as follows. Given an input Sd, it iterates
over every state s = (pc, ρ, π, σ) ∈ Sd with pc = pcq , and cal-
culates backward pointer reachability, starting from the queried
object ρ(xq). Concretely, the backward reachability first looks up
the object stored in variable xq in the state s, then it computes all
the objects that reach object ρ(xq) via fields in the state, and finally

it takes the allocation sites As of the resulting objects and builds
the set of parameter binding Ns = {(h, L) | h ∈ As}. Once all the
iterations are completed, the algorithm gathers theNs’s and returns
their union N =

⋃
s∈Sd

Ns as a result.
Formally, the NC algorithm is an instantiation of the generic

solution in Figure 2, with the following data specific to the thread-
escape analysis:

1. The first datum is the sub-domain Dg ⊆ D of good ab-
stract elements, whose concretisations do not contain bad states
violating qlocal(pcq, xq). This property of abstract elements
should hold regardless of what parameter configuration η is
chosen to do the concretisation. Such a sub-domain Dg ex-
ists for the thread-escape analysis, and it has the definition:
Dg = {d | ∀ρ], σ]. (d(pcq)= (ρ], σ]) ∧ ∀x. ρ](x) 6= ∅) =⇒
ρ](xq)= {L}}.

2. The second datum is a finite lattice Auxs for each state s =
(pc, ρ, π, σ) ∈ Sbase. In the case of the thread-escape analysis,
Auxs = P({l | ∃f ∈ Fld. (l, f) ∈ dom(σ)} ∪ {nil}).

3. The remaining data are monotone functionsFs : Auxs → Auxs
and Gs : Auxs → P(Param× PVal) for all s ∈ Sbase:

F(pc,ρ,π,σ)(L) = {ρ(xq) | pc = pcq} ∪ L
∪ {l | ∃f ∈ Fld. (l, f) ∈ dom(σ) ∧ σ(l, f) ∈ L}

G(pc,ρ,π,σ)(L) = {(h, L) | ∃o. (h, o) ∈ L}
∪ {(h, E) | ∃o, g. (h, o) ∈ L ∧ (h, o) = π(g)}

The first function Fs comes from the query qlocal(xq, pcq) and
a condition on L in the concretisation γη , which says that
L should be closed under backward pointer reachability. The
function computes one-step backward closure of the set L, and
extends the result with the object ρ(xq) stored in xq . The sec-
ond function Gs(L) collects all the allocation sites appearing
in L, and turns them to conditions that those sites should be
mapped to L. When L contains an object (h, o) stored in some
global variable (so the object ρ(xq) is escaping), Gs(L) adds
both (h, L) and (h, E), so that no parameter configurations can
satisfy all the bindings in Gs(L). The computation of the fix-
point of Fs and its conversion via Gs are the formal implemen-
tation of the backward reachability calculation alluded to in our
informal explanation of the algorithm above.

LEMMA 8. The data Dg,Auxs, Fs, Gs satisfy the conditions in
Section 4. Hence, our parametrised thread-escape analysis has
coupled components. Also, the induced NC algorithm solves the
NC problem for the thread-escape analysis.

Proof: First, we show that the set of good elements can be defined
independently of parameter configurations, and that it is in factDg .
We do so by proving that for every η ∈ PConfig, the set of bad
elements at η coincides with D −Dg . That is, for all η,

(∃s ∈ γη(d). qlocal(xq, pcq)(s) = false) ⇐⇒
(∃ρ], σ]. d(pcq) = (ρ], σ]) ∧ (∀x. ρ](x) 6= ∅) ∧ ρ](xq) 6= {L})

To prove the left-to-right direction, assume a state s ∈ γη(d) that
violates the query, and let (ρ], σ]) be d(pcq). Since the state s
violates the query, its program counter should be pcq . This implies
that ρ] cannot map any local variable x to ∅, because then γη(d)
cannot contain any states at the program position pcq , including s.
It remains to show that ρ](xq) 6= {L}. Suppose that ρ](xq) = {L}.
This means that the value of the local variable xq at the state
s is nil or it belongs to some set L ∈ P(ILoc) that does not
include any objects stored in global variables and that is also closed
with respect to the backward pointer reachability. Hence, in the
state s, the local variable xq does not store an object reachable

7 2011/11/10

from some global variable. This contradicts our assumption that
qlocal(xq, pcq)(s) = false.

For the other direction, we assume the right side of the equiva-
lence, and we explicitly construct a state s ∈ γη(d) that is desired
by the left side of the equivalence. Let (ρ], σ]) be d(pcq), and as-
sume that (∀x. ρ](x) 6= ∅) and E ∈ ρ](xq). Pick an allocation site
h0 from AllocSite, an object o0 ∈ Loc and one field f0 ∈ Fld, all
of which are possible because the sets involved are not empty. We
construct a state s = (pc, ρ, π, σ) as follows:

pc = pcq

ρ(x) = if (x 6= xq ∧ ρ](x) = {L}) then nil else (h0, o0)

π(g) = (h0, o0)

σ(l, f) = if (l = (h0, o0) ∧ f = f0) then nil else undefined

Since GVar is not empty, the object (h0, o0) is reachable from
some global variable in the state s. Furthermore, in this state, the
local variable xq points to this object, so qlocal(xq, pcq)(s) = false.
The only remaining thing is to prove the membership s ∈ γη(d),
which amounts to finding an appropriate witness set L ∈ P(ILoc)
satisfying various requirements in the definition of γη . In this case,
the witness set L is the empty set, and one can easily show that all
the requirements for L hold.

