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Abstract

We present a novel dynamic analysis technique that findslezal-
locks in multi-threaded programs. Our technique runs ingtages.

In the first stage, we use an imprecise dynamic analysis igaofn
to find potential deadlocks in a multi-threaded program bseot-
ing an execution of the program. In the second stage, we aontr
a random thread scheduler to create the potential deadieitks
high probability. Unlike other dynamic analysis technigueur ap-
proach has the advantage that it does not give any false rnggni
We have implemented the technique in a prototype tool foa,Jav
and have experimented on a number of large multi-threadeal Ja
programs. We report a number of previously known and unknown
real deadlocks that were found in these benchmarks.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.2.&pftware EngineerirjgSoft-
ware/Program Verification

General Terms Languages, Reliability, Verification

Keywords deadlock detection, dynamic program analysis, con-
currency

1. Introduction

A common cause for unresponsiveness in software systems is a

deadlock situation. In shared-memory multi-threadedesyst a
deadlock is a liveness failure that happens when a set cidbre
blocks forever because each thread in the set is waiting 10 ac
quire a lock held by another thread in the set. Deadlock is a

common form of bug in today’s software—Sun’s bug database at ex

http://bugs. sun. conl shows that 6,500 bug reports out of
198,000 contain the keyword ‘deadlock’. There are a fewaess
for the existence of deadlock bugs in multi-threaded pnogra
First, software systems are often written by many prograrame
therefore, it becomes difficult to follow a lock order didaie that
could avoid deadlock. Second, programmers often introdecel-
locks when they fix race conditions by adding new locks. Third
software systems can allow incorporation of third-partftveare
(e.g. plugins); third-party software may not follow the kowgy dis-
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cipline followed by the parent software and this sometinessilits
in deadlock bugs [17].

Deadlocks are often difficult to find during the testing phase
because they happen under very specific thread scheduleingo
up with these subtle thread schedules through stress gestin
random testing is often difficult. Model checking [15, 1114, 6]
removes these limitations of testing by systematicallyl@pg
all thread schedules. However, model checking fails toestal
large multi-threaded programs due to the exponential &saén
the number of thread schedules with execution length.

Several program analysis techniques, both static [19, 19, 2
27, 29, 21] and dynamic [12, 13, 4, 1], have been developeé-to d
tect and predict deadlocks in multi-threaded programdicStech-
nigues often give no false negatives, but they often repaniym
false positives. For example, the static deadlock deteigteeloped
by Williams et al. [29] reports 100,000 deadlocks in Sun'&kJD
1.4, out of which only 7 are real deadlocks. Type and annotation
based techniques [5, 10] help to avoid deadlocks duringngodi
but they impose the burden of annotation on programmerslidre
tive dynamic techniques such as Goodlock [13] and its improv
ments [4, 1] give both false negatives and false positivesekam-
ple, in our experiments we have found that an improved Gaddlo
can report as many as 254 false positives for our Jigsaw webrse
Being imprecise in nature, most of these tools require nmlanua
spection to see if a deadlock is real or not. Neverthelessgttech-
niques are effective in finding deadlocks because they cadigir
deadlocks that could potentially happen during a real ei@tu-
for such a prediction, static analyses do not need to seeaal @x-
ecution and dynamic analyses need to see only one multadbre
ecution.

Dynamic analysis based deadlock detection can be madeereci
by taking the happens-before relation [18] into accountweieer,

it has several problems. First, it reduces the predictiwvegpoof
dynamic techniques—it fails to report deadlocks that ctwappen

in a significantly different thread schedule. Second, it parturb

an execution significantly and can fail to report a deadlbeit tan
happen when no dynamic analysis is performed.

We propose a new dynamic technique for detecting real dead-
locks in multi-threaded programs, calledEEDLOCKFUZZER,
which combines an imprecise dynamic deadlock detectioh-tec
nigue with a randomized thread scheduler to create real-dead
locks with high probability. The technique works in two pbas
In the first phase, we use an informative and a simple variant
of the Goodlock algorithm, calleahformative Goodlockor sim-
ply iGoodlock, to discover potential deadlock cycles in altinu
threaded program. For example, iGoodlock could report decyc

1They reduce the number of reports to 70 after applying varimsound
heuristics



of the form (¢1, 11, 12, [c1, c2]) (¢2, 12, 11, [¢], cb]), which says that
there could be a deadlock if thread tries to acquire locks at
program locatiore, after acquiring lock; at program locatior
and threadt, tries to acquire lock; at program locatior), af-
ter acquiring lockl> at program locatior}. In the second phase,

DeADLOCKFUZzZER executes the program with a random sched-
ule in order to create a real deadlock corresponding to aecycl

reported in the previous phase. For example, consider thke cy
(t1,11,12, [c1, c2])(t2, l2, 11, [c1, c5]) again. At each program state,
the random scheduler picks a thread and executes its nextnstat
with the following exception. If; is about to acquire lock at lo-
cation ¢, after acquiring lockl; at locationc;, then the random
scheduler pauses the execution of threadSimilarly, the random
scheduler pauses the execution of threai it is about to acquire
lock I; at locationc), after acquiring locK» at locationc]. In this
biased random schedule, it is very likely that both the ttiseaill
reach a state whetge is trying to acquirds while holdingl; andt-
is trying to acquird, while holdingl.. This results in a real dead-
lock. In summary, BEADLOCKFuUzzERactively controls a random-
ized thread scheduler based on a potential deadlock cymbetesl
by an imprecise deadlock detection technique.

The above technique poses the followkey challengePhase
Il assumes that Phase | can provide it with precise knowlatiget
the thread and lock objects involved in the deadlock cyclefots
tunately, since thread and lock objects are created dyrdisniat
runtime, their addresses cannot be used to identify theossa@&x-
ecutions, i.e. in the above example, addresses, ®$, /1, > do not

remain the same between Phase | and Phase Il executiong- Ther

fore, we need some mechanism to identify the same objeatssacr
executions. Specifically, we need a form of object abswaciuch
that if two dynamic objects in different executions are thens,
they must have the same abstraction. For example, the l&lzel o
statement at which an object is created can be used as ita@bst
tion. Such an abstraction of an object does not change aexess-
tions. However, an abstraction could be the same for sevbjatts

(e.g. if bothi; andli; in the above example are created by the same

statement). In this paper, we propose two techniques fopobm
ing the abstraction of an object that helps us to distingbéetiveen
different objects more precisely—the first technique is ivaded
by the notion ofk-object-sensitivityn static analysis [20] and the
second technique is motivated by the notion of executiomxnd
ing [30]. We show that both these abstractions are better tiea
trivial abstraction where all objects have the same ahkstracd/\Ve
also empirically show that the abstraction based on exauuiti-
dexing is better than the abstraction based on k-objecitsaty
in most benchmarks.

We have implemented EnDLOCKFUzzER for multi-threaded

Java programs in a prototype tool. We have applied the tool
to a large number of benchmarks having a total of over 600K

lines of code. The results of our experiments show thahD-
LockFuzzeRcan create real deadlocks with high probability and
DEADLOCKFUZzZER can detect all previously known real dead-
locks.

We make the following contributions in this paper.

¢ We propose a simple and informative variant of the Goodlock

algorithm, callediGoodlock. Unlike existing Goodlock algo-
rithms [13, 4, 1], iGoodlock does not use lock graphs or depth
first search, but reports the same deadlocks as the existiog a
rithms. Due to this modification, iGoodlock uses more memory
but reduces runtime complexity. We also attach contextrinfo

mation with each cycle that helps in debugging and in biasing

the random scheduler. iGoodlock is iterative in nature—nitgi
all cycles of lengthk before finding any cycle of length + 1.
Our experiments show that all real deadlocks in our bencknar

have length two. Therefore, if we have a limited time budget,

we can run iGoodlock for one iteration so that it only reports
deadlock cycles of length 2.

