
A Randomized Dynamic Program Analysis
Technique for Detecting Real Deadlocks

Pallavi Joshi Chang-Seo Park
Koushik Sen

EECS Department, UC Berkeley, USA
{pallavi,parkcs,ksen}@cs.berkeley.edu

Mayur Naik
Intel Research, Berkeley, USA

mayur.naik@intel.com

Abstract
We present a novel dynamic analysis technique that finds realdead-
locks in multi-threaded programs. Our technique runs in twostages.
In the first stage, we use an imprecise dynamic analysis technique
to find potential deadlocks in a multi-threaded program by observ-
ing an execution of the program. In the second stage, we control
a random thread scheduler to create the potential deadlockswith
high probability. Unlike other dynamic analysis techniques, our ap-
proach has the advantage that it does not give any false warnings.
We have implemented the technique in a prototype tool for Java,
and have experimented on a number of large multi-threaded Java
programs. We report a number of previously known and unknown
real deadlocks that were found in these benchmarks.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Languages, Reliability, Verification

Keywords deadlock detection, dynamic program analysis, con-
currency

1. Introduction
A common cause for unresponsiveness in software systems is a
deadlock situation. In shared-memory multi-threaded systems, a
deadlock is a liveness failure that happens when a set of threads
blocks forever because each thread in the set is waiting to ac-
quire a lock held by another thread in the set. Deadlock is a
common form of bug in today’s software—Sun’s bug database at
http://bugs.sun.com/ shows that 6,500 bug reports out of
198,000 contain the keyword ‘deadlock’. There are a few reasons
for the existence of deadlock bugs in multi-threaded programs.
First, software systems are often written by many programmers;
therefore, it becomes difficult to follow a lock order discipline that
could avoid deadlock. Second, programmers often introducedead-
locks when they fix race conditions by adding new locks. Third,
software systems can allow incorporation of third-party software
(e.g. plugins); third-party software may not follow the locking dis-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

cipline followed by the parent software and this sometimes results
in deadlock bugs [17].

Deadlocks are often difficult to find during the testing phase
because they happen under very specific thread schedules. Coming
up with these subtle thread schedules through stress testing or
random testing is often difficult. Model checking [15, 11, 7,14, 6]
removes these limitations of testing by systematically exploring
all thread schedules. However, model checking fails to scale for
large multi-threaded programs due to the exponential increase in
the number of thread schedules with execution length.

Several program analysis techniques, both static [19, 10, 2, 9,
27, 29, 21] and dynamic [12, 13, 4, 1], have been developed to de-
tect and predict deadlocks in multi-threaded programs. Static tech-
niques often give no false negatives, but they often report many
false positives. For example, the static deadlock detectordeveloped
by Williams et al. [29] reports 100,000 deadlocks in Sun’s JDK
1.4 1, out of which only 7 are real deadlocks. Type and annotation
based techniques [5, 10] help to avoid deadlocks during coding,
but they impose the burden of annotation on programmers. Predic-
tive dynamic techniques such as Goodlock [13] and its improve-
ments [4, 1] give both false negatives and false positives. For exam-
ple, in our experiments we have found that an improved Goodlock
can report as many as 254 false positives for our Jigsaw web server.
Being imprecise in nature, most of these tools require manual in-
spection to see if a deadlock is real or not. Nevertheless, these tech-
niques are effective in finding deadlocks because they can predict
deadlocks that could potentially happen during a real execution—
for such a prediction, static analyses do not need to see an actual ex-
ecution and dynamic analyses need to see only one multi-threaded
execution.

Dynamic analysis based deadlock detection can be made precise
by taking the happens-before relation [18] into account. However,
it has several problems. First, it reduces the predictive power of
dynamic techniques—it fails to report deadlocks that couldhappen
in a significantly different thread schedule. Second, it canperturb
an execution significantly and can fail to report a deadlock that can
happen when no dynamic analysis is performed.

We propose a new dynamic technique for detecting real dead-
locks in multi-threaded programs, called DEADLOCKFUZZER,
which combines an imprecise dynamic deadlock detection tech-
nique with a randomized thread scheduler to create real dead-
locks with high probability. The technique works in two phases.
In the first phase, we use an informative and a simple variant
of the Goodlock algorithm, calledinformative Goodlock, or sim-
ply iGoodlock, to discover potential deadlock cycles in a multi-
threaded program. For example, iGoodlock could report a cycle

1 They reduce the number of reports to 70 after applying various unsound
heuristics

of the form(t1, l1, l2, [c1, c2])(t2, l2, l1, [c
′

1, c
′

2]), which says that
there could be a deadlock if threadt1 tries to acquire lockl2 at
program locationc2 after acquiring lockl1 at program locationc1

and threadt2 tries to acquire lockl1 at program locationc′2 af-
ter acquiring lockl2 at program locationc′1. In the second phase,
DEADLOCKFUZZER executes the program with a random sched-
ule in order to create a real deadlock corresponding to a cycle
reported in the previous phase. For example, consider the cycle
(t1, l1, l2, [c1, c2])(t2, l2, l1, [c

′

1, c
′

2]) again. At each program state,
the random scheduler picks a thread and executes its next statement
with the following exception. Ift1 is about to acquire lockl2 at lo-
cation c2 after acquiring lockl1 at locationc1, then the random
scheduler pauses the execution of threadt1. Similarly, the random
scheduler pauses the execution of threadt2 if it is about to acquire
lock l1 at locationc′2 after acquiring lockl2 at locationc′1. In this
biased random schedule, it is very likely that both the threads will
reach a state wheret1 is trying to acquirel2 while holdingl1 andt2
is trying to acquirel1 while holdingl2. This results in a real dead-
lock. In summary, DEADLOCKFUZZERactively controls a random-
ized thread scheduler based on a potential deadlock cycle reported
by an imprecise deadlock detection technique.

The above technique poses the followingkey challenge. Phase
II assumes that Phase I can provide it with precise knowledgeabout
the thread and lock objects involved in the deadlock cycle. Unfor-
tunately, since thread and lock objects are created dynamically at
runtime, their addresses cannot be used to identify them across ex-
ecutions, i.e. in the above example, addresses oft1, t2, l1, l2 do not
remain the same between Phase I and Phase II executions. There-
fore, we need some mechanism to identify the same objects across
executions. Specifically, we need a form of object abstraction such
that if two dynamic objects in different executions are the same,
they must have the same abstraction. For example, the label of a
statement at which an object is created can be used as its abstrac-
tion. Such an abstraction of an object does not change acrossexecu-
tions. However, an abstraction could be the same for severalobjects
(e.g. if bothl1 andl2 in the above example are created by the same
statement). In this paper, we propose two techniques for comput-
ing the abstraction of an object that helps us to distinguishbetween
different objects more precisely—the first technique is motivated
by the notion ofk-object-sensitivityin static analysis [20] and the
second technique is motivated by the notion of execution index-
ing [30]. We show that both these abstractions are better than the
trivial abstraction where all objects have the same abstraction. We
also empirically show that the abstraction based on execution in-
dexing is better than the abstraction based on k-object-sensitivity
in most benchmarks.

We have implemented DEADLOCKFUZZER for multi-threaded
Java programs in a prototype tool. We have applied the tool
to a large number of benchmarks having a total of over 600K
lines of code. The results of our experiments show that DEAD-
LOCKFUZZER can create real deadlocks with high probability and
DEADLOCKFUZZER can detect all previously known real dead-
locks.

We make the following contributions in this paper.