Second, we have to show that for every state s, functions Fs
and Gs are monotone, and they meet the following requirement:
for all finite subsets Sd of Sbase and all parameter configurations
η ∈ PConfig,

(∃d ∈ Dg. Sd ⊆ γη(d)) ⇐⇒
(∀s ∈ Sd.∃a ∈ Auxs. (Fs(a) v a)

∧ ∀(p, v) ∈ Gs(a). η(p) = v). (8)

In this requirement, we used the fact that the equivalence relation
∼ on parameter configurations is equality, and simplified the third
condition of having coupled components slightly.

The monotonicity of Fs and Gs is immediate from their defi-
nitions. We prove the equivalence (8) above in two steps. The first
step is to show that

(∃d ∈ Dg. Sd ⊆ γη(d)) ⇐⇒ (∀s ∈ Sd.∃ds ∈ Dg. s ∈ γη(ds)).
The left-to-right direction holds, because we can use d from the left
side as a required witness ds on the right side. The other implication
is slightly tricky. Assume the right side of the equivalence holds
with the witness set {ds}s∈Sd . For every s ∈ Sd, if the program
counter for s is not pcq , we transform ds to d′s as follows:

d′s = ds[pcq 7→ (λx.∅, λf.∅)].
The new d′s is still inDg , and its concretisation at η includes s. One
benefit of this preprocessing is that the join d0 of all d′s (which is
defined pointwise) is still in Dg . Then, we have that Sd ⊆ γη(d0)
by the monotonicity of γη and the fact that d′s v d0 for every
s ∈ Sd. We have just shown that d0 is the desired witness of the
left side of the equivalence.

The second step is to show that for every s ∈ Sd,

(∃d ∈ Dg. s ∈ γη(d)) ⇐⇒
(∃a ∈ Auxs. (Fs(a) v a) ∧ ∀(p, v) ∈ Gs(a). η(p) = v). (9)

Before proving this equivalence, we point out that the conclusions
of these two steps imply the desired equivalence in (8). Since both
Fs and Gs are monotone, the right side of the equivalence in (9)
means the same thing as

∀(p, v) ∈ Gs(leastFix Fs). η(p) = v. (10)

If the program counter of s is not pcq , leastFix Fs is the empty
set, and so is Gs(leastFix Fs). Hence, the condition in (10) holds.

Also, in this case, for every d with s ∈ γη(d), the modified abstract
element d′ = d[pcq 7→ (λx.∅, λf.∅)] still satisfies s ∈ γη(d

′),
while d′ belongs toDg . This means that there exists some d′ ∈ Dg
with s ∈ γη(d′). We have just shown that both sides of (9) are true,
so the equivalence should hold.

If the program counter pc of s = (pc, ρ, π, σ) is pcq , then
(leastFixFs) is the set L of all the backward reachable objects to
ρ(xq). In this case, Gs(leastFix Fs) binds all the allocation sites h
of objects in L to L. Also, it binds the allocation site h of an object
in L to E, when the object is stored in some global variable. Hence,
if ρ(xq) is reachable from some global variable, Gs(leastFix Fs)
contains contradictory bindings, and no η ∈ PConfig satisfies
the condition in (10). Note that in this case, the left side of the
equivalence in (9) does not hold for any η ∈ PConfig, either. On
the other hand, if ρ(xq) is not reachable from any global variable,
η ∈ PConfig satisfies the condition in (10), when it maps the
allocation sites of objects inL to L. Again, this is precisely the same
claim as the left side of the equivalence in (9). This completes our
proof of the equivalence in (9) for states whose program counters
are pcq . �

5.1.2 Construction of a parameter configuration
The result N of our NC algorithm needs to be converted to a
specific parameter configuration, so that our parametrised thread-
escape analysis can be instantiated with that configuration. We
use a simple conversion described at the end of Section 3. If N
contains two different bindings for a single allocation site, we
return “impossible to prove.” Otherwise, we construct a parameter
configuration η(h) = (if (h, v) ∈ N then v else E). Note that in
the construction, we chose E as a default value. Usually, setting an
allocation site to L makes the analysis more precise, but slower
as well. Hence, our choice of E corresponds to using the most
abstract and also cheapest component of the analysis, which can
still separate good states Sd obtained by the dynamic analysis from
bad states violating the query qlocal(pcq, xq).4

5.2 Points-to analysis
Our second instance analysis is a flow- and context-insensitive
points-to analysis. It answers the query qnoalias(xq, yq), which asks
whether program variables xq and yq point to different objects at
all program positions.

Our version of the points-to analysis uses parameter configura-
tions to optimise an existing flow- and context-insensitive points-to
analysis. The purpose of looking for such optimisation is not to im-
prove the existing analysis. It is well-known that the existing anal-
ysis scales. Rather, our purpose is to test whether our approach of
combining dynamic and static analyses can produce a cheap ab-
straction that is still good enough for proving a given query.

Our points-to analysis abstracts objects using three abstract lo-
cations P1, P2 and P3. These abstract locations form a partition
of all objects, and they are used to describe aliasing relationships
among program variables and fields that arise during program exe-
cution. Based on this intuition on abstract locations, we define the

4 Our thread-escape analysis finds a minimal abstraction for proving a given
query in the following sense. Consider a partial order L, E defined by L v E,
and extend this order to parameter configurations pointwise. A successful
run of our analysis computes a minimal parameter configuration according
to this extended order. If one accepts that this order correctly compares the
degree of abstractions of parameter configurations, she or he can see that
the computed parameter configuration is also a minimal abstraction.