Our key contributionis an active random deadlock detecting
scheduler that can create real deadlocks with high prababil
(we show this claim empirically) based on information po®d

by iGoodlock. This phase prevents us from reporting anyefals
positives and creates real deadlocks which are useful for de
bugging. This relieves the manual inspection burden astati
with other imprecise techniques such as Goodlock.

We propose two kinds of object abstraction techniques tlat h
us correlate thread and lock objects between iGoodlockland t
randomized scheduling algorithm.

We have implemented EnDLOCKFUZZERin a tool for Java
and have discovered subtle previously known and unknown

deadlocks in large applications. To the best of our knowdedg
DeADLOCKFuUzzERis the first precise dynamic deadlock anal-
ysis tool for Java that has been applied to large Java applica
tions.

2. Algorithm

The DEADLOCKFUZzZER algorithm consists of two phases. In the
first phase, we execute a multi-threaded program and fincdhpote
tial deadlocks that could happen in some execution of thgrpro.
This phase uses a modified Goodlock algorithm, caliéatmative
Goodlock or simply iGoodlock, which identifies potential dead-
locks even if the observed execution does not deadlock. We ca
the modified algorithmnformative because we provide suitable
debugging information to identify the cause of the deadiettkis
debugging information is used by the second phase to create r
deadlocks with high probability. A limitation of iGoodlodk that

it can give false positives because it does not considerahpdns-
before relation between the transitions in an executiona Aesult
the user is required to manually inspect such potential [defsl
The second phase removes this burden from the user. In tageph
a random thread scheduler is biased to generate an exethgion
creates a real deadlock reported in the previous phase vgth h
probability. We next describe these two phases in moreldetai

2.1 Background Definitions

We use a general and simple model of a concurrent system to
describe our dynamic deadlock checking algorithm. We clarsi
a concurrent system to be composed of a finite set of threads.
Each thread executes a sequence of labeled statementseal thr
communicates with other threads using shared objects. ft an
point during program execution, a concurrent system isstate

Let sp be the initial state. A concurrent system evolves from one
state to another state when a thread executes a statementr In
algorithms, we will consider the following dynamic instascof
labeled program statements:

1. ¢: Acquire(l), denoting the acquire of the dynamic lock
objectl. cis the label of the statement (same for below).

2. c: Rel ease(l), denoting the release of the dynamic lock
objectl.

3. ¢: Cal | (m), denoting a call to the method.
4. c: Ret ur n(m), denoting the return from the methad

5.¢c: o =new (o', T), where the statement occurs in the body of
a methodm and when thd hi s argument ofm evaluates to
objecto’, theno is the dynamic object of typ& allocated by
the statement.

In several languages including Java, locks are re-entrant,
a thread may re-acquire a lock it already holds. In our algorj



we ignore the execution af: Acquire(l) orc: Rel ease(l)
statements by a thread if ¢ re-acquires the lock or does not
release the lock, respectivel§. To simplify exposition, we also

assume that locks are acquired and released in a nested.avay, i

if a thread acquire$, after acquiringl:, then it has to releask

before releasing, . Our algorithm can easily be extended to handle

languages where locks can be acquired and released in &agrbi
order.

Next we introduce some definitions that we will use to describ

our algorithms.

¢ Enabl ed(s) denotes the set of threads that are enabled in the
states. A thread is disabled if it is waiting to acquire a lock

already held by some other thread (or waiting gnoa n or a
wai t in Java.)

2. for all distinctz,5 € [1,m], I; # I, i.e. the lock objects
l1,la,..., 1, are distinct,

3. foralli € [1I,m — 1], l; € Lit1, i.e. each thread could
potentially wait to acquire a lock that is held by the nexeth,

4. for all distincti, j € [1,m], L; N L; = 0, i.e., each thread;
should be able to acquire the locks in without waiting.

DEeFINITION 3. A lock dependency chain
T = <(t17 L17 llv 01)7 ceey (t'nu L77L7 lm7 Cm))
is a potential deadlock cyciél,, € L.

Note that the definition of a potential deadlock cycle never
uses any of th€;'s in D, to compute a potential deadlock cycle.
EachC; of a potential deadlock cycle provides us with information
about program locations where the locks involved in theeyatre
acquired. This is useful for debugging and is also used by the

* Al i ve(s) denotes the set of threads whose executions have not active random deadlock checker to determine the prograatitots

terminated in the state A states is in astall stateif the set of
enabled threads in(i.e. Enabl ed(s)) is empty and the set of
threads that are alive (i.8l i ve(s)) is non-empty.

where it needs to pause a thread.
Each lock and thread object involved in a potential deadtyek
cle is identified by its unique id, which is typically tleldressof

e Execut e(s, t) returns the state after executing the next state- the object. The unique id of an object, being based on dynaric

ment of the thread in the states.

2.2 Phase |: iGoodlock

In this section, we present a formal description of iGookldthe
algorithm observes the execution of a multi-threaded @nogand

computes dock dependency relatiodefined below) and uses a

transitive closure of this relation to compute potentiahdleck
cycles. The algorithm improves over generalized Goodldgk-a
rithms [4, 1] in two ways. First, it adds context informatitma
computed potential deadlock cycle. This information hétpslen-

tify the program locations where the deadlock could happah a

also to statically identify the lock and thread objects imed in the
deadlock cycle. Second, we simplify the generalized Gazdéd-
gorithm by avoiding the construction of a lock graph, wherekk

form the vertices and a labeled edge is added from one lock to

another lock if a thread acquires the latter lock while haidihe
former lock in some program state. Unlike existing Goodlalgo-
rithms, iGoodlock does not perform a depth-first searchcbut-
putes transitive closure of the lock dependency relatiansiéch it
uses more memory, but has better runtime complexity. Weinext
troduce some formal definitions before we describe the ahgor
Given a multi-threaded execution let L, be the set of lock
objects that were held by any thread in the execution ‘Bnde
the set of threads executed in the execution.(Lbe the set of all
statement labels in the multi-threaded program. We nextheltfe
lock dependency relation of a multi-threaded execuéisfiollows.

DEeFINITION 1. Given an execution, alock dependency relation
D, of o is asubset of, x 2" x L, x C* such that(t, L, 1,C) €
D, iff in the executiorr, in some state, threatd acquires lockl
while holding the locks in the sét andC' is the sequence of labels
of Acqui r e statements that were executed by acquire the locks
in LU {l}.

DEFINITION 2. Given a lock dependency relatial, a lock de-
pendency chaifr = ((t1, L1,l1,C1), .. ., (tm, Lm,lm,Cm)) isa
sequence iD* such that the following properties hold.

