
Effective Static Race Detection for Java

Mayur Naik Alex Aiken John Whaley
Computer Science Department

Stanford University
{mhn,aiken,jwhaley}@cs.stanford.edu

Abstract
We present a novel technique for static race detection in Java pro-
grams, comprised of a series of stages that employ a combination of
static analyses to successively reduce the pairs of memory accesses
potentially involved in a race. We have implemented our technique
and applied it to a suite of multi-threaded Java programs. Our ex-
periments show that it is precise, scalable, and useful, reporting tens
to hundreds of serious and previously unknown concurrency bugs
in large, widely-used programs with few false alarms.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — Reliability; D.2.5 [Soft-
ware Engineering]: Testing and Debugging — Debugging aids

General Terms Experimentation, Reliability

Keywords static race detection, Java, synchronization, concur-
rency, multi-threading

1. Introduction
A multi-threaded program contains a race if two threads can access
the same memory location without ordering constraints enforced
between them and at least one access is a write. A race often implies
a violation of a program invariant. Due to the non-deterministic
nature of the thread schedules under which races occur, however,
races are notoriously difficult to reproduce and fix. As a result, race
detection tools are valuable for improving the reliability of multi-
threaded programs.

The large body of work on race detection may be broadly
classified as either dynamic or static. Dynamic race detectors are
based on either the happens-before relation [1, 13–15, 35, 43, 46],
the lockset algorithm [2, 10, 11, 38, 45, 49, 50], or a combination
of the two [16, 28, 39, 40, 54]. Static race detectors are either
primarily flow insensitive type-based systems [7, 8, 19, 20, 41, 44],
flow sensitive static versions of the lockset algorithm [12, 17, 47],
or path sensitive model checkers [29, 42].

Despite significant advances in static race detection, state-of-
the-art race detection tools are still predominantly dynamic. We set
out to develop a static race detection tool for Java and identified five
key problems that we felt such a tool must address to be useful:

1. Precision — Does the tool have a tolerable false-positive rate?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

escaping−pairs
computation

aliasing−pairs
computation

lock analysis call−graph
construction

alias analysis thread−escape
 analysis

unlocked−pairs
computation

stages
analyses

 computation
reachable−pairs

Figure 1. Overview of race detection algorithm.

2. Scalability — Does the tool handle large programs?

3. Synchronization Idioms — Does the tool handle the synchro-
nization idioms used in real-world programs?

4. Open Programs — Does the tool handle open programs (e.g., a
library, a device driver, etc.)?

5. Counterexamples — Does the tool provide sufficient informa-
tion to identify and fix the bug, if any, manifested in a race?

In this paper, we present a novel technique for static race detec-
tion that satisfies the above criteria. We have implemented our
method in a tool Chord and applied it to a suite of open-source
multi-threaded Java programs, most of which are mature and
widely used, and found 387 distinct bugs. In our largest bench-
mark (Apache Derby, a popular relational database engine), Chord
analyzed 646K lines of Java source code and reported races re-
vealing 319 distinct bugs. Tens of bug reports in two other pro-
grams, JdbF and jTDS, led developers to overhaul the synchro-
nization in those systems. In a popular generic object-pooling li-
brary (Apache Commons Pool) that enables optimizing usage of
resources like threads, sockets, and database connections, Chord
exposed 17 bugs, all of which were fixed in 5 immediate dedi-
cated patches. The output of our tool for all benchmarks along with
detailed descriptions of the bugs and developers’ responses is avail-
able at http://www.cs.stanford.edu/~mhn/chord.html.

Our race detection algorithm is illustrated in Figure 1. It consists
of four stages and four static analyses. The arrows in the figure
denote the order in which the stages and analyses are performed.
The stages, reachable pairs, aliasing pairs, escaping pairs, and un-
locked pairs, successively refine an initial over-approximation of
the set of pairs of memory accesses potentially involved in a race.
The stages depend upon four static analyses: call-graph construc-
tion, alias analysis, thread-escape analysis, and lock analysis. The
bi-directional arrow between the call-graph and alias analyses de-
notes that they are mutually dependent and are computed simul-
taneously. Also, the thread-escape and lock analyses depend upon
both the call-graph and alias analyses.

We next explain in Section 1.1 how we solve problems (1)–(3)
outlined above, followed by an example in Section 1.2 illustrating
how we solve problems (4) and (5).