8 2011/11/10

abstract domain of our points-to analysis:

Loc] = {P1, P2, P3} Var = LVar ∪ GVar

Stack] = Var→ P(Loc]) Heap] = Loc] × Fld→ P(Loc])

D = Stack] × Heap]

An abstract state (π], σ]) conservatively describes all objects
stored in program variables and fields. Note that a program po-
sition is not a part of an abstract state. This omission implies that
our abstract state (π], σ]) specifies a flow-insensitive property of a
given program, as expected for any flow-insensitive static analyses.

Our points-to analysis is parametrised by maps from allocation
sites to abstract locations:

Param = AllocSite PVal = Loc]

PConfig = {η : Param→ PVal | ∀l] ∈ Loc]. ∃h. η(h) = l]}
η ∼ η′ ⇐⇒ (k ◦ η = η′ for some bijection k on PVal)

A parameter configuration η ∈ PConfig decides, at each allocation
site, which abstract location to use to summarise objects created
at the site. Since there are only three abstract locations, all sites
are partitioned into three groups, each of which is summarised us-
ing one abstract location. Unlike the thread-escape analysis, once
an object is summarised by an abstract location, say P1, this sum-
mary relationship never changes during the analysis, so the object
never becomes summarised by P2 or P3 later. For each parame-
ter configuration η ∈ PConfig, we care only about how η parti-
tion allocation sites into three groups, not about the names of these
groups. Whether groups are named (P1, P2, P3) or (P2, P3, P1)
does not matter for the behavior of the analysis. This independence
on names is made explicit by our equivalence relation∼ on param-
eter configurations above.

The way that parameter configurations control the analysis here
can be seen in our concretisation map γη , which we present next.
For sets of objects L1, L2 ⊆ ILoc with L1∩L2 = ∅, let absL1,L2 :
Val → P(Loc]) be the following function that abstracts concrete
values:

absL1,L2(v) = if (v = nil) then {} else
(if v ∈ L1 then {P1} else (if v ∈ L2 then {P2} else {P3}))

Note the role of subscripts L1 and L2. They give the meaning
of P1 and P2, and guide the function to abstract concrete objects
according to this meaning. These subscripts are usually constructed
by taking the inverse image from a parameter configuration:

(Lη1 , L
η
2) = ({(h, a) | η(h) = P1}, {(h, a) | η(h) = P2}).

Another thing to notice is that the concrete value nil gets abstracted
to the empty set. Hence, every abstract value v ∈ P(Loc]) repre-
sents a non-empty set of concrete values, which contains nil. Using
both the value abstraction and the subscript generation explained
so far, we define the concretisation map γη as follows:

(pc, ρ, π, σ) ∈ γη(π], σ]) ⇐⇒
(∀x∈ LVar. abs(ρ(x))⊆π](x))∧ (∀g ∈GVar. abs(π(g))⊆π](g))
∧ (∀(l, f)∈ (Lη1 ×Fld)∩ dom(σ). abs(σ(l, f))⊆σ](P1, f))

∧ (∀(l, f)∈ (Lη2 ×Fld)∩ dom(σ). abs(σ(l, f))⊆σ](P2, f))
∧ (∀(l, f)∈ ((ILoc−Lη1 −L

η
2)×Fld)∩ dom(σ).

abs(σ(l, f))⊆σ](P3, f))

We omit the subscripts Lη1 , L
η
2 from absLη1 ,L

η
2

to avoid clutter. The
first two conjuncts ensure the sound abstraction of objects stored
in local and global variables. The remaining ones guarantee that σ]

overapproximates the concrete heap σ, according to the partitioning
scheme dictated by the parameter configuration η.

We order elements in D in a standard way, by extending the
subset order for P(Loc]) pointwise over the function space first
and the product space next.

LEMMA 9. The abstract domain D is a complete lattice. Further-
more, for all η ∈ PConfig, their concretisation maps γη are mono-
tone, and satisfy the following condition:

η ∼ η′ =⇒ {γη(d) | d ∈ Dη} = {γη′(d) | d ∈ Dη′}.

Proof: The domain D is built from the complete lattice P(Loc])
using the standard constructions for function and product spaces
with the pointwise orders. It is know that these two domain con-
structors preserve the property of being a complete lattice. Hence,
D is a complete lattice.

Regarding the monotonicity of γη , we note that in the definition
of γη(π], σ]), the components π] and σ] appear only in the positive
position. Hence, making them bigger (i.e., enlarging their ranges)
will make the conditions in the definition weaker. The monotonicity
follows from this. It remains to prove the condition involving ∼.
For every bijection k on PVal and all (π], σ]) ∈ D, we define
(π]k, σ

]
k) as follows:

π]k(x)= {k(v) | v ∈π
](x)}, σ]k(l

], f)= {k(v) | v ∈σ](l], f)}.
Then, for all bijections k on PVal and all η, η′ ∈ PConfig,

k ◦ η = η′ =⇒ γη(π
], σ]) = γη′(π

]
k, σ

]
k).

From this property, the condition involving ∼ follows. �

5.2.1 NC algorithm
Given a set Sd of states from the dynamic analysis, our NC algo-
rithm for the points-to analysis first computes the following sets
Hx and Hy:

Hx = {h | ∃(pc, ρ, π, σ) ∈ Sd. ∃o. (ρ] π)(xq) = (h, o)},
Hy = {h | ∃(pc, ρ, π, σ) ∈ Sd. ∃o. (ρ] π)(yq) = (h, o)}.