1. for all distincts,j € [1,m], ti # t;, i.e. the threads
t1,to,...,tm are all distinct objects,

2This is implemented by associating a usage counter withlaidtch is
incremented whenever a thread acquires or re-acquirest¢keahd decre-
mented whenever a thread releases the lock. Executida adii r e(1) by
t is considered whenever the thretagicquires or re-acquires the lotknd
the usage counter associated Wit incremented from O to 1.

formation, can change from execution to execution. Theesthe
unique id of an object cannot be used by the active randorkehec
to identify a thread or a lock object across executions. ttepto
overcome this limitation, we compute an abstraction of edjact.
An abstraction of an object identifies an object by statigpam in-
formation. For example, the label of a statement at whichtyeod

is created could be used as its abstraction. We describe ¢tvo b
ter (i.e. more precise) object abstraction computatiohrtiggies in
Section 2.4. In this section, we assume thbs (o) returns some
abstraction of the objecet

Given a potential deadlock cyclé(¢:,L1,01,C1), ...,
(tm, Lm, lm,Cm)), iGoodlock reports the abstract deadlock cycle
((abs(t1),abs(l1),C1), ..., (abs(tm),abs(lm),Cm)). The
active random checker takes such an abstract deadlock agdle
biases a random scheduler so that a real deadlock corresgdnd
the cycle gets created with high probability.

We next describe iGoodlock. Specifically, we describe how
we compute the lock dependency relation during a multicttieel
execution and how we compute all potential deadlock cydlesng
a lock dependency relation.

2.2.1 Computing the lock dependency relation of a
multi-threaded execution

In order to compute the lock dependency relation during aimul
threaded execution, we instrument the program to maintaén t
following three data structures:

e LockSet that maps each thread to a stack of locks held by the
thread

e Cont ext that maps each thread to a stack of the labels of
statements where the thread acquired the currently helkd loc

e D is the lock dependence relation

We update the above three data structures during a mutided
execution as follows:

® |nitialization:
= forall ¢, bothLockSet [¢] andCont ext [t] map to an empty stack
= D is an empty set
o |f threadt executes the statement Acqui r e(l)
= pushc to Cont ext [t]
= add(t,LockSet [¢], I, Cont ext [¢]) to D
= push! to LockSet [¢]
o |f threadt executes the statement Rel ease(l)



= pop fromCont ext [t]
= pop fromLockSet [¢]

Atthe end of the execution, we outplitas the lock dependency
relation of the execution.

2.2.2 Computingpotential deadlock cycles iteratively

Let D* denote the set of all lock dependency chainsathat has
lengthk. Therefore, D' = D. iGoodlock computes potential dead-
lock cycles by iteratively computing?, D, D*, ... and finding
deadlock cycles in those sets. The iterative algorithm éongut-
ing potential deadlock cycles is described in Algorithm 1.

Algorithm 1 i Goodl ock(D)

1: INPUTS: lock dependency relatioi
2.i<1

3: D'< D

4: while D* # () do

5. for each(t, L,1,C) € D and eachr in D? do
6: if 7, (¢, L,1,C) is a dependency chain by Definitiorttgen
7: if ,(¢, L,1,C) is a potential deadlock cycle by Definition 3
then
8: report abs(r, (¢, L, 1, C)) as a potential deadlock cycle
9: else
10: addr, (¢, L,1,C) to D*1
11: end if
12: end if
13:  end for
14: 1<=14+1
15: end while

Note that ini Goodl ock(D) we do not add a lock dependency
chain to D' if it is a deadlock cycle. This ensures that we do
not report complex deadlock cycles, i.e. deadlock cycles ¢an
be decomposed into simpler cycles.

2.2.3 Avoiding duplicate deadlock cycles

In Algorithm 1, a deadlock cycle of lengthgets reported times.
For example, if

<(t17 L17 117 01)7 (t27 L27 l27 02)7 ey (t'rm L77L7 lm7 Cm))
is reported as a deadlock cycle, then

((t2, L2,12,C2), ..., (tm, Lm, lm, Cm), (t1, L1,11,C1))
is also reported as a cycle. In order to avoid such duplicateput
another constraint in Definition 2: the unique id of threéaanust
be less than the unique id of threads. . . , t,.

2.3 Phase II: The Active Random Deadlock Checking
Algorithm

DeaDLOCKFUZzZER executes a multi-threaded program using a
random scheduler. A simple randomized execution algorithm
shown in Algorithm 2. Starting from the initial statg, this al-
gorithm, at every state, randomly picks an enabled threddeae-
cutes its next statement. The algorithm terminates whesytstem
reaches a state that has no enabled threads. At terminitioere
is at least one thread that is alive, the algorithm reportgstem
stall. A stall could happen due to a resource deadlock (eadd
locks that happen due to locks) or a communication deadiceka(
deadlock that happens when each thread is waiting for aligna
some other thread in the set). We only consider resourcdaizad
in this paper.

A key limitation of this simple random scheduling algorithm
is that it may not create real deadlocks very oftefeADLOCK-

FuzzEeR biases the random scheduler so that potential deadlock

cycles reported by iGoodlock get created with high proligbil
The active random deadlock checking algorithm is shown in Al
gorithm 3. Specifically, the algorithm takes an initial stag and

Algorithm 2 simpleRandomCheckex)

1

INPUTS: the initial statesg

. S<= 5o
: while Enabl ed(s) # 0 do

t < arandom thread iEnabl ed(s)
s < Execut e(s, t)

: end while
cif Alive(s) # 0 then

print ‘System Stall”’
end if

a potential deadlock cycl€ycl e as inputs. It then executes the

multi-threaded program using the simple random schedeteept
that it performs some extra work when it encounters a lockiaeq
or lock release statement. If a threfaid about to acquire a lodkin
the contexC, then if (abs (t), abs (1), C) is presentirCycl e, the
scheduler pauses threaleforet acquires locK, giving a chance
to another thread, which is involved in the potential deeklioy/cle,

to acquire lock subsequently. This ensures that the system creates
the potential deadlock cycleycl e with high probability.

Algorithm 3 DEADLOCKFUZZER( so, Cycl )

1:
2:
3:

INPUTS: the initial stateso, a potential deadlock cycleycl e
s <= So
Paused < 0

4: LockSet andCont ext map each thread to an empty stack
5: while Enabl ed(s) # @ do

6 t < arandom thread inabl ed(s)\ Paused

7:  Stnmt < next statement to be executed by

8. ifStnmt = c: Acquire(l) then

9: pushl to LockSet [¢]

10: pushe to Cont ext [t]

11: checkReal Deadl ock(LockSet) // seeAlgorithm 4
12: if (( abs(t), abs(l), Context|[t] )¢ Cycle) then
13: s < Execute(s,t)

14: else

15: pop fromLockSet [t]

16: pop fromCont ext [¢]

17: addt to Paused

18: end if

19: elseifStm = c: Rel ease(l) then

20: pop fromLock Set [¢]

21: pop fromCont ext [t

22: s < Execute(s,t)

23:  else

24: s < Execute(s,t)

25.  endif

26: if | Paused| = | Enabl ed(s)| then

27: remove a random thread frdpaused

28: endif

29: end while

31:
32:

if Active(s) # 0then
print ‘System Stalll’
end if

Algorithm 4 checkReal Deadl ock(LockSet)

1:
2:

3:
4:

INPUTS: LockSet mapping each thread to its current stack of locks
if there exist distincty, to, ..., t,n andly,lso, ..., l» such thatl,,
appears beforé; in LockSet [¢,,] and for eachi € [1,m — 1], ;
appears beforg ;1 in LockSet [¢;] then

print ‘Real Deadlock Found!
end if

Algorithm 3 maintains three data structuréockSet that

maps each thread to a stack of locks that are currently held by
the thread,Cont ext that maps each thread to a stack of state-
ment labels where the thread has acquired the currentlyibeitd,



and Paused which is a set of threads that has been paused by unavailability of any enabled thread. Note that we call gitsa-

DEADLOCKFuUzZER. Paused is initialized to an empty set, and
LockSet andCont ext are initialized to map each thread to an
empty stack.