• We propose a simple and informative variant of the Goodlock
algorithm, callediGoodlock.Unlike existing Goodlock algo-
rithms [13, 4, 1], iGoodlock does not use lock graphs or depth-
first search, but reports the same deadlocks as the existing algo-
rithms. Due to this modification, iGoodlock uses more memory,
but reduces runtime complexity. We also attach context infor-
mation with each cycle that helps in debugging and in biasing
the random scheduler. iGoodlock is iterative in nature—it finds
all cycles of lengthk before finding any cycle of lengthk + 1.
Our experiments show that all real deadlocks in our benchmarks
have length two. Therefore, if we have a limited time budget,

we can run iGoodlock for one iteration so that it only reports
deadlock cycles of length 2.

• Our key contributionis an active random deadlock detecting
scheduler that can create real deadlocks with high probability
(we show this claim empirically) based on information provided
by iGoodlock. This phase prevents us from reporting any false
positives and creates real deadlocks which are useful for de-
bugging. This relieves the manual inspection burden associated
with other imprecise techniques such as Goodlock.

• We propose two kinds of object abstraction techniques that help
us correlate thread and lock objects between iGoodlock and the
randomized scheduling algorithm.

• We have implemented DEADLOCKFUZZER in a tool for Java
and have discovered subtle previously known and unknown
deadlocks in large applications. To the best of our knowledge,
DEADLOCKFUZZER is the first precise dynamic deadlock anal-
ysis tool for Java that has been applied to large Java applica-
tions.

2. Algorithm
The DEADLOCKFUZZER algorithm consists of two phases. In the
first phase, we execute a multi-threaded program and find poten-
tial deadlocks that could happen in some execution of the program.
This phase uses a modified Goodlock algorithm, calledinformative
Goodlock, or simply iGoodlock, which identifies potential dead-
locks even if the observed execution does not deadlock. We call
the modified algorithminformative because we provide suitable
debugging information to identify the cause of the deadlock—this
debugging information is used by the second phase to create real
deadlocks with high probability. A limitation of iGoodlockis that
it can give false positives because it does not consider the happens-
before relation between the transitions in an execution. Asa result
the user is required to manually inspect such potential deadlocks.
The second phase removes this burden from the user. In this phase,
a random thread scheduler is biased to generate an executionthat
creates a real deadlock reported in the previous phase with high
probability. We next describe these two phases in more detail.

2.1 Background Definitions

We use a general and simple model of a concurrent system to
describe our dynamic deadlock checking algorithm. We consider
a concurrent system to be composed of a finite set of threads.
Each thread executes a sequence of labeled statements. A thread
communicates with other threads using shared objects. At any
point during program execution, a concurrent system is in astate.
Let s0 be the initial state. A concurrent system evolves from one
state to another state when a thread executes a statement. Inour
algorithms, we will consider the following dynamic instances of
labeled program statements:

1. c : Acquire(l), denoting the acquire of the dynamic lock
objectl. c is the label of the statement (same for below).

2. c : Release(l), denoting the release of the dynamic lock
objectl.

3. c : Call(m), denoting a call to the methodm.

4. c : Return(m), denoting the return from the methodm.

5. c : o =new (o′, T), where the statement occurs in the body of
a methodm and when thethis argument ofm evaluates to
objecto′, theno is the dynamic object of typeT allocated by
the statement.

In several languages including Java, locks are re-entrant,i.e.,
a thread may re-acquire a lock it already holds. In our algorithm,

we ignore the execution ofc : Acquire(l) or c : Release(l)
statements by a threadt, if t re-acquires the lockl or does not
release the lockl, respectively2. To simplify exposition, we also
assume that locks are acquired and released in a nested way, i.e.,
if a thread acquiresl2 after acquiringl1, then it has to releasel2
before releasingl1. Our algorithm can easily be extended to handle
languages where locks can be acquired and released in an arbitrary
order.

Next we introduce some definitions that we will use to describe
our algorithms.

• Enabled(s) denotes the set of threads that are enabled in the
states. A thread is disabled if it is waiting to acquire a lock
already held by some other thread (or waiting on ajoin or a
wait in Java.)

• Alive(s) denotes the set of threads whose executions have not
terminated in the states. A states is in astall stateif the set of
enabled threads ins (i.e.Enabled(s)) is empty and the set of
threads that are alive (i.e.Alive(s)) is non-empty.

• Execute(s, t) returns the state after executing the next state-
ment of the threadt in the states.

2.2 Phase I: iGoodlock

In this section, we present a formal description of iGoodlock. The
algorithm observes the execution of a multi-threaded program and
computes alock dependency relation(defined below) and uses a
transitive closure of this relation to compute potential deadlock
cycles. The algorithm improves over generalized Goodlock algo-
rithms [4, 1] in two ways. First, it adds context informationto a
computed potential deadlock cycle. This information helpsto iden-
tify the program locations where the deadlock could happen and
also to statically identify the lock and thread objects involved in the
deadlock cycle. Second, we simplify the generalized Goodlock al-
gorithm by avoiding the construction of a lock graph, where locks
form the vertices and a labeled edge is added from one lock to
another lock if a thread acquires the latter lock while holding the
former lock in some program state. Unlike existing Goodlockalgo-
rithms, iGoodlock does not perform a depth-first search, butcom-
putes transitive closure of the lock dependency relation. As such it
uses more memory, but has better runtime complexity. We nextin-
troduce some formal definitions before we describe the algorithm.

Given a multi-threaded executionσ, let Lσ be the set of lock
objects that were held by any thread in the execution andTσ be
the set of threads executed in the execution. LetC be the set of all
statement labels in the multi-threaded program. We next define the
lock dependency relation of a multi-threaded executionas follows.

DEFINITION 1. Given an executionσ, a lock dependency relation
Dσ of σ is a subset ofTσ ×2Lσ ×Lσ ×C∗ such that(t, L, l, C) ∈
Dσ iff in the executionσ, in some state, threadt acquires lockl
while holding the locks in the setL, andC is the sequence of labels
ofAcquire statements that were executed byt to acquire the locks
in L ∪ {l}.

DEFINITION 2. Given a lock dependency relationD, a lock de-
pendency chainτ = 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉 is a
sequence inD∗ such that the following properties hold.

1. for all distinct i, j ∈ [1, m], ti 6= tj , i.e. the threads
t1, t2, . . . , tm are all distinct objects,

2 This is implemented by associating a usage counter with a lock which is
incremented whenever a thread acquires or re-acquires the lock and decre-
mented whenever a thread releases the lock. Execution ofAcquire(l) by
t is considered whenever the threadt acquires or re-acquires the lockl and
the usage counter associated withl is incremented from 0 to 1.

2. for all distinct i, j ∈ [1, m], li 6= lj , i.e. the lock objects
l1, l2, . . . , lm are distinct,

3. for all i ∈ [1, m − 1], li ∈ Li+1, i.e. each thread could
potentially wait to acquire a lock that is held by the next thread,

4. for all distincti, j ∈ [1, m], Li ∩ Lj = ∅, i.e., each threadti

should be able to acquire the locks inLi without waiting.

DEFINITION 3. A lock dependency chain
τ = 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉

is a potential deadlock cycleif lm ∈ L1.

Note that the definition of a potential deadlock cycle never
uses any of theCi’s in Dσ to compute a potential deadlock cycle.
EachCi of a potential deadlock cycle provides us with information
about program locations where the locks involved in the cycle were
acquired. This is useful for debugging and is also used by the
active random deadlock checker to determine the program locations
where it needs to pause a thread.