The first set Hx consists of allocation sites of xq-pointed objects
that appear in some states of Sd. Similarly, the second Hy is made
from allocation sites of yq-pointed objects appearing in some s ∈
Sd. Next, our algorithm converts Hx, Hy to a set N of parameter
bindings: N = {(h, P1) | h ∈ Hx} ∪ {(h, P2) | h ∈ Hy}, which
is returned as a result of the algorithm.

Our algorithm is a solution to the NC problem for the points-to
analysis. This is because it is an instance of the generic solution in
Section 4 with the following data:

1. The η-independent set Dg of good elements exists, and it is:
Dg = {(π], σ]) | π](xq) ∩ π](yq) = ∅}.

2. For each state s, we let Xs = P({l | ∃f. (l, f) ∈ dom(σ)} ∪
{nil}), and define Auxs = Xs ×Xs. Hence, Auxs consists of
pairs (L1, L2), where Li is a set of allocated locations in s or
nil.

3. The remaining data are the following functions Fs and Gs for
every s = (pc, ρ, π, σ) ∈ Sbase:

F(pc,ρ,π,σ)(L1, L2)= (L1 ∪{(ρ]π)(xq)}, L2 ∪{(ρ]π)(yq)})
G(pc,ρ,π,σ)(L1, L2)=

{(h, P1) | ∃o. (h, o) ∈ L1} ∪ {(h, P2) | ∃o. (h, o) ∈ L2}
The function Fs simply adds the value of xq to the first set,
and that of yq to the second. Hence, the fixpoint of Fs is just
({(ρ] π)(xq)}, {(ρ] π)(yq)}), which will be computed by
one fixpoint iteration. From this fixpoint, the function Gs gets
the bindings of allocation sites to P1 or P2.

9 2011/11/10

LEMMA 10. The data Dg,Auxs, Fs, Gs satisfy the conditions in
Section 4. Hence, our parametrised points-to analysis has coupled
components. Also, the induced NC algorithm solves the NC prob-
lem for the points-to analysis.

Proof: First, we prove that the set of good elements is precisely
Dg given above. Since the definition of Dg does not refer to
any parameter configuration, this fact implies that the set of good
elements can be defined independently of parameter configurations,
as required by our framework. Our proof considers the set of bad
elements at a parameter configuration η ∈ PConfig, and shows that
this set coincides with D −Dg . That is, for all η ∈ PConfig,

(∃s ∈ γη(π], σ]). qnoalias(xq, yq)(s) = false) ⇐⇒
(π](xq) ∩ π](yq) 6= ∅) (11)

To prove the left-to-right direction, assume a state s ∈ γη(π], σ])
that violates the query. Since the query fails for s, both variables xq
and yq point to the same object in the state s. Let h be the allocation
site of this heap object. Then, η(h) should be in π](xq) and π](yq),
since s belongs to γη(π], σ]). We have just shown the right side of
the equivalence in (11).

We now prove the other direction. Assume that π](xq) ∩
π](yq) 6= ∅. Then, there must be l]0 ∈ π](xq) ∩ π](yq). Further-
more, since η belongs to PConfig, there should be an allocation site
h0 with η(h0) = l]0. Pick an object o0 ∈ Loc and a field f0 ∈ Fld.
We construct a concrete state s = (pc, ρ, π, σ) as follows:

pc is some program position in PC

ρ(x) = if (x = xq ∨ x = yq) then (h0, o0) else nil

π(g) = if (g = xq ∨ g = yq) then (h0, o0) else nil

σ(l, f) = if (l = (h0, o0) ∧ f = f0) then nil else undefined

The constructed state s belongs to γη(π], σ]) and it does make
qnoalias(xq, yq) fail. This means that s is the witness desired by the
right side of the equivalence.

Second, we need to prove that for every state s, functions Fs
and Gs are monotone, and they meet the following requirement:
for all finite subsets Sd of Sbase and all parameter configurations
η ∈ PConfig,

(∃d ∈ Dg. Sd ⊆ γη(d)) ⇐⇒
∃η′. η ∼ η′ ∧ (∀s ∈ Sd.∃a ∈ Auxs. (Fs(a) v a)

∧ ∀(p, v) ∈ Gs(a). η′(p) = v). (12)

The monotonicity of Fs and Gs is immediate from their defini-
tions. The equivalence above holds because both sides say that the
following two sets are disjoint:

Hx= {η(h) | ∃o. ∃(pc, ρ, π, σ)∈Sd. (ρ] π)(xq)= (h, o)},
Hy = {η(h) | ∃o. ∃(pc, ρ, π, σ)∈Sd. (ρ] π)(yq)= (h, o)}.

�

5.2.2 Construction of a parameter configuration
From the result N of the NC algorithm, we construct a parame-
ter configuration η ∈ PConfig to be used by our static points-
to analysis. Our construction follows the method described at the
end of Section 3 with only a minor adjustment. As before, if
the same allocation site is bound to P1 and P2 at the same time
by N , our combined dynamic and static analysis stops and re-
turns “impossible to prove.” Otherwise, it chooses mutually distinct
h1, h2, h3 ∈ AllocSite that do not appear in a given program nor
N , and defines N ′ = N ∪ {(h1, P1), (h2, P2), (h3, P3)}. Choos-
ing such hi’s is possible since AllocSite is an infinite set and the
given program uses only finitely many allocation sites in AllocSite.

Then, our analysis uses P3 as a default parameter value, and con-
structs a configuration ηN′(h) = (if (h, v) ∈ N ′ then v else P3).
Using P3 as a default value is our decision choice based on the ob-
servation: whatever parameter configuration η is used, the resulting
η-component points-to analysis is very cheap, hence it is wise to go
for the option that maximises precision, which is precisely to use
P3 as a default value. We point out that ηN′ belongs to PConfig
since N ′ includes the bindings (h1, P1), (h2, P2) and (h3, P3).