DEADLOCKFUZZER runs in a loop until there is no enabled
thread. At termination, BADLOCKFUZZERreports a system stall
if there is at least one active thread in the execution. Nb&t t
DeaDLOCKFuzzERonly catches resource deadlocks. In each iter-
ation of the loop, EADLOCKFUZzZERpicks a random threaitthat
is enabled but not in theaus ed set. If the next statement to be ex-
ecuted byt is not a lock acquire or releaseexecutes the statement
and updates the state as in the simple random schedulingtaifgo
(see Algorithm 2). If the next statement to be executed Isyc:
Acqui re(l), cand! are pushed t€ont ext [t] andLockSet [t],
respectively. EADLOCKFUZzZER then checks if the acquire éf
by t could lead to a deadlock usircheckReal Deadl ock in
Algorithm 4. checkReal Deadl ock goes over the current lock
set of each thread and sees if it can find a cycle. If a cyclestogt
ered, then BADLOCKFUzZERas created geal deadlock. If there
is no cycle, then BADLOCKFUZZER determines ift needs to be
paused in order to get into a deadlock state. Specificatiipgtks if
(abs(t),abs (1), Cont ext [t]) is present irCycl e. If ¢ is added
to Paused, then we pop from bothockSet [t] andCont ext [¢]
to reflect the fact that has not really acquired the lodk If the
next statement to be executeddig c: Rel ease(!), then we pop
from bothLockSet [t] andCont ext [t].

At the end of each iteration, it may happen that thePsatsed
is equal to the set of all enabled threads. This results irage st
where DEADLOCKFUZzZER has unfortunately paused all the en-

tion thrashing Our experiments (see Section 5) show that if we use
the trivial abstraction, where all objects have the samé&aditon,
then we get a lot of thrashing. This in turn reduces the priibab

of creating a real deadlock. On the other hand, if we conginter
fine-grained abstraction for objects, then we will not besabiltol-
erate minor differences between two executions, causiegds to
pause at fewer locations and miss deadlocks. We next dederi
abstraction techniques for objects that we have found tfeen

our experiments.

2.4.1 Abstraction based on k-object-sensitivity

Given a multi-threaded execution an& a 0, leto, .. . ox be the
sequence of objects such that foriadt [1, k—1], o; is allocated by
some method of objeet;. We defineabs ¢ (01) as the sequence
(c1,...,ck) whereg; is the label of the statement that allocated
abs{(01) can then be used as an abstractiomofWe call this
abstraction based on k-object-sensitiviitgcause of the similarity
to k-object-sensitive static analysis [20].

In order to computebs £ (o) for each objecb during a multi-
threaded execution, we instrument the program to maintana
Cr eat i onMap that maps each objeat to a pair (o', c) if o
is created by a method of objeot at the statement labeled
This gives the following straightforward runtime algorithfor
computingCr eat i onMap.

o If a threadt executes the statement o = new (o', T'), then
addo — (o', c) to Cr eat i onMap.

One can us€r eat i onMap to computeabs (o) using the fol-

abled threads and the system cannot make any progress. We Ca'lowing recursive definition:

this thrashing. DEADLOCKFUZZER handles this situation by re-
moving a random thread from the deaused. A thrash implies

that DEADLOCKFUZZERhas paused a thread in an unsuitable state.

DeabLockFuzzeRrshould avoid thrashing as much as possible in
order to guarantee better performance and improve the biltipa
of detecting real deadlocks.

2.4 Computing object abstractions

A key requirement of BADLOCKFUzZzER s that it should know
where a thread needs to be paused, i.e. it needs to know gadhr
that is trying to acquire a lockin a contextC' could lead to a dead-
lock. DEADLOCKFUZZER gets this information from iGoodlock,
but this requires us to identify the lock and thread objeltés are
the “same” in the iGoodlock and EADLOCKFUZZER executions.
This kind of correlation cannot be done using the addressttie
unique id) of an object because object addresses changesaoto
ecutions. Therefore, we propose to use object abstractiiotwe
objects are same across executions, then they have the ¥ame

abs{ (o) = () if k=0orCreationMaplo] = L

absf, (o) = c::abs{ (o)) if CreationMaplo] = (¢, c)
When an object is allocated inside a static method, it witlhmeve
a mapping inCr eat i onMap. Consequentlyabs¢ (o) may have
fewer thank elements.

2.4.2 Abstraction based on light-weight execution indexig

Given a multi-threaded execution, la > 0, and an objecb,
let mn,mn—1,...,m1 be the call stack when is created, i.e.
o is created inside methogh; and for alli € [1,n — 1], m;

is called from methodmn;+;. Let us also assume that,; is
the label of the statement at whieh;; invokesm; and g;+1

is the number of timesn; is invoked bym;;: in the context
M, Mn—1,...,Mip1. Thenabsi (o) is defined as the sequence
le1,q1,C2,G2, - .., Ck, qr], Wherec, is the label of the statement at
which o is created and; is the number of times the statement is
executed in the context,,, mpn—1,...,m1.

straction. We assumabs (o) computes the abstraction of an ob- zma'”() {

: for (int i=0; i<5; i++)
ject. ) 3 foo();
There could be several ways to compute the abstraction of ag}
object. One could use the label of the statement that aldadie 5 void foo() {
object (i.e. the allocation site) as its abstraction. Havethat 6 bar();
would be too coarse-grained to distinctly identify manyemitg. For 7 bar () ;
example, if one uses the factory pattern to allocate allathreb- 8}
jects, then all of the threads will have the same abstraclibare- 18 Vof'd bar () _{_0. 3
fore, we need more contextual information about an allocaite or (int i=0; i<3 i++)
. ; ; . - 11 Object | = new Object();
to identify objects at finer granularity. 12}

Note that if we use a coarse-grained abstraction, thead
LOCKFuzzER will pause unnecessary threads before they try to
acquire some unnecessary locks. This is because all these-un
essary threads and unnecessary locks might have the satrazabs
tion as the relevant thread and lock, respectively. Thisiwiturn
reduce the effectiveness of our algorithm asADLOCKFUZZER
will more often remove a thread from thRaused set due to the

For example in the above code, df is the first object cre-
ated by the execution afai n, thenabs?(o) is the sequence
[11,1,6,1,3,1]. Similarly, if o is the last object created by the ex-
ecution ofrmai n, thenabs?(o) is the sequencfll, 3,7, 1,3, 5].
The idea of computing this kind of abstraction is similar be t
idea of execution indexing proposed in [30], except thatgvere



branch statements and loops. This makes our indexing igiight,
but less precise. >

In order to computebs, (o) for each object during a multi- 3
threaded execution, we instrument the program to maintain a
thread-local scalad to track its depths and two thread-local maps 5

1

Cal | St ack andCount er s. We useCal | St ack, to denote the 6
Cal | St ack map of threact. The above data structures are up- 7
dated at runtime as follows. g
e [nitialization: 10
11

w forallt,dy < 0 12

= for all t andc, Count er s¢[d¢][c] < 0 13

e |f a threadt executes the statement Cal | (m) ig
= Count er s¢[d¢][c] < Count er s¢[d;][c] + 1 16

= pushctoCal | St ack; i;

= pushCount er s¢[d¢][c] to Cal | St acky 19

s d=di 1 20

= for all ¢, Count er s¢[d¢][c] < 0 22

o |f a threadt executes the statement Ret ur n(m) gi
ndy =dy —1 25

= pop twice fromCal | St ack; 26

e |f a threadt executes the statement o =new(o’, T") g;
= Count er s¢[d¢][c] < Count er s¢[d¢][c] + 1 29

= pushctoCal | St ack;

= pushCount er s¢[d¢][c] to Cal | St acky

= abs] (o) is the top2k elements ofal | St ack;
= pop twice fromCal | St ack

Note thatabs? (o) has2k elements, but if the call stack has
fewer elements, theabs 1 (o) returns the full call stack.