Each lock and thread object involved in a potential deadlockcy-
cle is identified by its unique id, which is typically theaddressof
the object. The unique id of an object, being based on dynamicin-
formation, can change from execution to execution. Therefore, the
unique id of an object cannot be used by the active random checker
to identify a thread or a lock object across executions. In order to
overcome this limitation, we compute an abstraction of eachobject.
An abstraction of an object identifies an object by static program in-
formation. For example, the label of a statement at which an object
is created could be used as its abstraction. We describe two bet-
ter (i.e. more precise) object abstraction computation techniques in
Section 2.4. In this section, we assume thatabs(o) returns some
abstraction of the objecto.

Given a potential deadlock cycle〈(t1, L1, l1, C1), . . . ,
(tm, Lm, lm, Cm)〉, iGoodlock reports the abstract deadlock cycle
〈(abs(t1),abs(l1), C1), . . . , (abs(tm),abs(lm), Cm)〉. The
active random checker takes such an abstract deadlock cycleand
biases a random scheduler so that a real deadlock corresponding to
the cycle gets created with high probability.

We next describe iGoodlock. Specifically, we describe how
we compute the lock dependency relation during a multi-threaded
execution and how we compute all potential deadlock cycles given
a lock dependency relation.

2.2.1 Computing the lock dependency relation of a
multi-threaded execution

In order to compute the lock dependency relation during a multi-
threaded execution, we instrument the program to maintain the
following three data structures:

• LockSet that maps each thread to a stack of locks held by the
thread

• Context that maps each thread to a stack of the labels of
statements where the thread acquired the currently held locks

• D is the lock dependence relation

We update the above three data structures during a multi-threaded
execution as follows:

• Initialization:

for all t, bothLockSet[t] andContext[t] map to an empty stack

D is an empty set

• If threadt executes the statementc : Acquire(l)

pushc to Context[t]

add(t,LockSet[t], l, Context[t]) to D

pushl to LockSet[t]

• If threadt executes the statementc : Release(l)

pop fromContext[t]

pop fromLockSet[t]

At the end of the execution, we outputD as the lock dependency
relation of the execution.

2.2.2 Computingpotential deadlock cycles iteratively

Let Dk denote the set of all lock dependency chains ofD that has
lengthk. Therefore,D1 = D. iGoodlock computes potential dead-
lock cycles by iteratively computingD2, D3, D4, . . . and finding
deadlock cycles in those sets. The iterative algorithm for comput-
ing potential deadlock cycles is described in Algorithm 1.

Algorithm 1 iGoodlock(D)
1: INPUTS: lock dependency relationD
2: i ⇐ 1
3: Di ⇐ D
4: while Di 6= ∅ do
5: for each(t, L, l, C) ∈ D and eachτ in Di do
6: if τ, (t, L, l, C) is a dependency chain by Definition 2then
7: if τ, (t, L, l, C) is a potential deadlock cycle by Definition 3

then
8: report abs(τ, (t, L, l, C)) as a potential deadlock cycle
9: else

10: addτ, (t, L, l, C) to Di+1

11: end if
12: end if
13: end for
14: i ⇐ i + 1
15: end while

Note that iniGoodlock(D) we do not add a lock dependency
chain toDi+1 if it is a deadlock cycle. This ensures that we do
not report complex deadlock cycles, i.e. deadlock cycles that can
be decomposed into simpler cycles.

2.2.3 Avoiding duplicate deadlock cycles

In Algorithm 1, a deadlock cycle of lengthk gets reportedk times.
For example, if

〈(t1, L1, l1, C1), (t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm)〉
is reported as a deadlock cycle, then

〈(t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm), (t1, L1, l1, C1)〉
is also reported as a cycle. In order to avoid such duplicates, we put
another constraint in Definition 2: the unique id of threadt1 must
be less than the unique id of threadst2, . . . , tm.

2.3 Phase II: The Active Random Deadlock Checking
Algorithm

DEADLOCKFUZZER executes a multi-threaded program using a
random scheduler. A simple randomized execution algorithmis
shown in Algorithm 2. Starting from the initial states0, this al-
gorithm, at every state, randomly picks an enabled thread and exe-
cutes its next statement. The algorithm terminates when thesystem
reaches a state that has no enabled threads. At termination,if there
is at least one thread that is alive, the algorithm reports a system
stall. A stall could happen due to a resource deadlock (i.e. dead-
locks that happen due to locks) or a communication deadlock (i.e. a
deadlock that happens when each thread is waiting for a signal from
some other thread in the set). We only consider resource deadlocks
in this paper.

A key limitation of this simple random scheduling algorithm
is that it may not create real deadlocks very often. DEADLOCK-
FUZZER biases the random scheduler so that potential deadlock
cycles reported by iGoodlock get created with high probability.
The active random deadlock checking algorithm is shown in Al-
gorithm 3. Specifically, the algorithm takes an initial state s0 and

Algorithm 2 simpleRandomChecker(s0)
1: INPUTS: the initial states0

2: s ⇐ s0

3: while Enabled(s) 6= ∅ do
4: t ⇐ a random thread inEnabled(s)
5: s ⇐ Execute(s, t)
6: end while
7: if Alive(s) 6= ∅ then
8: print ‘System Stall!’
9: end if

a potential deadlock cycleCycle as inputs. It then executes the
multi-threaded program using the simple random scheduler,except
that it performs some extra work when it encounters a lock acquire
or lock release statement. If a threadt is about to acquire a lockl in
the contextC, then if(abs(t),abs(l), C) is present inCycle, the
scheduler pauses threadt beforet acquires lockl, giving a chance
to another thread, which is involved in the potential deadlock cycle,
to acquire lockl subsequently. This ensures that the system creates
the potential deadlock cycleCycle with high probability.

Algorithm 3 DEADLOCKFUZZER(s0,Cycle)
1: INPUTS: the initial states0, a potential deadlock cycleCycle
2: s ⇐ s0

3: Paused ⇐ ∅
4: LockSet andContext map each thread to an empty stack
5: while Enabled(s) 6= ∅ do
6: t ⇐ a random thread inEnabled(s)\ Paused
7: Stmt⇐ next statement to be executed byt
8: if Stmt = c : Acquire(l) then
9: pushl to LockSet[t]

10: pushc to Context[t]
11: checkRealDeadlock(LockSet) // seeAlgorithm 4
12: if ((abs(t), abs(l), Context[t]) /∈ Cycle) then
13: s ⇐ Execute(s,t)
14: else
15: pop fromLockSet[t]
16: pop fromContext[t]
17: addt to Paused
18: end if
19: else ifStmt = c : Release(l) then
20: pop fromLockSet[t]
21: pop fromContext[t]
22: s ⇐ Execute(s,t)
23: else
24: s ⇐ Execute(s,t)
25: end if
26: if |Paused| = |Enabled(s)| then
27: remove a random thread fromPaused
28: end if
29: end while
30: if Active(s) 6= ∅ then
31: print ‘System Stall!’
32: end if

Algorithm 4 checkRealDeadlock(LockSet)
1: INPUTS: LockSet mapping each thread to its current stack of locks
2: if there exist distinctt1, t2, . . . , tm and l1, l2, . . . , lm such thatlm

appears beforel1 in LockSet[tm] and for eachi ∈ [1, m − 1], li
appears beforeli+1 in LockSet[ti] then

3: print ‘Real Deadlock Found!’
4: end if

Algorithm 3 maintains three data structures:LockSet that
maps each thread to a stack of locks that are currently held by
the thread,Context that maps each thread to a stack of state-
ment labels where the thread has acquired the currently heldlocks,

andPaused which is a set of threads that has been paused by
DEADLOCKFUZZER. Paused is initialized to an empty set, and
LockSet andContext are initialized to map each thread to an
empty stack.