6. Experimental evaluation
In this section, we evaluate the effectiveness of the two instance
analyses of our framework: the thread-escape analysis and the
points-to analysis. We implemented these analyses and applied
them to the six multi-threaded Java programs described in Table 1,
including four from the DaCapo benchmark suite [4].5 All exper-
iments were done using IBM J9 VM 1.6.0 on a Linux machine
with two Intel Xeon 2.9 GHz six-core processors and 32GB RAM
(though the experiments were run in a single thread and the JVM
was limited to use up to 4GB RAM). We next evaluate the precision
of these analyses (Section 6.1), their scalability (Section 6.2), and
the quality of the computed abstractions (Section 6.3).

6.1 Precision
In this section, we evaluate the precision of our thread-escape and
points-to analyses. Figure 3 shows the precision of our thread-
escape analysis. Each query to this analysis is a pair (pc, x) where
pc is the program position of a statement that accesses an instance
field or an array element of an object denoted by local variable x:

pc : y = x.f; pc : y = x[i]; pc : x.f = y; pc : x[i] = y;

Such queries may arise from any analysis of multi-threaded pro-
grams that desires to reason only about instructions that possibly
access thread-shared memory, such as a static race detection tool or
a software transactional memory runtime.

The top of each column shows how many queries were consid-
ered for each benchmark, that is, queries where program position
pc was reached at least once in a concrete trace of the benchmark
on a single supplied input. It shows both the absolute number of
considered queries and what fraction they constitute of the queries
reachable in a static 0-CFA call graph. The latter provides a mea-
sure of the coverage achieved by each trace (29–60%). The con-
sidered queries are classified into three categories: those disproven
by our dynamic analysis of the trace (“Escaping”), those proven by
our static analysis using the parameter configuration inferred by the
dynamic analysis (“Local”), and those neither disproven nor proven
(“Unknown”). On average, 80% of the queries in each benchmark
are either disproven (28%) or proven (52%), highlighting the effec-
tiveness of our approach using only a single trace. Also, note that
our approach does not preclude the use of multiple traces, which
would only further improve both coverage and precision.

Figure 4 shows the precision of our points-to analysis. Each
query to this analysis is a tuple (pc1, x, pc2, y) where (pc1, x)
and (pc2, y) are identical to the queries described above for our
thread-escape analysis, with the additional constraint that they both
access array elements or they both access the same instance field,
and at least one of them is a write. Such queries may be posed by,

5 Among all benchmarks in dacapo-2006-10-MR2, dacapo-9.10-beta0, and
dacapo-9.12, we excluded single-threaded benchmarks (bloat, chart,
antlr, fop, etc.), and multi-threaded benchmarks with little concurrency
(batik, pmd, etc.), because one of our instance analyses is thread-escape
analysis. We also excluded luindex because it is too similar to lusearch,
which we include (both are built atop Apache Lucene). We tried the remain-
ing four benchmarks in our experiments.

10 2011/11/10

description # classes # methods # bytecodes (KB) # alloc.
app total app total app total sites

hedc web crawler from ETH 44 355 234 2,062 16 161 1,587
weblech website download/mirror tool (version 0.0.3) 57 579 311 3,295 20 237 2,636
lusearch text indexing and search tool (dacapo-9.12) 229 648 1,510 3,893 100 273 2,879
sunflow photo-realistic rendering system (dacapo-9.12) 164 1,018 1,327 6,652 117 480 5,170
avrora microcontroller simulation/analysis tool (dacapo-9.12) 1,159 1,525 4,245 5,980 223 316 4,860
hsqldb relational database engine (dacapo-2006-10-MR2) 199 837 2,815 6,752 221 491 4,564

Table 1. Benchmark characteristics. The “# classes” column is the number of classes containing reachable methods. The “# methods”
column is the number of reachable methods computed by a static 0-CFA call-graph analysis. The “# bytecodes” column is the number of
bytecodes of reachable methods. The “total” columns report numbers for all reachable code whereas the “app” columns report numbers for
only application code (excluding JDK library code). The “# alloc. sites” column is the number of object allocation sites in reachable methods.

 0

 20

 40

 60

 80

 100

hedc
weblech

lusearch

sunflow

avrora

hsqldb

AVG.

271
(47%)

421
(60%)

2027
(29%)

5336
(58%)

5090
(34%)

4190
(29%)

2889
(37%)

#queries
(coverage)

Escaping
Local

Unknown

Figure 3. Precision results for our thread-escape analysis.

for instance, a static race detection client to determine whether the
statements at pc1 and pc2 can be involved in a race.

The top of each column shows how many queries were con-
sidered for each benchmark, that is, queries where both program
positions pc1 and pc2 were reached at least once in the single trace.
The traces cover 7–51% of all statically reachable queries. The av-
erage coverage is lower for queries of this analysis compared to
that of our thread-escape analysis (21% vs. 37%). This is because
the points-to analysis requires both pc1 and pc2 to be reached for a
query to be considered whereas the thread-escape analysis requires
a single program position pc to be reached.