3. Examples lllustrating DEADLOCK FUZZER

Consider the multi-threaded Java program in Figure 1. Togram
defines aWy Thr ead class that has two locks1l andl 2 and a
booleanf | ag. Ther un method of\W Thr ead invokes a number
of long running methodé1, f2, f3, f4if flagistrue and
then it acquires locks 1 andl 2 in order. The body of un shows

class MyThread extends Thread {
Object 11, 12;
boolean fl ag;
MyThr ead( Object 11, Object | 2, boolean b){

this. 11 =11; this.12 =12; this.flag = b;
}
public void run() {
if (flag) { // some long running methods
f1();
f2();
£3();
f40);
synchronized(l 1) {
synchronized(l 2) {
}
}
}
public static void main (String[] args) {
Object 01 = new Object();
Object 02 = new Object();
/1 Object 03 = new bject();
(new MyThread(ol, 02, true)).start();
(new MyThread(02, 01, false)).start();
/'l (new MyThread(o2, 03,false)).start();
}

Figure 1. Simple Example of a Deadlock

where[25, 1], [26, 1], [22, 1], [23, 1] are the abstractions of the first
thread, the second threandl,, ando2, respectively[15, 16] denotes
the context in which the second lock is acquired by each threa
The active random deadlock checker will take this report and
create the real deadlock with probability 1. Specificaltywill
pause both the threads before they try to acquire a lockeflkn
The above example shows thaEBbLOCKFUZZER can create
a rare deadlock with high probability. In practice, the atfrob-
ability may not be 1—[EBADLOCKFUZZER can miss a deadlock
because the execution could simply take a different pathainen-
determinism and that path may not exhibit a deadlock. Howéve

a common pattern, where a thread runs several statements an@Ur €xperiments we have found that the probability of crepa

then acquires several locks in a nested way. aén method
creates two lock objectsl and 02. It also creates two threads
(i.e. instances of/ Thr ead). In the first instancé 1 andl 2 are
set tool ando2, respectively, andl| ag is set to true. Therefore,
a call tost art on this instance will create a new thread which
will first execute several long running methods and then iaequ
0l ando? in order. A call tost art on the second instance of
My Thr ead will create a new thread which will acquic® ando1

in order. We have commented out lines 24 and 27, becauserhey a
not relevant for the current example—we will uncomment thiem
the next example.

The example has a deadlock because the lodkando?2 are
acquired in different orders by the two threads. Howevés,dead-
lock will rarely occur during normal testing because theoseic
thread will acquirep2 andol1 immediately after start, whereas the
first thread will acquireol ando2 after executing the four long
running methods. iGoodlock will report this deadlock as gepe
tial one by observing a single execution that does not dekdld
we use the abstraction in Section 2.4.2 with, Bay 10, the report
will be as follows:

([25, 1], [23, 1], [15, 16]), ([26, 1], [22, 1], [15, 16])

deadlock is high on our benchmarks.

The above example does not show the utility of using thread
and object abstractions. To illustrate the utility of objend thread
abstractions, we uncomment the lines at 24 and 27. Now weecaea
third lock 03 and a third thread which acquire€ ando3 in order.
iGoodlock as before will report the same deadlock cycle akén
previous example. In BADLOCKFUZZER, if we do not use thread
and object abstractions, then with probabilitys (approx), the
third thread will pause before acquiring the lock at line This is
because, without any knowledge about threads and objeciséul
in a potential deadlock cycle, EnDLOCKFUZZER will pause any
thread that reaches line 16. Therefore, if the third threagsps
before line 16, then the second thread will not be able toiaequ
lock 02 at line 15 and it will be blocked. BADLOCKFuUzzERWill
eventually pause the first thread at line 16. At this point tiveads
are paused and one thread is blocked. This resultstimashing
(see Section 2.3). To get rid of this stallEBDLOCKFUzZzERwill
“un-pause” the first thread with probability 0.5 and we wilksithe
deadlock with probability 0.25 (approx). On the other hahde
use object and thread abstractions, theanDLOCKFUzZER will
never pause the third thread at line 16 and it will create &z r
deadlock with probability 1. This illustrates that if we dotruse



thread and object abstractions, then we get more thrasaimythe
probability of creating a real deadlock gets reduced.

4. Optimization: avoiding another potential cause
for thrashing

We showed that using object and thread abstractions helpsee
thrashing; this in turn helps increase the probability &ating a
deadlock. We show another key reason for a lot of thrashisggu
the following example and propose a solution to partly agidh

thrashings.

threadl{ 8:
synchroni zed(1 1) { 9:
synchroni zed(1 2) {

1 t hread2{
2

3

4: } 11:
5

6

synchroni zed(1 1) {

}
synchroni zed(1 2) {
synchroni zed(1 1) {

15: }
16: }

The above code avoids explicit thread creation for simiyliof
exposition. iGoodlock will report a potential deadlock keym this
code. In the active random deadlock checking phagehifeadl
is paused first (at line 3) and tfhr ead2 has just started, then
t hr ead2 will get blocked at line 9 becaugenr ead1 is holding
the lockl 1 and it has been paused anhlr ead2 cannot acquire
the lock. Since we have one paused and one blocked threadtwe g
a thrashing. BADLOCKFUZzZzER will “un-pause”t hr ead1 and
we will miss the real deadlock. This is a common form of thiragh
that we have observed in our benchmarks.

from ETH [28]; jspider, a highly configurable and customieab
Web Spider engine; and Jigsaw, W3C's leading-edge Web rserve
platform. We created a test harness for Jigsaw that comtiyre
generates simultaneous requests to the web server, simgutadl-

tiple clients, and administrative commands (such as “sivatd
server”) to exercise the multi-threaded server in a higllgozir-
rent situation.

The libraries we experimented on include synchronized list
and maps from the Java Collections Framework, Java logging f
cilities (j ava. uti | .l oggi ng), and the Swing GUI framework
(j avax. swi ng). Another widely used library included in our
benchmarks is the Database Connection Pool (DBCP) componen
of the Apache Commons project. Each of these libraries amta
potential deadlocks that we were able to reproduce usiegd
LOCKFUzzER. We created general test harnesses to use these li-
braries with multiple threads. For example, to test the &nléec-
tions in a concurrent setting, we used the synchronized pera@an
java.util.Collections.

5.2 Results

Table 1 shows the results of our analysis. The second column
reports the number of lines of source code that was instrteden

If the program uses libraries that are also instrumentesl; tre
included in the count. The third column shows the averaggémen

of a normal execution of the program without any instrumeoia

or analysis. The fourth column is the runtime of iGoodlockgRe

1). The fifth column is the average runtime oERDLOCKFUZZER
(Phase I1). The table shows that the overhead of our actigeken

is within a factor of six, even for large programs. Note thattime

for the web server Jigsaw is not reported due to its interacti

In order to reduce the above pattern of thrashing, we make a nature.

thread to yield to other threads before it starts enteringaatibck
cycle. Formally, if(abs (t),abs (1), C)) is a component of a poten-
tial deadlock cycle, then BaDLOCKFuUzzERwWiIll make any thread
t’ with abs (t) = abs(t’) yield before a statement labeledvhere

c is the bottommost element in the sta€k For example, in the
above code, BADLOCKFUZzZER will make t hr ead1 yield be-
fore it tries to acquire lock 1 at line 2. This will enable hr ead2

to make progress (i.e. acquire and reldaseat lines 9 and 11, re-
spectively).t hr ead2 will then yield to any other thread before
acquiring lockl 2 at line 12. Therefore, the real deadlock will get
created with probability 1.