DEADLOCKFUZZER runs in a loop until there is no enabled
thread. At termination, DEADLOCKFUZZER reports a system stall
if there is at least one active thread in the execution. Note that
DEADLOCKFUZZERonly catches resource deadlocks. In each iter-
ation of the loop, DEADLOCKFUZZERpicks a random threadt that
is enabled but not in thePaused set. If the next statement to be ex-
ecuted byt is not a lock acquire or release,t executes the statement
and updates the state as in the simple random scheduling algorithm
(see Algorithm 2). If the next statement to be executed byt is c :
Acquire(l), c andl are pushed toContext[t] andLockSet[t],
respectively. DEADLOCKFUZZER then checks if the acquire ofl
by t could lead to a deadlock usingcheckRealDeadlock in
Algorithm 4.checkRealDeadlock goes over the current lock
set of each thread and sees if it can find a cycle. If a cycle is discov-
ered, then DEADLOCKFUZZERhas created areal deadlock. If there
is no cycle, then DEADLOCKFUZZER determines ift needs to be
paused in order to get into a deadlock state. Specifically, itchecks if
(abs(t),abs(l), Context[t]) is present inCycle. If t is added
to Paused, then we pop from bothLockSet[t] andContext[t]
to reflect the fact thatt has not really acquired the lockl. If the
next statement to be executed byt is c : Release(l), then we pop
from bothLockSet[t] andContext[t].

At the end of each iteration, it may happen that the setPaused
is equal to the set of all enabled threads. This results in a state
where DEADLOCKFUZZER has unfortunately paused all the en-
abled threads and the system cannot make any progress. We call
this thrashing.DEADLOCKFUZZER handles this situation by re-
moving a random thread from the setPaused. A thrash implies
that DEADLOCKFUZZERhas paused a thread in an unsuitable state.
DEADLOCKFUZZERshould avoid thrashing as much as possible in
order to guarantee better performance and improve the probability
of detecting real deadlocks.

2.4 Computing object abstractions

A key requirement of DEADLOCKFUZZER is that it should know
where a thread needs to be paused, i.e. it needs to know if a threadt
that is trying to acquire a lockl in a contextC could lead to a dead-
lock. DEADLOCKFUZZER gets this information from iGoodlock,
but this requires us to identify the lock and thread objects that are
the “same” in the iGoodlock and DEADLOCKFUZZER executions.
This kind of correlation cannot be done using the address (i.e. the
unique id) of an object because object addresses change across ex-
ecutions. Therefore, we propose to use object abstraction—if two
objects are same across executions, then they have the same ab-
straction. We assumeabs(o) computes the abstraction of an ob-
ject.

There could be several ways to compute the abstraction of an
object. One could use the label of the statement that allocated the
object (i.e. the allocation site) as its abstraction. However, that
would be too coarse-grained to distinctly identify many objects. For
example, if one uses the factory pattern to allocate all thread ob-
jects, then all of the threads will have the same abstraction. There-
fore, we need more contextual information about an allocation site
to identify objects at finer granularity.

Note that if we use a coarse-grained abstraction, then DEAD-
LOCKFUZZER will pause unnecessary threads before they try to
acquire some unnecessary locks. This is because all these unnec-
essary threads and unnecessary locks might have the same abstrac-
tion as the relevant thread and lock, respectively. This will in turn
reduce the effectiveness of our algorithm as DEADLOCKFUZZER
will more often remove a thread from thePaused set due to the

unavailability of any enabled thread. Note that we call thissitua-
tion thrashing. Our experiments (see Section 5) show that if we use
the trivial abstraction, where all objects have the same abstraction,
then we get a lot of thrashing. This in turn reduces the probability
of creating a real deadlock. On the other hand, if we considertoo
fine-grained abstraction for objects, then we will not be able to tol-
erate minor differences between two executions, causing threads to
pause at fewer locations and miss deadlocks. We next describe two
abstraction techniques for objects that we have found effective in
our experiments.

2.4.1 Abstraction based on k-object-sensitivity

Given a multi-threaded execution and ak > 0, let o1, . . . ok be the
sequence of objects such that for alli ∈ [1, k−1], oi is allocated by
some method of objectoi+1. We defineabsO

k (o1) as the sequence
〈c1, . . . , ck〉 whereci is the label of the statement that allocatedoi.
absO

k (o1) can then be used as an abstraction ofo1. We call this
abstraction based on k-object-sensitivitybecause of the similarity
to k-object-sensitive static analysis [20].

In order to computeabsO
k (o) for each objecto during a multi-

threaded execution, we instrument the program to maintain amap
CreationMap that maps each objecto to a pair (o′, c) if o
is created by a method of objecto′ at the statement labeledc.
This gives the following straightforward runtime algorithm for
computingCreationMap.

• If a threadt executes the statementc : o = new (o′, T), then
addo 7→ (o′, c) to CreationMap.

One can useCreationMap to computeabsO
k (o) using the fol-

lowing recursive definition:
absO

k (o) = 〈〉 if k = 0 or CreationMap[o] = ⊥
absO

k+1(o) = c :: absO
k (o′) if CreationMap[o] = (o′, c)

When an object is allocated inside a static method, it will not have
a mapping inCreationMap. Consequently,absO

k (o) may have
fewer thank elements.

2.4.2 Abstraction based on light-weight execution indexing

Given a multi-threaded execution, ak > 0, and an objecto,
let mn, mn−1, . . . , m1 be the call stack wheno is created, i.e.
o is created inside methodm1 and for all i ∈ [1, n − 1], mi

is called from methodmi+1. Let us also assume thatci+1 is
the label of the statement at whichmi+1 invokes mi and qi+1

is the number of timesmi is invoked bymi+1 in the context
mn, mn−1, . . . , mi+1. ThenabsI

k(o) is defined as the sequence
[c1, q1, c2, q2, . . . , ck, qk], wherec1 is the label of the statement at
which o is created andq1 is the number of times the statement is
executed in the contextmn, mn−1, . . . , m1.

1 main() {
2 f o r (i n t i=0; i<5; i++)
3 foo();
4 }
5 vo id foo() {
6 bar();
7 bar();
8 }
9 vo id bar() {

10 f o r (i n t i=0; i<3; i++)
11 Object l = new Object();
12 }

For example in the above code, ifo is the first object cre-
ated by the execution ofmain, then absI

3(o) is the sequence
[11, 1, 6, 1, 3, 1]. Similarly, if o is the last object created by the ex-
ecution ofmain, thenabsI

3(o) is the sequence[11, 3, 7, 1, 3, 5].
The idea of computing this kind of abstraction is similar to the
idea of execution indexing proposed in [30], except that we ignore

branch statements and loops. This makes our indexing light-weight,
but less precise.

In order to computeabsI
k(o) for each objecto during a multi-

threaded execution, we instrument the program to maintain a
thread-local scalard to track its depths and two thread-local maps
CallStack andCounters. We useCallStackt to denote the
CallStack map of threadt. The above data structures are up-
dated at runtime as follows.