The considered queries are classified into three categories: (1)
those disproven by our dynamic analysis of the trace (“Aliased”),
namely, those where x and y pointed to objects created at the same
allocation site at least once; (2) those proven by our static analysis
using the parameter configuration inferred by the dynamic analysis
(“Not Aliased”); and (3) those neither disproven nor proven (“Un-
known”). Note that category (1) includes not only queries that are
false concretely but also queries that might be true concretely but
are impossible to prove using an object allocation site abstraction.
Almost all queries (99% on average) are either disproven or proven.
This result suggests that, in practice, a flow- and context-insensitive
points-to analysis based on object allocation site abstraction for
Java does not require representing objects allocated at each site
using a separate abstract location; merely three abstract locations
(albeit specialised to the query) suffice.

6.2 Scalability
In this section, we evaluate the scalability of our thread-escape
analysis. Table 2 provides the running time of the analysis. The
“pre-process time” column reports the time to prepare the bench-
mark for analysis (resolving reflection, computing a call graph,
etc.). The “dynamic analysis” column reports the running time of
our dynamic analysis, which includes the time to instrument the

 0

 20

 40

 60

 80

 100

hedc
weblech

lusearch

sunflow

avrora

hsqldb

AVG.

6e+02
(18%)

5e+02
(31%)

2e+05
(14%)

3e+06
(51%)

9e+05
(7%)

7e+05
(17%)

9e+05
(21%)

#queries
(coverage)

Aliased
Not Aliased

Unknown

Figure 4. Precision results for our points-to analysis.

pre-process dynamic analysis static analysis
time time # events time (serial)

hedc 18s 6s 0.6M 38s
weblech 33s 8s 1.5M 74s
lusearch 27s 31s 11M 8m
sunflow 46s 8m 375M 74m
avrora 36s 32s 11M 41m
hsqldb 44s 35s 25M 86m

Table 2. Running time of our thread-escape analysis.

benchmark and run it on a single supplied input. It also reports the
length of the trace that was analyzed. The trace includes a separate
event for each execution of each object allocation instruction, each
instance field or array element access, and each thread-escaping
instruction (i.e., a write to a static field or a call to the start()
method of class java.lang.Thread). We tried multiple different
inputs for each benchmark but found only marginal improvements
in coverage and precision. This suggests that the truthhood of most
queries, and the abstractions for proving them, are not sensitive to
program inputs, which in turn plays into our approach’s favour.6

For each reachable query, the dynamic analysis either disproves
the query or provides a parameter configuration that is used by the
subsequent static analysis. The “static analysis” column reports the
serial running time of all invocations of the static analysis, one
per set of queries for which the same parameter configuration is
inferred by the dynamic analysis. Note that these invocations do
not share anything and could be run in an embarrassingly parallel

6 We conjecture that the input insensitivity happens, because thread-escape
analysis and pointer analysis concern heap structure and pointer connectiv-
ity, which is less sensitive to the specific data values in different program
inputs (e.g., different keywords to be searched by lusearch, different SQL
queries to be answered by hsqldb, etc.).

11 2011/11/10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

lusearch

optimized
naive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

sunflow

optimized
naive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

avrora

optimized
naive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

hsqldb

optimized
naive

Figure 5. CDF of the running time (secs.) of invocations of the
optimised and naive versions of our static thread-escape analysis.

manner on a multi-core machine or a cluster; hence, we next study
the running time of each invocation.

Figure 5 provides the cumulative distribution function (CDF) of
the running times of individual invocations of the static analysis
for each of our four large benchmarks (all from the DaCapo suite).
The blue curve (−◦−) shows the CDF of an optimised version
of the static analysis while the red curve (−×−) shows the CDF
of the naive version (we explain the difference between the two
versions shortly). The CDFs have a separate point for each different
running time; the x-intercept of the point denotes that time while
the y-intercept of the point denotes the number of invocations
that took at most that time. The optimised version of the analysis
takes almost constant time across different invocations for each
benchmark, suggesting that our approach is effective at tailoring
the abstraction to each query (Section 6.3 provides more statistics
about the computed abstractions). Specifically, it takes an average
of 7 seconds per invocation and a maximum of 20 seconds over
all 1,743 invocations for all benchmarks. The naive version, on the
other hand, takes an average of 30 seconds per invocation and runs
out of memory for the 18 invocations (14 for hsqldb and 4 for

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

lusearch

optimized
naive

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

sunflow

optimized
naive

 0.8

 0.9

 1

 0 50 100 150 200 250

avrora

optimized
naive

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

hsqldb

optimized
naive

Figure 6. CDF of summary sizes of methods in invocations of the
optimised and naive versions of our static thread-escape analysis.

sunflow) that are denoted by the points taking 300 seconds—the
timeout we used for those invocations.

The optimised and naive versions of our static thread-escape
analysis differ only in how they compute method summaries, which
we explain next. Let (pc], ρ], σ]) denote the incoming abstract
state for a method. Recall that ρ] provides the incoming abstract
value of each formal argument of the method, and σ] is the in-
coming abstract heap. If the incoming abstract value of none of the
formal arguments contains abstract location L (i.e., ∀x. L /∈ ρ](x)),
then the analysis of that method will never read the incoming ab-
stract heap σ]. The optimised version of our analysis exploits this
observation and analyzes the method in context (ρ], ∅) (i.e., using
an empty incoming abstract heap), whereas the naive version still
analyzes it in context (ρ], σ]). In practice, we observed that our
top-down inter-procedural analysis repeatedly visits methods with
the same incoming abstract environment satisfying the above con-
dition, but with different incoming abstract heaps. Thus, the naive
version results in significantly lesser reuse of summary edges than
the optimised version, evident from the CDFs plotted in Figure 6.
These CDFs have a separate point for each different number of

12 2011/11/10

summary edges that was computed for any method in the bench-
mark in any invocation of the analysis; the x-intercept of the point
provides that number while the y-intercept of the point provides
the fraction of methods for which at most that many summary
edges were computed in any invocation. Note that while in both
versions, only under a handful of summary edges is computed for
the vast majority of methods, there are outliers in the naive version
for which vastly more summary edges are computed than in the op-
timised version, for all four benchmarks. These outliers cause the
18 invocations described above to run out of memory.