5. Implementation and Evaluation

DEADLOCKFUZZER can be implemented for any language that
supports threads and shared memory programming, suchasrJav
C/C++ with pthreads. We have implemented AbLOCKFUZZER

for Java by instrumenting Java bytecode to observe varieeiste
and to control the thread scheduler. The implementatiompartof
the CaL Fuzzerframework [16]. EADLOCKFUZZERcan go into
livelocks. Livelocks happen when all threads of the progemd

up in thePaused set, except for one thread that does something
in a loop without synchronizing with other threads. In order
avoid livelocks, IEADLOCKFUZzZER creates a monitor thread that
periodically removes those threads from ®Peused set that are
paused for a long time.

5.1 Experimental setup

We evaluated BADLOCKFUZZER on a variety of Java programs
and libraries. We ran our experiments on a dual socket IngeinX
2GHz quad core server with 8GB of RAM. The following programs
were included in our benchmarks: cache4j, a fast threasligaf
plementation of a cache for Java objects; sor, a succesgar 0
relaxation benchmark, and hedc, a web-crawler applicatioth

The sixth column is the number of potential deadlocks regabrt
by iGoodlock. The seventh column is the number of cycles that
correspond to real deadlocks after manual inspection. igead,
since DEADLOCKFUZzZER could reproduce 29 deadlocks, we can
say for sure that Jigsaw has 29 or more real deadlocks. Wth th
exception of Jigsaw, iGoodlock was precise enough to repoyt
real deadlocks. The eighth column is the number of deadlpdles
confirmed by ZEADLOCKFUZZER. The ninth column is the empir-
ical probability of DEADLOCKFUZzZER reproducing the deadlock
cycle. We ran [EADLOCKFUZzZER 100 times for each cycle and
calculated the fraction of executions that deadlockedguBIBAD-
LOCKFUZZER. Our experiments show thatHADLOCKFUzZER
reproduces the potential deadlock cycles reported by i@ckd
with very high probability. We observed that for some Cdilets
benchmarks, BADLOCKFUzzERreported a low probability of 0.5
for creating a deadlock. After looking into the report, weurid
that in the executions whereedDLoCKFUzzERreported no dead-
lock, DEADLOCKFUZZER created a deadlock which was different
from the potential deadlock cycle provided as input |]ADLOCK-
FuzzeR. For comparison, we also ran each of the programs nor-
mally without instrumentation for 100 times to observe iésk
deadlocks could occur under normal testing. None of the rens
sulted in a deadlock, as opposed to a run witnDLOCKFUZZER
which almost always went into deadlock. Column 10 shows the a
erage number of thrashings per run. Columns 9 and 10 show that
the probability of creating a deadlock decreases as the euntfb
thrashings increases.

We conducted additional experiments to evaluate the éféect
ness of various design decisions foEADLOCKFuUzzER. We tried
variants of DEADLOCKFUZzZzER: 1) with abstraction based on k-
object-sensitivity, 2) with abstraction based on lightight exe-
cution indexing, 3) with the trivial abstraction, 4) withotontext
information, and 5) with the optimization in Section 4 tutneff.
Figure 2 summarizes the results of our experiments. Notethiea



Program name Lines of Avg. Runtime in msec. # Deadlock cycles Probability of | Avg. # of
code | Normal | iGoodlock | DF | iGoodlock | Real | Reproduced| reproduction| Thrashes

cachedj 3,897 2,045 3,409 - 0 0 - - -

sor 17,718 163 396 - 0 0 - - -

hedc 25,024 165 1,668 - 0 0 - - -

jspider 10,252 4,622 5,020 - 0 0 - - -

Jigsaw 160,388 - - - 283 >29 29 0.214 18.97

Java Logging 4,248 166 272 493 3 3 3 1.00 0.00

Java Swing 337,291 4,694 9,563 | 28,052 1 1 1 1.00 4.83

DBCP 27,194 603 1,393 ] 1,393 2 2 2 1.00 0.00

Synchronized Lists

(ArrayList, Stack, 17,633 2,862 3,244 | 7,070 9+9+9 | 9+9+9 9+9+9 0.99 0.0

LinkedList)

Synchronized Maps

(HashMap, TreeMap,

WeakHashMap, 18,911 2,295 2,596 2898 4+4+4 | 4+4+4 4+4+4 0.52 0.04

LinkedHashMap, +4+4 +4+4 +4+4

IdentityHashMap)

Table 1. Experimental results. (Context + 2nd Abstraction + Yieldiimfzation)
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results in Table 1 correspond to the variant 2, where we use th

Figure 2. Performance and effectiveness of variations @ADLOCKFUZZER

light-weight execution indexing abstraction, contextoimiation,
and the optimization in Section 4. We found this variant tcahoe
best performer: it created deadlocks with higher probigbitian

any other variant and it ran efficiently with minimal numbdr o

thrashings.

The first graph shows the correlation between the various var
ants of DEADLOCKFuUzzER and average runtime. The second

graph shows the probability of creating a deadlock by theé- var
ants of DEADLOCKFUZzZER. The third graph shows the average
number of thrashings encountered by each varianteA@ OCK-
FuzzEeR. The fourth graph shows the correlation between the num-
ber of thrashings and the probability of creating a deadlock

The first graph shows that variant 2, which uses executioexind
ing, performs better than variant 1, which uses k-objensiiwity.
The second graph shows that the probability of creating a-dea



lock is maximum for variant 2 on our benchmarks. The diffeeen

is significant for the Logging and DBCP benchmarks. Ignoebg
straction entirely (i.e. variant 3) led to a lot of thrashimgCol-
lections and decreased the probability of creating a deldibhe
third graph on the Swing benchmark shows that variant 2 has mi
mum thrashing. Ignoring context information increasedttinash-

ing and the runtime overhead for the Swing benchmark. In the
Swing benchmark, the same locks are acquired and releasad ma
times at many different program locations during the exeaut
Hence, ignoring the context of lock acquires and releasassleo a
huge amount of thrashing.

The first graph which plots average runtime for each variant
shows some anomaly. It shows that variant 3 runs faster tuaant
2 for Collections—this should not be true given that vari@nt
thrashes more than variant 2. We found the following reason f
this anomaly. Without the right debugging information pomd
by iGoodlock, it is possible for BADLOCKFUZZER to pause at
wrong locations but, by chance, introduce a real deadlocictwh
is unrelated to the deadlock cycle it was trying to reprodides
causes the anomaly in the first graph where the runtime oadrhe
for Collections is lower when abstraction is ignored, bettumber
of thrashings is more. The runtime is measured as the tiraketst
from the start of the execution to either normal terminatan
when a deadlock is found. ExDLOCKFUZzZER with our light-
weight execution indexing abstraction faithfully reproda the
given cycle, which may happen late in the execution. For more
imprecise variants such as the one ignoring abstractioaadldck
early in the execution may be reproduced wrongfully, thdsiceng
the runtime.