• Initialization:

for all t, dt ⇐ 0

for all t andc, Counterst[dt][c] ⇐ 0

• If a threadt executes the statementc : Call(m)

Counterst[dt][c] ⇐ Counterst[dt][c] + 1

pushc to CallStackt

pushCounterst[dt][c] to CallStackt

dt ⇐ dt + 1

for all c, Counterst[dt][c] ⇐ 0

• If a threadt executes the statementc : Return(m)

dt ⇐ dt − 1

pop twice fromCallStackt

• If a threadt executes the statementc : o =new(o′, T)

Counterst[dt][c] ⇐ Counterst[dt][c] + 1

pushc to CallStackt

pushCounterst[dt][c] to CallStackt

absI
k
(o) is the top2k elements ofCallStackt

pop twice fromCallStackt

Note thatabsI
k(o) has2k elements, but if the call stack has

fewer elements, thenabsI
k(o) returns the full call stack.

3. Examples Illustrating DEADLOCK FUZZER

Consider the multi-threaded Java program in Figure 1. The program
defines aMyThread class that has two locksl1 andl2 and a
booleanflag. Therun method ofMyThread invokes a number
of long running methodsf1, f2, f3, f4 if flag is true and
then it acquires locksl1 andl2 in order. The body ofrun shows
a common pattern, where a thread runs several statements and
then acquires several locks in a nested way. Themain method
creates two lock objectso1 and o2. It also creates two threads
(i.e. instances ofMyThread). In the first instancel1 andl2 are
set too1 ando2, respectively, andflag is set to true. Therefore,
a call tostart on this instance will create a new thread which
will first execute several long running methods and then acquire
o1 ando2 in order. A call tostart on the second instance of
MyThreadwill create a new thread which will acquireo2 ando1
in order. We have commented out lines 24 and 27, because they are
not relevant for the current example—we will uncomment themin
the next example.

The example has a deadlock because the lockso1 ando2 are
acquired in different orders by the two threads. However, this dead-
lock will rarely occur during normal testing because the second
thread will acquireo2 ando1 immediately after start, whereas the
first thread will acquireo1 ando2 after executing the four long
running methods. iGoodlock will report this deadlock as a poten-
tial one by observing a single execution that does not deadlock. If
we use the abstraction in Section 2.4.2 with, sayk = 10, the report
will be as follows:

([25, 1], [23, 1], [15, 16]), ([26, 1], [22, 1], [15, 16])

1 c l a s s MyThread extends Thread {
2 Object l1, l2;
3 boolean flag;
4 MyThread(Object l1,Object l2,boolean b){
5 t h i s.l1 = l1; t h i s .l2 = l2; t h i s.flag = b;
6 }
7
8 pub l i c vo id run() {
9 i f (flag) { // some long running methods

10 f1();
11 f2();
12 f3();
13 f4();
14 }
15 synchron ized(l1) {
16 synchron ized(l2) {
17 }
18 }
19 }
20
21 pub l i c s t a t i c vo id main (String[] args) {
22 Object o1 = new Object();
23 Object o2 = new Object();
24 // Object o3 = new Object();
25 (new MyThread(o1,o2, t rue)).start();
26 (new MyThread(o2,o1, f a l s e)).start();
27 // (new MyThread(o2,o3,false)).start();
28 }
29 }

Figure 1. Simple Example of a Deadlock

where[25, 1], [26, 1], [22, 1], [23, 1] are the abstractions of the first
thread, the second thread,o1, ando2, respectively.[15, 16] denotes
the context in which the second lock is acquired by each thread.

The active random deadlock checker will take this report and
create the real deadlock with probability 1. Specifically, it will
pause both the threads before they try to acquire a lock at line 16.

The above example shows that DEADLOCKFUZZER can create
a rare deadlock with high probability. In practice, the actual prob-
ability may not be 1—DEADLOCKFUZZER can miss a deadlock
because the execution could simply take a different path dueto non-
determinism and that path may not exhibit a deadlock. However, in
our experiments we have found that the probability of creating a
deadlock is high on our benchmarks.

The above example does not show the utility of using thread
and object abstractions. To illustrate the utility of object and thread
abstractions, we uncomment the lines at 24 and 27. Now we create a
third locko3 and a third thread which acquireso2 ando3 in order.
iGoodlock as before will report the same deadlock cycle as inthe
previous example. In DEADLOCKFUZZER, if we do not use thread
and object abstractions, then with probability0.5 (approx), the
third thread will pause before acquiring the lock at line 16.This is
because, without any knowledge about threads and objects involved
in a potential deadlock cycle, DEADLOCKFUZZER will pause any
thread that reaches line 16. Therefore, if the third thread pauses
before line 16, then the second thread will not be able to acquire
lock o2 at line 15 and it will be blocked. DEADLOCKFUZZERwill
eventually pause the first thread at line 16. At this point twothreads
are paused and one thread is blocked. This results in athrashing
(see Section 2.3). To get rid of this stall, DEADLOCKFUZZER will
“un-pause” the first thread with probability 0.5 and we will miss the
deadlock with probability 0.25 (approx). On the other hand,if we
use object and thread abstractions, then DEADLOCKFUZZER will
never pause the third thread at line 16 and it will create the real
deadlock with probability 1. This illustrates that if we do not use

thread and object abstractions, then we get more thrashingsand the
probability of creating a real deadlock gets reduced.

4. Optimization: avoiding another potential cause
for thrashing

We showed that using object and thread abstractions helps reduce
thrashing; this in turn helps increase the probability of creating a
deadlock. We show another key reason for a lot of thrashings using
the following example and propose a solution to partly avoidsuch
thrashings.

1: thread1{ 8: thread2{
2: synchronized(l1){ 9: synchronized(l1){
3: synchronized(l2){ 10:
4: } 11: }
5: } 12: synchronized(l2){
6: } 13: synchronized(l1){

14: }
15: }
16: }

The above code avoids explicit thread creation for simplicity of
exposition. iGoodlock will report a potential deadlock cycle in this
code. In the active random deadlock checking phase, ifthread1
is paused first (at line 3) and ifthread2 has just started, then
thread2 will get blocked at line 9 becausethread1 is holding
the lockl1 and it has been paused andthread2 cannot acquire
the lock. Since we have one paused and one blocked thread, we get
a thrashing. DEADLOCKFUZZER will “un-pause” thread1 and
we will miss the real deadlock. This is a common form of thrashing
that we have observed in our benchmarks.

In order to reduce the above pattern of thrashing, we make a
thread to yield to other threads before it starts entering a deadlock
cycle. Formally, if(abs(t),abs(l), C) is a component of a poten-
tial deadlock cycle, then DEADLOCKFUZZERwill make any thread
t′ with abs(t) = abs(t′) yield before a statement labeledc where
c is the bottommost element in the stackC. For example, in the
above code, DEADLOCKFUZZER will make thread1 yield be-
fore it tries to acquire lockl1 at line 2. This will enablethread2
to make progress (i.e. acquire and releasel1 at lines 9 and 11, re-
spectively).thread2 will then yield to any other thread before
acquiring lockl2 at line 12. Therefore, the real deadlock will get
created with probability 1.

5. Implementation and Evaluation
DEADLOCKFUZZER can be implemented for any language that
supports threads and shared memory programming, such as Java or
C/C++ with pthreads. We have implemented DEADLOCKFUZZER
for Java by instrumenting Java bytecode to observe various events
and to control the thread scheduler. The implementation is apart of
the CAL FUZZER framework [16]. DEADLOCKFUZZERcan go into
livelocks. Livelocks happen when all threads of the programend
up in thePaused set, except for one thread that does something
in a loop without synchronizing with other threads. In orderto
avoid livelocks, DEADLOCKFUZZER creates a monitor thread that
periodically removes those threads from thePaused set that are
paused for a long time.