It is worth emphasizing that sophisticated optimizations have
been proposed to efficiently compute and concisely represent
method summaries over abstract heaps (e.g., [20]). While those op-
timizations are hard to understand and implement, ours is relatively
simple yet highly effective in practice. Notice that the only reason
why our optimization is enabled is due to the unique capability of
our dynamic analysis to map only a few necessary allocation sites
to L and the vast majority of allocation sites to E in the parameter
configurations with which the static analysis is invoked (see Sec-
tion 6.3); without this capability, many methods would be analyzed
with incoming abstract environments containing L in the abstract
values of formal arguments, which in turn would prevent the opti-
mised version of our analysis from ignoring the incoming abstract
heap and drastically hurt summary reuse.

6.3 Abstraction quality
This section evaluates the quality of the abstractions computed by
our thread-escape analysis. The key question we want to answer
is: how hard is the thread-escape analysis problem to justify using
query specialisation and dynamic analysis?

We experimented with various purely static strawman ap-
proaches and found that they were not precise or scalable enough.
Below, we describe two such approaches.

Strawman 1. The goal of this strawman was to determine
how much flow and/or context sensitivity matters for precision.
We implemented a flow- and context-insensitive analysis based on
object allocation site abstraction, and found that it proved only 13-
34% of the queries for our benchmarks, with an average of 27.5%.
In contrast, the combined dynamic-static approach presented in
this paper, which is flow- and context-sensitive, proves 38-72% of
the queries, with an average of 52%. This shows that flow and/or
context sensitivity is likely important for precision.

Strawman 2. The goal of this strawman was to determine
whether a trivial parameter configuration is precise and scalable
enough. We used the static thread-escape analysis presented in this
paper, but invoked it with a parameter configuration that simply
sets each allocation site in the program to L, instead of using our
dynamic analysis to obtain parameter configurations tailored to
individual queries. We found the resulting analysis to be highly
unscalable—it ran out of memory on all our six benchmarks—
but highly precise on much smaller benchmarks (not shown) that it
was able to successfully analyze. This shows that: (1) even though
the above trivial parameter configuration is not the most precise in
principle, it is likely very precise in practice; and (2) the ability of
our dynamic analysis to avoid unnecessarily mapping sites to L is
critical in practice for scalability.

Lastly, we would like to answer the question: if a few allocation
sites must be mapped to L for scalability, how small is that number
to justify an approach as sophisticated as backward pointer reacha-
bility, and how different are the allocation sites for different queries
to justify query specialisation? We next answer these questions.

Figure 7 shows the CDF of the number of allocation sites that
were mapped to L for each query by the dynamic analysis. Recall
that these are the sites the dynamic analysis has determined must
be mapped to L: mapping any of them to E is guaranteed to make

the static analysis fail to prove the query. The red curve (−×−) shows
the CDF for all queries that were considered by the static analysis
whereas the blue curve (−◦−) shows the CDF for only queries that
it ended up proving. For each point shown, the x-intercept denotes
the number of sites that were mapped to L for some query, and the
y-intercept denotes the fraction of queries that needed at most those
many sites. The relative shapes of the two curves are expected: as
the number of sites needed to be mapped to L by a query grows,
the chance that our dynamic analysis will miss some needed site
due to lack of coverage and thereby cause our static analysis to
fail to prove the query increases. The CDFs show that, while just
1-2 sites are needed to prove around 50% of the queries for each
benchmark, at least a handful of sites are needed to prove another
40%, and tens of sites are needed to prove the remaining 10%. On
average, 4.8 sites are needed for all queries that the static analysis
attempts to prove, with the highest being 195 sites for avrora.

Figure 8 shows the CDF of the number of queries in each
invocation of our static thread-escape analysis for which the same
parameter configuration is inferred by the dynamic analysis. For
each point shown, the x-intercept denotes the size of at least one
such query set, and the y-intercept denotes the fraction of query
sets of at most that size. On average, an invocation of the static
analysis considers 14 queries, with some outliers considering over
hundred queries each. This shows that the abstraction needed for
proving each query is neither too unique nor too generic.

7. Related work
Our approach is related to techniques for client-driven abstraction
specialisation and to techniques for combining dynamic and static
analyses. We next survey each of these kinds of techniques.

Client-driven abstraction specialisation. In the client-driven spe-
cialisation problem, a program and a query (assertion) are given and
the goal is to find either a counterexample program trace showing a
violation of the query, or an abstraction which is cheap yet precise
enough for the analysis to efficiently prove the query on the pro-
gram. There are two natural solutions to this problem: abstraction
refinement, which starts with a coarse abstraction and refines it, and
abstraction coarsening, which starts with a precise abstraction and
coarsens it. The CEGAR approach (e.g., [1, 3, 5, 13, 19]) falls in
the first category, and refines the abstraction guided by false coun-
terexample traces. Besides the CEGAR approach, there are other
approaches to refine abstractions that are based on a dependence
analysis that relates unproven queries to sources of imprecision
such as flow-, context-, or object insensitivity in the abstraction
[12, 14, 18]. In more recent work, Liang et al. [15] present ran-
domised algorithms to find a minimal abstraction that are based on
both abstraction refinement and coarsening.