The fourth graph shows that the probability of creating addea
lock goes down as the number of thrashings increases. This va
idates our claim that thrashings are not good for creatiradde
locks with high probability and our variant 2 tries to redwstech
thrashings significantly by considering context inforraatand ob-
ject abstraction based on execution indexing, and by applthie
optimization in Section 4.

5.3 Deadlocks found
DeEADLOCKFuzzERfound a number of previously unknown and

org.w3c.jigsaw http. httpd {

384: SocketCientFactory factory;
1442: void cleanup(...) {
1455: factory. shutdown();}
1711: void run() {
1734: cleanup(...);}}

org.w3c. jigsaw http.socket. Socketd ient {

42: Socket Client Factory pool;
111:  wvoid run() {
152: pool . cli ent Connecti onFi ni shed(...);}}

org.w3c.jigsaw http.socket. SocketCientFactory {

130: SocketdientState csList;

574: synchronized booleandecrldl eCount() {...}
618: boolean client ConnectionFi nished(...) {
623: synchronized (csList) {

626: decrldl eCount();}}

867: synchronized void killCients(...) {

872: synchronized (csList) {...}}

902: void shutdown() {

904: killdients(...);}

}

Figure 3. Deadlock in Jigsaw

but fails to do so since the lock has not been released by the
Event Queue thread. TheEvent Queue thread tries to ac-
quire the lock on theJFr anme object at line number 407 in
javax/swing/RepaintManager.javdut cannot since it is still
held by the mai n thread. The program goes into a dead-
lock. This deadlock corresponds to a bug that has been szhatt
http://bugs. sun. conl vi ewbug. do?bug.i d=4839713.
One of the deadlocks that we found in the DBCP
benchmark occurs when a thread tries to create
Pr epar edSt at ement, and another thread simultaneously
closes anothePr epar edSt at enent . The sequence of lock
acquires that exhibits this deadlock is as follows. The fiistad
obtains a lock on &onnecti on object at line number 185
in org/apache/commons/dbcp/DelegatingConnection.javehe

a

known deadlocks in our benchmarks. We next describe some of second thread obtains a lock ofKayedObj ect Pool object at

them.

Two previously unknown deadlocks were found in Jigsaw. As
shown in Figure 3, when the http server shuts down, it catlaralip
code that shuts down theocket O i ent Fact ory. The shut-
down code holds a lock on the factory at line 867, and in turn at
tempts to acquire the lock aosLi st at line 872. On the other
hand, when &ocket d i ent is closing, it also calls into the fac-
tory to update a global count. In this situation, the lockslzld in
the opposite order: the lock ars Li st is acquired first at line 623,
and then on the factory at line 574. Another similar deadlock
curs when &ocket C i ent Kkills an idle connection. These also
involve the same locks, but are acquired at different prodieca-
tions. iGoodlock provided precise debugging informatiodistin-
guish between the two contexts of the lock acquires.

The deadlock in the Java Swing benchmark occurs when
a program synchronizes on &Frane object, and invokes
the set Caret Posi ti on() method on aJText Area ob-
ject that is a member of thdFr ame object. The sequence
of lock acquires that leads to the deadlock is as follows. The
mai n thread obtains a lock on thdFr ane object, and an
Event Queue thread which is also running, obtains a lock on
a Basi cText Ul $Basi cCar et object at line number 1304
in javax/swing/text/DefaultCaret.javaThe mai n thread then
tries to obtain a lock on théBasi cText Ul $Basi cCar et
object at line number 1244 jjavax/swing/text/DefaultCaret.jaya

line number 78 inorg/apache/commons/dbcp/PoolablePrepared-
Statement.javaThe first thread then tries to obtain a lock on the
sameKeyedObj ect Pool object at line number 87 imrg/a-
pache/commons/dbcp/PoolingConnection.jaleat cannot obtain

it since it is held by the second thread. The second threas toi
obtain a lock on th&onnect i on object at line number 106 in
org/apache/commons/dbcp/PoolablePreparedStateraeat.j but
cannot acquire it since the lock has not yet been releasetieby t
first thread. The program, thus, goes into a deadlock.

The deadlocks in the Java Collections Framework happen
when multiple threads are operating on shared collectigactdh
wrapped with thesynchr oni zedX classes. For example, in
the synchr oni zedLi st classes, the deadlock can happen if
one thread executésl. addAl | (1 2) concurrently with another
thread executind 2. retai nAl | (1 1). There are three meth-
ods,addAl | (), rermoveAl |l (), andretai nAll () that ob-
tain locks on both 1 and| 2 for a total of 9 combinations of
deadlock cycles. Theynchr oni zedMap classes have 4 com-
binations with the methodsqual s() andget () .

The test cases for Java Collections are artificial in theestéret
the deadlocks in those benchmarks arise due to inapprepres
of the API methods. We used these benchmarks because they hav
been used by researchers in previous work (e.g. Williamk 2%
and Jula et al. [17]), and we wanted to validate our tool again
these benchmarks.



5.4 Imprecision in Goodlock

Since DEADLOCKFUZzZERIs not complete, if it does not classify
a deadlock reported by iGoodlock as a real deadlock, we ¢anno
definitely say that the deadlock is a false warning. For examp
in the Jigsaw benchmark, the informative Goodlock algaritie-
ported 283 deadlocks. Of these 29 were reported as realabéad|
by DEADLOCKFUZZER. We manually looked into the rest of the
deadlocks to see if they were false warnings by iGoodlockeak
deadlocks that were not caught bBbLOCKFUZzZER. For 18 of
the cycles reported, we can say with a high confidence that the
are false warnings reported by the iGoodlock algorithm. sEhe
cycles involve locks that are acquired at the same prograte-st
ments, but by different threads. There is a single reasonalltof
these deadlocks are false positives. The deadlocks cam ooku

if a CachedThr ead invokes itswai t For Runner () method
before thatCachedThr ead has been started by another thread.
This is clearly not possible in an actual execution of Jigsaiwce
iGoodlock does not take the happens-before relation betteed
acquires and releases into account, it reports these sigutliead-
locks. For the rest of the cycles reported by iGoodlock, weoa
say with reasonable confidence if they are false warningétloey

are real deadlocks that were missed tyADLOCKFUZZER.

6. Related Work

We have already compared our proposed technique with devera
existing techniques for detecting deadlocks in multi-tcied pro-
grams. In this section, we discuss several other relateshappes,
and elaborate on some that we have previously mentioned.
DeAaDLOCKFUzzERIs part of theactive testing frameword 6]
that we have earlier developed for finding real races [25] rexadl
atomicity violations [23]. We proposedAREFUZzZER[25] which
uses an active randomized scheduler to confirm race conslitio
with high probability. RRcEFUZzZERONly uses statement locations
to identify races and does not use object abstraction oregbnt
information to increase the probability of race detectibg shown
in Section 5.2, simple location information is not good egtofor
creating real deadlocks with high probability.

Recently, several random testing techniques have been pro-

posed [8, 26] that introduce noise (usipgel d, sl eep, wai t
(with timeout)) to a program execution to increase the iy of

the exhibition of a synchronization bug. Although thesdtégues
have successfully detected bugs in many programs, they dave
limitation. These techniques are not systematic as theitpréa

sl eep(),yield(),priority() can only advise the sched-
uler to make a thread switch, but cannot force a thread swdtsh
such they cannot pause a thread as long as required to cneste a
deadlock.