5.1 Experimental setup

We evaluated DEADLOCKFUZZER on a variety of Java programs
and libraries. We ran our experiments on a dual socket Intel Xeon
2GHz quad core server with 8GB of RAM. The following programs
were included in our benchmarks: cache4j, a fast thread-safe im-
plementation of a cache for Java objects; sor, a successive over-
relaxation benchmark, and hedc, a web-crawler application, both

from ETH [28]; jspider, a highly configurable and customizable
Web Spider engine; and Jigsaw, W3C’s leading-edge Web server
platform. We created a test harness for Jigsaw that concurrently
generates simultaneous requests to the web server, simulating mul-
tiple clients, and administrative commands (such as “shutdown
server”) to exercise the multi-threaded server in a highly concur-
rent situation.

The libraries we experimented on include synchronized lists
and maps from the Java Collections Framework, Java logging fa-
cilities (java.util.logging), and the Swing GUI framework
(javax.swing). Another widely used library included in our
benchmarks is the Database Connection Pool (DBCP) component
of the Apache Commons project. Each of these libraries contains
potential deadlocks that we were able to reproduce using DEAD-
LOCKFUZZER. We created general test harnesses to use these li-
braries with multiple threads. For example, to test the JavaCollec-
tions in a concurrent setting, we used the synchronized wrappers in
java.util.Collections.

5.2 Results

Table 1 shows the results of our analysis. The second column
reports the number of lines of source code that was instrumented.
If the program uses libraries that are also instrumented, they are
included in the count. The third column shows the average runtime
of a normal execution of the program without any instrumentation
or analysis. The fourth column is the runtime of iGoodlock (Phase
I). The fifth column is the average runtime of DEADLOCKFUZZER
(Phase II). The table shows that the overhead of our active checker
is within a factor of six, even for large programs. Note that runtime
for the web server Jigsaw is not reported due to its interactive
nature.

The sixth column is the number of potential deadlocks reported
by iGoodlock. The seventh column is the number of cycles that
correspond to real deadlocks after manual inspection. For Jigsaw,
since DEADLOCKFUZZER could reproduce 29 deadlocks, we can
say for sure that Jigsaw has 29 or more real deadlocks. With the
exception of Jigsaw, iGoodlock was precise enough to reportonly
real deadlocks. The eighth column is the number of deadlock cycles
confirmed by DEADLOCKFUZZER. The ninth column is the empir-
ical probability of DEADLOCKFUZZER reproducing the deadlock
cycle. We ran DEADLOCKFUZZER 100 times for each cycle and
calculated the fraction of executions that deadlocked using DEAD-
LOCKFUZZER. Our experiments show that DEADLOCKFUZZER
reproduces the potential deadlock cycles reported by iGoodlock
with very high probability. We observed that for some Collections
benchmarks, DEADLOCKFUZZERreported a low probability of 0.5
for creating a deadlock. After looking into the report, we found
that in the executions where DEADLOCKFUZZERreported no dead-
lock, DEADLOCKFUZZER created a deadlock which was different
from the potential deadlock cycle provided as input to DEADLOCK-
FUZZER. For comparison, we also ran each of the programs nor-
mally without instrumentation for 100 times to observe if these
deadlocks could occur under normal testing. None of the runsre-
sulted in a deadlock, as opposed to a run with DEADLOCKFUZZER
which almost always went into deadlock. Column 10 shows the av-
erage number of thrashings per run. Columns 9 and 10 show that
the probability of creating a deadlock decreases as the number of
thrashings increases.

We conducted additional experiments to evaluate the effective-
ness of various design decisions for DEADLOCKFUZZER. We tried
variants of DEADLOCKFUZZER: 1) with abstraction based on k-
object-sensitivity, 2) with abstraction based on light-weight exe-
cution indexing, 3) with the trivial abstraction, 4) without context
information, and 5) with the optimization in Section 4 turned off.
Figure 2 summarizes the results of our experiments. Note that the

Program name Lines of Avg. Runtime in msec. # Deadlock cycles Probability of Avg. # of
code Normal iGoodlock DF iGoodlock Real Reproduced reproduction Thrashes

cache4j 3,897 2,045 3,409 - 0 0 - - -
sor 17,718 163 396 - 0 0 - - -
hedc 25,024 165 1,668 - 0 0 - - -
jspider 10,252 4,622 5,020 - 0 0 - - -
Jigsaw 160,388 - - - 283 ≥ 29 29 0.214 18.97
Java Logging 4,248 166 272 493 3 3 3 1.00 0.00
Java Swing 337,291 4,694 9,563 28,052 1 1 1 1.00 4.83
DBCP 27,194 603 1,393 1,393 2 2 2 1.00 0.00

Synchronized Lists
(ArrayList, Stack, 17,633 2,862 3,244 7,070 9 + 9 + 9 9 + 9 + 9 9 + 9 + 9 0.99 0.0
LinkedList)
Synchronized Maps
(HashMap, TreeMap,
WeakHashMap, 18,911 2,295 2,596 2898 4 + 4 + 4 4 + 4 + 4 4 + 4 + 4 0.52 0.04
LinkedHashMap, + 4 + 4 + 4 + 4 + 4 + 4
IdentityHashMap)

Table 1. Experimental results. (Context + 2nd Abstraction + Yield optimization)

 0

 5

 10

 15

50

100

Collections Logging DBCP Swing

Runtime (Normalized to uninstrumented run)

Context + 1st Abstraction
Context + 2nd Abstraction

Ignore Abstraction
Ignore Context

No Yields

 0

 0.2

 0.4

 0.6

 0.8

 1

Collections Logging DBCP Swing

Probability of reproducing deadlock

 0

 2

 4

 6

 8

 10

500

600

Collections Logging DBCP Swing

Avg. thrashing per run

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 r

ep
ro

du
ci

ng
 d

ea
dl

oc
k

of thrashings

Correlation between thrashing and probability.

Probability

Figure 2. Performance and effectiveness of variations of DEADLOCKFUZZER

results in Table 1 correspond to the variant 2, where we use the
light-weight execution indexing abstraction, context information,
and the optimization in Section 4. We found this variant to bethe
best performer: it created deadlocks with higher probability than
any other variant and it ran efficiently with minimal number of
thrashings.

The first graph shows the correlation between the various vari-
ants of DEADLOCKFUZZER and average runtime. The second

graph shows the probability of creating a deadlock by the vari-
ants of DEADLOCKFUZZER. The third graph shows the average
number of thrashings encountered by each variant of DEADLOCK-
FUZZER. The fourth graph shows the correlation between the num-
ber of thrashings and the probability of creating a deadlock.

The first graph shows that variant 2, which uses execution index-
ing, performs better than variant 1, which uses k-object-sensitivity.
The second graph shows that the probability of creating a dead-

lock is maximum for variant 2 on our benchmarks. The difference
is significant for the Logging and DBCP benchmarks. Ignoringab-
straction entirely (i.e. variant 3) led to a lot of thrashingin Col-
lections and decreased the probability of creating a deadlock. The
third graph on the Swing benchmark shows that variant 2 has mini-
mum thrashing. Ignoring context information increased thethrash-
ing and the runtime overhead for the Swing benchmark. In the
Swing benchmark, the same locks are acquired and released many
times at many different program locations during the execution.
Hence, ignoring the context of lock acquires and releases leads to a
huge amount of thrashing.