A fundamental difference between our approach and all the
above techniques is that we utilise the concrete trace in order
to avoid performing the static analysis at all. This can be handy
in cases where the static analysis is exploring too many paths
and considering too many configurations. Interestingly, our method
could be combined with abstraction refinement, e.g. by computing
an initial abstraction which respects the necessary condition and
then applying refinement if necessary.

Combining static and dynamic analyses. Recent work com-
bines static and dynamic analyses in interesting ways. The Yogi
project [2, 9, 10, 17] exploits a dynamic analysis to improve the
performance of the abstraction-refinement step of a static analysis.
A form of concolic testing is used to reduce the number of theorem
prover calls and case splits due to pointer aliasing, which a static
analysis considers during refinement.

Gupta et al. [11] uses a dynamic analysis to simplify non-linear
constraints generated during inference of program invariants. Yorsh

13 2011/11/10

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

lusearch

proven queries
all queries

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

sunflow

proven queries
all queries

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

avrora

proven queries
all queries

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

hsqldb

proven queries
all queries

Figure 7. CDFs of the number of allocation sites mapped to L
in each parameter configuration, for all queries considered by our
static thread-escape analysis and for just those that were proven.

et al. [22] uses a static analysis to construct a concrete trace that is
then used by an automated theorem prover to check if it covers all
executions. It proves safety properties if the check passes on the
concrete trace and produces a counterexample that can be used to
generate new traces if the check fails.

One of the interesting questions for a program analysis is how to
infer the right invariants to prove a query. One potential idea which
is similar to ours is to start from a given concrete trace and then
generalise it. McMillan [16] uses interpolants to perform generali-
sation. This approach is interesting but it requires computing inter-
polants which is not yet feasible for many programming language
features. Also, like CEGAR this approach fails to generalise from
multiple paths. In contrast we simplify the problem by assuming
that the abstract domains already provide generalisation, and use
the concrete trace to trim inadequate abstractions.

Techniques combining random test generation and concrete ex-
ecution with symbolic execution and model generation have been
explored [7, 8, 21]. They use symbolic methods to direct tests to-

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

lusearch

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

sunflow

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

avrora

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

hsqldb

Figure 8. CDF of the number of queries in each invocation of our
static thread-escape analysis.

wards unexplored paths to find errors faster. But they do not use ab-
straction and in general cannot find proofs in the presence of loops.

To our knowledge, our technique is unique in that it uses a dy-
namic analysis for computing necessary conditions on abstractions,
and also for directly providing a static analysis with an abstraction
that is specialised to a given query and which in most cases suc-
ceeds in proving the query.

8. Conclusion
Efficiently finding good abstractions is a long-standing problem in
static analysis. Parametrised static analyses offer the flexibility to
specialise the abstraction to a given query but also pose a hard
search for a suitable parameter configuration. We have presented a
novel solution to this problem: using a dynamic analysis to compute
a necessary condition on the parameter configurations for proving
a given query. We have given constructive algorithms for two in-
stance analyses: thread-escape analysis and points-to analysis. We
have proven that these algorithms indeed compute necessary condi-
tions and shown that, in practice, these algorithms are efficient and
the resulting static analyses are both precise and scalable.

14 2011/11/10

Acknowledgments We thank Percy Liang for technical discus-
sions on thread-escape analysis and the necessary-condition prob-
lem, and Peter O’Hearn and the anonymous referees for helpful
comments on the paper. Yang acknowledges support from EPSRC.

References
[1] T. Ball and S. Rajamani. The slam project: Debugging system software

via static analysis. In POPL, pages 1–3, 2002.
[2] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs

from tests. In ISSTA, pages 3–14, 2008.
[3] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path

invariants. In PLDI, pages 300–309, 2007.
[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-

ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In OOPSLA, pages 169–190, 2006.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. JACM, 50(5), 2003.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction of approxima-
tion of fixed points. In POPL, pages 238–252, 1977.

[7] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: combining static
checking and testing. In ICSE, pages 422–431, 2005.

[8] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated
random testing. In PLDI, pages 213–223, 2005.

[9] P. Godefroid, A. Nori, S. Rajamani, and S. Tetali. Compositional may-
must program analysis: unleashing the power of alternation. In POPL,
pages 43–56, 2010.

[10] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. Synergy: a new algorithm for property checking. In
SIGSOFT FSE, pages 117–127, 2006.

[11] A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In
TACAS, pages 262–276, 2009.

[12] S. Guyer and C. Lin. Client-driven pointer analysis. In SAS, pages
214–236, 2003.

[13] T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions
from proofs. In POPL, pages 232–244, 2004.

[14] P. Liang and M. Naik. Scaling abstraction refinement via pruning. In
PLDI, pages 590–601, 2011.

[15] P. Liang, O. Tripp, and M. Naik. Learning minimal abstractions. In
POPL, pages 31–42, 2011.

[16] K. McMillan. Relevance heuristics for program analysis. In POPL,
pages 145–146, 2008.

[17] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The yogi
project: Software property checking via static analysis and testing. In
TACAS, pages 178–181, 2009.

[18] J. Plevyak and A. Chien. Precise concrete type inference for object-
oriented languages. In OOPSLA, pages 324–340, 1994.

[19] J. P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in cesar. In Proceedings of the 5th International Symposium
on Programming, pages 337–350, 1982.

[20] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics
for procedure local heaps and its abstractions. In POPL, pages 296–
309, 2005.

[21] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine
for c. In FSE, pages 263–272, 2005.

[22] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction, theorem proving:
Better together! In ISSTA, pages 145–156, 2006.

15 2011/11/10