More recently, a few techniques have been proposed to con-
firm potential bugs in concurrent programs using randonintgst
Havelund et al. [3] uses a directed scheduler to confirm thuat-a
tential deadlock cycle could lead to a real deadlock. Howetiey
assume that the thread and object identifiers do not chamgssac
executions. Similarly, ConTest [22] uses the idea of inicdg
noise to increase the probability of the occurrence of aldekdit
records potential deadlocks using a Goodlock algorithnmchieck
whether a potential deadlock can actually occur, it intaedunoise
during program execution to increase the probability ofilgition
of the deadlock. Our work differs from ConTest in the follogi
ways. ConTest uses only locations in the program to idehddis.
We use context information and object abstractions to ifjetite
run-time threads and locks involved in the deadlocks; floeegour
abstractions give more precise information about run-tjects.
Moreover, we explicitly control the thread scheduler toateethe
potential deadlocks, instead of adding timing noise to pogex-

ecution. DEADLOCKFUZZER, being explicit in controlling sched-
uler and in identifying objects across executions, fourad dead-
locks in large benchmarks with high probability.

A couple of techniques have been proposed to prevent dead-
locks from happening during program execution, and to recov
from deadlocks during execution. When a buggy program dgecu
and deadlocks, Dimmunix [17] records the deadlock patt@tm:
ing program execution, it tries to prevent the occurrencanyf of
the deadlock patterns that it has previously observed. Bxdeo-
poses to recover programs from software failures, inclydiead-
locks, by rolling them back to a recent checkpoint, and recaiing
the programs in a modified environment.

7. Conclusion

Existing techniques for deadlock detection, based orcsaatil dy-
namic analysis, could predict potential deadlocks, buticcawt
verify if they were real deadlocks. Going through all of thegrn-
ings and reasoning about them manually could be time comgumi
DeaDLOCKFUzzER automates such verification—if a real dead-
lock is created by BADLOCKFUZZER, the developer no longer
needs to verify the deadlock manually. HoweversADLOCK-
FuzzeRris incomplete—if a deadlock is not confirmed to be real
by DEADLOCKFUZZER, the developer cannot ignore the deadlock.
Nevertheless, BADLOCKFUzZER has managed to find all pre-
viously known deadlocks in large benchmarks and it has disco
ered previously unknown deadlocks. We believe thanDLOCK-
Fuzzeris an indispensable and practical tool that complements
both static and predictive dynamic analysis.

Acknowledgments

We would like to thank the anonymous reviewers for their able
comments. This research was supported in part by a geneifbus g
from Intel, by Microsoft and Intel funding (award #2008046B8y
matching funding by U.C. Discovery (award #DIG07-10227d a
by NSF Grant CNS-0720906.

References

[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potahti
deadlocks with static analysis and runtime monitoring.Pémallel
and Distributed Systems: Testing and Debugging 2@085.

[2] C. Artho and A. Biere. Applying static analysis to largeale,
multi-threaded Java programs. Proceedings of the 13th Australian
Software Engineering Conference (ASWEC,@Hges 68-75, 2001.

[3] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Maunie
Confirmation of deadlock potentials detected by runtimdyeis
In PADTAD’06 pages 41-50, 2006.

[4] S. Bensalem and K. Havelund. Scalable dynamic deadloekysis
of multi-threaded programs. IRarallel and Distributed Systems:
Testing and Debugging 2005 (PADTAD’02D05.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types fdesa
programming: preventing data races and deadlocksl7th ACM
SIGPLAN Conference on Object-Oriented Programming, 8yste
Languages, and Applicationpages 211-230, 2002.

[6] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and Nh&in
Concurrent software verification with states, events, azatitbcks.
Formal Aspects of Computing7(4):461-483, 2005.

[7] C. Demartini, R. losif, and R. Sisto. A deadlock detegtimol
for concurrent java programsSoftware - Practice and Experience
29(7):577-603, 1999.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, , and S. Ur.lfitreaded
Java program test generatiol8M Systems Journa#t1(1):111-125,
2002.



[9] D. R. Engler and K. Ashcraft. Racerx: effective, statitettion of
race conditions and deadlocks.18th ACM Symposium on Operating
Systems Principles (SOSPpages 237-252, 2003.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, B. Saxe,
and R. Stata. Extended static checking for java. PLDI '02:
Proceedings of the ACM SIGPLAN 2002 Conference on Progragimi
language design and implementatigrages 234-245. ACM, 2002.

[11] P. Godefroid. Model checking for programming languagsing
verisoft. In 24th Symposium on Principles of Programming
Languagespages 174-186, 1997.

[12] J. Harrow. Runtime checking of multithreaded applmas with
visual threads. Ir7th International SPIN Workshop on Model
Checking and Software Verificatippages 331-342, 2000.

[13] K. Havelund. Using runtime analysis to guide model ¢ieg of java
programs. In7th International SPIN Workshop on Model Checking
and Software Verificatigrpages 245-264, 2000.

[14] K. Havelund and T. Pressburger. Model Checking Javafaros
using Java PathFindemt. Journal on Software Tools for Technology
Transfer 2(4):366—381, 2000.

[15] G. Holzmann. The Spin model checkelEEE Transactions on
Software Engineering23(5):279-295, 1997.

[16] P. Joshi, M. Naik, C.-S. Park, and K. Sen. An extensildtva
testing framework for concurrent programs. Amst International
Conference on Computer Aided Verification (CAV;0%cture Notes
in Computer Science. Springer, 2009.

[17] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deé&dloc
immunity: Enabling systems to defend against deadlocks. In
Proceedings of the 8th USENIX Symposium on Operating System
Design and Implementation (OSDI'Q&008.

[18] L. Lamport. Time, clocks, and the ordering of events mlistributed
system.Commun. ACM21(7):558-565, 1978.

[19] S. Masticola.Static detection of deadlocks in polynomial tinkthD
thesis, Rutgers University, 1993.

[20] A. Milanova, A. Rountev, and B. Ryder. Parameterizegecb
sensitivity for points-to analysis for JavaACM Transactions on
Software Engineering and Methodolody4(1):1-41, Jan. 2005.

[21] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective stat@adlock
detection. I31st International Conference on Software Engineering
(ICSE’'09) IEEE, 2009.

[22] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: frexhibiting
to healing. In8th Workshop on Runtime Verificatiad2008.

[23] C.-S. Park and K. Sen. Randomized active atomicityatioh
detection in concurrent programs. 16th International Symposium
on Foundations of Software Engineering (FSE'08EM, 2008.

[24] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: trgdiimgs as
allergies—a safe method to survive software failuresSGSP '05:
Proceedings of the twentieth ACM symposium on Operatingrsgs
principles pages 235-248. ACM, 2005.

[25] K. Sen. Race directed random testing of concurrent farng. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’08)2008.

[26] S. D. Stoller. Testing concurrent Java programs usamgiomized
scheduling. InNorkshop on Runtime Verification (RV'02plume 70
of ENTCS 2002.

[27] C. von Praun.Detecting Synchronization Defects in Multi-Threaded
Object-Oriented ProgramsPhD thesis, Swiss Federal Institute of
Technology, Zurich, 2004.

[28] C. von Praun and T. R. Gross. Object race detectiorl6th ACM
SIGPLAN conference on Object oriented programming, system
languages, and applications (OOPS| Axges 70-82. ACM, 2001.

[29] A. Williams, W. Thies, and M. Ernst. Static deadlock efgton for
Java libraries. IFECOOP 2005 — 19th European Conference on
Object-Oriented Programming (ECOOP’Q%ages 602—629, 2005.

[30] B. Xin, W. N. Sumner, and X. Zhang. Efficient program exion
indexing. INACM SIGPLAN conference on Programming language
design and implementatippages 238-248, 2008.