1.1 Rationale

Central to our approach is a recent form of context sensitivity called
k-object sensitivity [36, 37] that treats abstract contexts and abstract
objects uniformly by defining the abstract contexts of an instance
method as the abstract objects to which its distinguished 0th ar-
gument, this, may be bound at run-time. (Static methods, which
lack the this argument, have a lone abstract context denoted ε.)
We have found k-object sensitivity indispensable to the precision
of alias analysis, and a precise alias analysis is vital to our ap-
proach since all other static analyses we use depend upon it (see
Figure 1). Indeed, we chose this form of context sensitivity after
experimenting with a variety of alias analyses, including inexpen-
sive ones like CHA-based and context insensitive alias analyses that
have been used in previous approaches to static race detection as
well as expensive ones such as Whaley and Lam’s k-CFA-based
context sensitive alias analysis [53] where k is the depth of the pro-
gram’s call graph after reducing strongly connected components to
single nodes. In our experience, k-object sensitive alias analysis
for even relatively small k is much more precise than both con-
text insensitive alias analysis and Whaley and Lam’s k-CFA-based
alias analysis: k = 3 sufficed in our experiments.

The increased precision from k-object sensitivity for even k =
3 incurs a significant scalability cost. All publicly available imple-
mentations of k-object sensitive alias analysis ran out of memory
on most of our benchmarks for k = 1. Recent work has demon-
strated the effectiveness of Binary Decision Diagrams (BDDs) [9]
in scaling whole-program context sensitive analyses [6, 32, 53, 55].
We built Chord upon this work, expressing each of the four stages
and analyses in our race detection algorithm in Datalog, a logic
programming language, and solving them using bddbddb, a BDD-
based implementation of Datalog [30].

Our race detection algorithm is context sensitive but flow insen-
sitive. In general, lack of flow sensitivity helps scalability and hurts
precision. In our race detection algorithm, however, lack of flow
sensitivity primarily affects the kinds of synchronization idioms
we can handle. We handle three idioms: lexically-scoped, lock-
based synchronization, fork/join synchronization, and wait/notify
synchronization. Our lack of flow sensitivity interacts with these
idioms in the following ways:

1. Java encourages programmers to acquire and release locks in a
lexically-scoped manner using the synchronized (l) {...}
construct, which is naturally suited to flow insensitive analysis.
(In contrast, a language like C does not have a lexically-scoped
synchronization construct, thereby encouraging programmers
to acquire and release locks in an interprocedural or path sensi-
tive manner, which necessitates flow sensitive or path sensitive
analysis.)

2. While lexically-scoped, lock-based synchronization is the preva-
lent synchronization idiom, Java programs also use fork/join
synchronization, which necessitates flow sensitive analysis.
Due to the lack of flow sensitivity in our approach, however,
we rely on annotations specifying which threads cannot exe-
cute in parallel (see Section 2.2.1) and which fields/objects,
although thread-shared, cannot be accessed simultaneously by
different threads (see Section 2.2.3). The annotation burden is
very small, partly because of the nature of the annotations and
partly because our algorithm infers most of them automati-
cally: we provided just 42 annotations in our benchmark suite
containing 1.5 million lines of Java source code.

3. The wait, notify, and notifyAll constructs have little im-
pact on race detection. A thread must acquire a lock on an ob-
ject prior to calling any of these methods on that object. A call
to wait on an object causes the calling thread to release the

public class Database {
private ConnectionManager cm;
public int insert(...) throws MappingEx {

Connection c = cm.getConnection(...);
...

}
public int delete(...) throws MappingEx {

Connection c = cm.getConnection(...);
...

}
}

public class ConnectionManager {
private Map conns =

Collections.synchronizedMap(new HashMap());
public Connection getConnection(String s)

throws MappingEx {
try {

ConnectionSource c = conns.get(s);
if (c != null) return c.getConnection();
throw new MappingEx(...);

} catch (SQLEx e) { ... }
}

}

public class ConnectionSource {
private Connection conn;
private boolean used;
public Connection getConnection() throws SQLEx {

if (!used) {
used = true;
return conn;

}
throw new SQLEx(...);

}
}

Figure 2. An example from JdbF.

public class Harness {
static public void main() {

Database v;
if (*) v = new Database(...);
if (*) v.insert(...);
if (*) v.delete(...);
...

}
}

Figure 3. Harness synthesized for JdbF.

lock it acquired on that object prior to the call and block, but
the thread resumes executing only after re-acquiring the lock.
A call to notify or notifyAll does not cause the calling
thread to release any lock. Thus, from the perspective of race
detection, handling Java’s wait/notify synchronization reduces
to handling lock-based synchronization (item (1) above).