The first graph which plots average runtime for each variant
shows some anomaly. It shows that variant 3 runs faster than variant
2 for Collections—this should not be true given that variant3
thrashes more than variant 2. We found the following reason for
this anomaly. Without the right debugging information provided
by iGoodlock, it is possible for DEADLOCKFUZZER to pause at
wrong locations but, by chance, introduce a real deadlock which
is unrelated to the deadlock cycle it was trying to reproduce. This
causes the anomaly in the first graph where the runtime overhead
for Collections is lower when abstraction is ignored, but the number
of thrashings is more. The runtime is measured as the time it takes
from the start of the execution to either normal terminationor
when a deadlock is found. DEADLOCKFUZZER with our light-
weight execution indexing abstraction faithfully reproduces the
given cycle, which may happen late in the execution. For more
imprecise variants such as the one ignoring abstraction, a deadlock
early in the execution may be reproduced wrongfully, thus reducing
the runtime.

The fourth graph shows that the probability of creating a dead-
lock goes down as the number of thrashings increases. This val-
idates our claim that thrashings are not good for creating dead-
locks with high probability and our variant 2 tries to reducesuch
thrashings significantly by considering context information and ob-
ject abstraction based on execution indexing, and by applying the
optimization in Section 4.

5.3 Deadlocks found

DEADLOCKFUZZER found a number of previously unknown and
known deadlocks in our benchmarks. We next describe some of
them.

Two previously unknown deadlocks were found in Jigsaw. As
shown in Figure 3, when the http server shuts down, it calls cleanup
code that shuts down theSocketClientFactory. The shut-
down code holds a lock on the factory at line 867, and in turn at-
tempts to acquire the lock oncsList at line 872. On the other
hand, when aSocketClient is closing, it also calls into the fac-
tory to update a global count. In this situation, the locks are held in
the opposite order: the lock oncsList is acquired first at line 623,
and then on the factory at line 574. Another similar deadlockoc-
curs when aSocketClient kills an idle connection. These also
involve the same locks, but are acquired at different program loca-
tions. iGoodlock provided precise debugging information to distin-
guish between the two contexts of the lock acquires.

The deadlock in the Java Swing benchmark occurs when
a program synchronizes on aJFrame object, and invokes
the setCaretPosition() method on aJTextArea ob-
ject that is a member of theJFrame object. The sequence
of lock acquires that leads to the deadlock is as follows. The
main thread obtains a lock on theJFrame object, and an
EventQueue thread which is also running, obtains a lock on
a BasicTextUI$BasicCaret object at line number 1304
in javax/swing/text/DefaultCaret.java. The main thread then
tries to obtain a lock on theBasicTextUI$BasicCaret
object at line number 1244 injavax/swing/text/DefaultCaret.java,

org.w3c.jigsaw.http.httpd {
384: SocketClientFactory factory;

1442: vo id cleanup(...) {
1455: factory.shutdown();}
1711: vo id run() {
1734: cleanup(...);}}

org.w3c.jigsaw.http.socket.SocketClient {
42: SocketClientFactory pool;

111: vo id run() {
152: pool.clientConnectionFinished(...);}}

org.w3c.jigsaw.http.socket.SocketClientFactory {
130: SocketClientState csList;
574: synchron ized boolean decrIdleCount() {...}
618: boolean clientConnectionFinished(...) {
623: synchron ized (csList) {
626: decrIdleCount();}}
867: synchron ized vo id killClients(...) {
872: synchron ized (csList) {...}}
902: vo id shutdown() {
904: killClients(...);}
}

Figure 3. Deadlock in Jigsaw

but fails to do so since the lock has not been released by the
EventQueue thread. TheEventQueue thread tries to ac-
quire the lock on theJFrame object at line number 407 in
javax/swing/RepaintManager.javabut cannot since it is still
held by the main thread. The program goes into a dead-
lock. This deadlock corresponds to a bug that has been reported at
http://bugs.sun.com/view bug.do?bug id=4839713.

One of the deadlocks that we found in the DBCP
benchmark occurs when a thread tries to create a
PreparedStatement, and another thread simultaneously
closes anotherPreparedStatement. The sequence of lock
acquires that exhibits this deadlock is as follows. The firstthread
obtains a lock on aConnection object at line number 185
in org/apache/commons/dbcp/DelegatingConnection.java. The
second thread obtains a lock on aKeyedObjectPool object at
line number 78 inorg/apache/commons/dbcp/PoolablePrepared-
Statement.java. The first thread then tries to obtain a lock on the
sameKeyedObjectPool object at line number 87 inorg/a-
pache/commons/dbcp/PoolingConnection.java, but cannot obtain
it since it is held by the second thread. The second thread tries to
obtain a lock on theConnection object at line number 106 in
org/apache/commons/dbcp/PoolablePreparedStatement.java, but
cannot acquire it since the lock has not yet been released by the
first thread. The program, thus, goes into a deadlock.

The deadlocks in the Java Collections Framework happen
when multiple threads are operating on shared collection objects
wrapped with thesynchronizedX classes. For example, in
the synchronizedList classes, the deadlock can happen if
one thread executesl1.addAll(l2) concurrently with another
thread executingl2.retainAll(l1). There are three meth-
ods,addAll(), removeAll(), andretainAll() that ob-
tain locks on bothl1 and l2 for a total of 9 combinations of
deadlock cycles. ThesynchronizedMap classes have 4 com-
binations with the methodsequals() andget().

The test cases for Java Collections are artificial in the sense that
the deadlocks in those benchmarks arise due to inappropriate use
of the API methods. We used these benchmarks because they have
been used by researchers in previous work (e.g. Williams et al. [29]
and Jula et al. [17]), and we wanted to validate our tool against
these benchmarks.

5.4 Imprecision in Goodlock

Since DEADLOCKFUZZER is not complete, if it does not classify
a deadlock reported by iGoodlock as a real deadlock, we cannot
definitely say that the deadlock is a false warning. For example,
in the Jigsaw benchmark, the informative Goodlock algorithm re-
ported 283 deadlocks. Of these 29 were reported as real deadlocks
by DEADLOCKFUZZER. We manually looked into the rest of the
deadlocks to see if they were false warnings by iGoodlock, orreal
deadlocks that were not caught by DEADLOCKFUZZER. For 18 of
the cycles reported, we can say with a high confidence that they
are false warnings reported by the iGoodlock algorithm. These
cycles involve locks that are acquired at the same program state-
ments, but by different threads. There is a single reason whyall of
these deadlocks are false positives. The deadlocks can occur only
if a CachedThread invokes itswaitForRunner() method
before thatCachedThread has been started by another thread.
This is clearly not possible in an actual execution of Jigsaw. Since
iGoodlock does not take the happens-before relation between lock
acquires and releases into account, it reports these spurious dead-
locks. For the rest of the cycles reported by iGoodlock, we cannot
say with reasonable confidence if they are false warnings, orif they
are real deadlocks that were missed by DEADLOCKFUZZER.

6. Related Work
We have already compared our proposed technique with several
existing techniques for detecting deadlocks in multi-threaded pro-
grams. In this section, we discuss several other related approaches,
and elaborate on some that we have previously mentioned.

DEADLOCKFUZZERis part of theactive testing framework[16]
that we have earlier developed for finding real races [25] andreal
atomicity violations [23]. We proposed RACEFUZZER [25] which
uses an active randomized scheduler to confirm race conditions
with high probability. RACEFUZZERonly uses statement locations
to identify races and does not use object abstraction or context
information to increase the probability of race detection.As shown
in Section 5.2, simple location information is not good enough for
creating real deadlocks with high probability.

Recently, several random testing techniques have been pro-
posed [8, 26] that introduce noise (usingyield, sleep, wait
(with timeout)) to a program execution to increase the possibility of
the exhibition of a synchronization bug. Although these techniques
have successfully detected bugs in many programs, they havea
limitation. These techniques are not systematic as the primitives
sleep(), yield(), priority() can only advise the sched-
uler to make a thread switch, but cannot force a thread switch. As
such they cannot pause a thread as long as required to create areal
deadlock.

More recently, a few techniques have been proposed to con-
firm potential bugs in concurrent programs using random testing.
Havelund et al. [3] uses a directed scheduler to confirm that apo-
tential deadlock cycle could lead to a real deadlock. However, they
assume that the thread and object identifiers do not change across
executions. Similarly, ConTest [22] uses the idea of introducing
noise to increase the probability of the occurrence of a deadlock. It
records potential deadlocks using a Goodlock algorithm. Tocheck
whether a potential deadlock can actually occur, it introduces noise
during program execution to increase the probability of exhibition
of the deadlock. Our work differs from ConTest in the following
ways. ConTest uses only locations in the program to identifylocks.
We use context information and object abstractions to identify the
run-time threads and locks involved in the deadlocks; therefore, our
abstractions give more precise information about run-timeobjects.
Moreover, we explicitly control the thread scheduler to create the
potential deadlocks, instead of adding timing noise to program ex-

ecution. DEADLOCKFUZZER, being explicit in controlling sched-
uler and in identifying objects across executions, found real dead-
locks in large benchmarks with high probability.

A couple of techniques have been proposed to prevent dead-
locks from happening during program execution, and to recover
from deadlocks during execution. When a buggy program executes
and deadlocks, Dimmunix [17] records the deadlock pattern.Dur-
ing program execution, it tries to prevent the occurrence ofany of
the deadlock patterns that it has previously observed. Rx [24] pro-
poses to recover programs from software failures, including dead-
locks, by rolling them back to a recent checkpoint, and re-executing
the programs in a modified environment.

7. Conclusion
Existing techniques for deadlock detection, based on static and dy-
namic analysis, could predict potential deadlocks, but could not
verify if they were real deadlocks. Going through all of these warn-
ings and reasoning about them manually could be time consuming.
DEADLOCKFUZZER automates such verification—if a real dead-
lock is created by DEADLOCKFUZZER, the developer no longer
needs to verify the deadlock manually. However, DEADLOCK-
FUZZER is incomplete—if a deadlock is not confirmed to be real
by DEADLOCKFUZZER, the developer cannot ignore the deadlock.
Nevertheless, DEADLOCKFUZZER has managed to find all pre-
viously known deadlocks in large benchmarks and it has discov-
ered previously unknown deadlocks. We believe that DEADLOCK-
FUZZER is an indispensable and practical tool that complements
both static and predictive dynamic analysis.

Acknowledgments
We would like to thank the anonymous reviewers for their valuable
comments. This research was supported in part by a generous gift
from Intel, by Microsoft and Intel funding (award #20080469), by
matching funding by U.C. Discovery (award #DIG07-10227), and
by NSF Grant CNS-0720906.

References
[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential

deadlocks with static analysis and runtime monitoring. InParallel
and Distributed Systems: Testing and Debugging 2005, 2005.

[2] C. Artho and A. Biere. Applying static analysis to large-scale,
multi-threaded Java programs. InProceedings of the 13th Australian
Software Engineering Conference (ASWEC’01), pages 68–75, 2001.

[3] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Mounier.
Confirmation of deadlock potentials detected by runtime analysis.
In PADTAD’06, pages 41–50, 2006.

[4] S. Bensalem and K. Havelund. Scalable dynamic deadlock analysis
of multi-threaded programs. InParallel and Distributed Systems:
Testing and Debugging 2005 (PADTAD’05), 2005.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In17th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 211–230, 2002.

[6] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha.
Concurrent software verification with states, events, and deadlocks.
Formal Aspects of Computing, 17(4):461–483, 2005.

[7] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool
for concurrent java programs.Software - Practice and Experience,
29(7):577–603, 1999.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, , and S. Ur. Multithreaded
Java program test generation.IBM Systems Journal, 41(1):111–125,
2002.

[9] D. R. Engler and K. Ashcraft. Racerx: effective, static detection of
race conditions and deadlocks. In19th ACM Symposium on Operating
Systems Principles (SOSP), pages 237–252, 2003.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for java. InPLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 234–245. ACM, 2002.

[11] P. Godefroid. Model checking for programming languages using
verisoft. In 24th Symposium on Principles of Programming
Languages, pages 174–186, 1997.

[12] J. Harrow. Runtime checking of multithreaded applications with
visual threads. In7th International SPIN Workshop on Model
Checking and Software Verification, pages 331–342, 2000.

[13] K. Havelund. Using runtime analysis to guide model checking of java
programs. In7th International SPIN Workshop on Model Checking
and Software Verification, pages 245–264, 2000.

[14] K. Havelund and T. Pressburger. Model Checking Java Programs
using Java PathFinder.Int. Journal on Software Tools for Technology
Transfer, 2(4):366–381, 2000.

[15] G. Holzmann. The Spin model checker.IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[16] P. Joshi, M. Naik, C.-S. Park, and K. Sen. An extensible active
testing framework for concurrent programs. In21st International
Conference on Computer Aided Verification (CAV’09), Lecture Notes
in Computer Science. Springer, 2009.

[17] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock
immunity: Enabling systems to defend against deadlocks. In
Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’08), 2008.

[18] L. Lamport. Time, clocks, and the ordering of events in adistributed
system.Commun. ACM, 21(7):558–565, 1978.

[19] S. Masticola.Static detection of deadlocks in polynomial time. PhD
thesis, Rutgers University, 1993.

[20] A. Milanova, A. Rountev, and B. Ryder. Parameterized object
sensitivity for points-to analysis for Java.ACM Transactions on
Software Engineering and Methodology, 14(1):1–41, Jan. 2005.

[21] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective staticdeadlock
detection. In31st International Conference on Software Engineering
(ICSE’09). IEEE, 2009.

[22] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: From exhibiting
to healing. In8th Workshop on Runtime Verification, 2008.

[23] C.-S. Park and K. Sen. Randomized active atomicity violation
detection in concurrent programs. In16th International Symposium
on Foundations of Software Engineering (FSE’08). ACM, 2008.

[24] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as
allergies—a safe method to survive software failures. InSOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems
principles, pages 235–248. ACM, 2005.

[25] K. Sen. Race directed random testing of concurrent programs. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’08), 2008.

[26] S. D. Stoller. Testing concurrent Java programs using randomized
scheduling. InWorkshop on Runtime Verification (RV’02), volume 70
of ENTCS, 2002.

[27] C. von Praun.Detecting Synchronization Defects in Multi-Threaded
Object-Oriented Programs. PhD thesis, Swiss Federal Institute of
Technology, Zurich, 2004.

[28] C. von Praun and T. R. Gross. Object race detection. In16th ACM
SIGPLAN conference on Object oriented programming, systems,
languages, and applications (OOPSLA), pages 70–82. ACM, 2001.

[29] A. Williams, W. Thies, and M. Ernst. Static deadlock detection for
Java libraries. InECOOP 2005 — 19th European Conference on
Object-Oriented Programming (ECOOP’05), pages 602–629, 2005.

[30] B. Xin, W. N. Sumner, and X. Zhang. Efficient program execution
indexing. InACM SIGPLAN conference on Programming language
design and implementation, pages 238–248, 2008.