Finally, the lack of flow sensitivity causes our race detection ap-
proach to sacrifice soundness: checking whether a pair of accesses
is guarded by a common lock requires a must-alias analysis, which
is necessarily flow sensitive, whereas our lock analysis uses our
(may) alias analysis, which is an unsound approximation (see Sec-
tion 2.2.4). While the lack of soundness has not affected the useful-
ness of Chord, which found tens to hundreds of serious and previ-
ously unknown concurrency bugs in large, widely-used programs,
we hope to incorporate flow sensitivity in our approach to perform
sound race detection in the future.

1.2 Example

In this section, we illustrate our race detector by means of a real-
world example. Figure 2 presents a code fragment from one of
our benchmarks, JdbF, an object-relational mapping system that
simplifies the work of retrieving, saving, and deleting objects
from a relational database. The Database class provides an in-
terface to clients of JdbF for performing various operations on
the database. We only show the relevant parts of the insert and
delete operations. Each operation acquires a connection, per-
forms its task on the database, and releases the connection (not
shown). The ConnectionManager class maintains a map of all
available connections. Each Connection object is encapsulated in
a ConnectionSource object intended to ensure that the connec-
tion is used by at most one database operation at any instant. JdbF
is an open program — it is a library that cannot be run by itself.

Our race detection tool, Chord, automatically generates a har-
ness, whose relevant parts are shown in Figure 3, and reports a
race on instance field used declared in class ConnectionSource.
Specifically, it reports in the form of a graph each pair of paths in
the program’s call graph leading from a pair of call sites in the
harness to a pair of accesses of the field, at least one of which
is a write. For efficiency of the analysis (see Section 2.1), the
generated harness is single-threaded. Our race detection algorithm
simulates the effect of a multi-threaded harness, so each pair of
paths must be viewed as being executed in different threads. One
such reported pair of paths is as follows, where [...] abbreviates
org.jdbf.engine.sql.connection:

field reference ([...].ConnectionSource.used) [Rd]

[...].ConnectionSource.getConnection(ConnectionSource.java:104)
[...].ConnectionManager.getConnection(ConnectionManager.java:186)

org.jdbf.engine.database.Database.insert(Database.java:230)
Harness.main(Harness.java:25)

field reference ([...].ConnectionSource.used) [Wr]

[...].ConnectionSource.getConnection(ConnectionSource.java:105)
[...].ConnectionManager.getConnection(ConnectionManager.java:186)

org.jdbf.engine.database.Database.delete(Database.java:406)
Harness.main(Harness.java:26)

The race illustrates a serious violation of the invariant that each
connection must be used by at most one database operation at a
time. The JdbF developers incorrectly believed that making the map
conns of available connections in class ConnectionManager a
synchronized map suffices to ensure the invariant: the synchronized
map serializes queries on the map of available connections but it
does not serialize the processing of the query results.

In the above example, our tool reports six pairs of paths, each
originating from a pair of calls to either the insert and delete
methods, the insert method itself, or the delete method it-
self in the main method of class Harness and terminating in a
pair of read/write or write/write accesses of the used field in the
getConnection method of class ConnectionSource. Our tool
also reports additional pairs of paths because the Database class
defines methods besides insert and delete, and also because
each such method not only acquires a connection but also releases
it and the method that implements releasing a connection in class
ConnectionSource writes to the used field (setting it to false).
The JdbF developers fixed the bug by synchronizing the relevant
parts of all methods in the Database class on the this object.

The above example highlights two hallmarks of our approach:
the ability to analyze open programs and the ability to report coun-
terexamples. We have found both features essential in practice.
Many multi-threaded applications are written as open programs
that provide an interface to interact with their environment. For in-
stance, JdbF provides the Database class as an interface to clients.
Developers of such programs would like to detect races before de-
ploying the programs in specific environments.

Explaining a race involves various aspects such as the object on
which the race occurs, the pair of threads accessing the object, and
the sets of locks held by the threads. Merely reporting a race on the
used field in an internal class like ConnectionSource makes it
cumbersome to determine whether the race is a bug, a benign race
(that is, a race that does not violate any program invariant), or a
false positive. Thus, it is very useful to additionally report a pair
of paths which, albeit at the call-graph level, shows that the race
occurs if the insert and delete methods are invoked in different
threads on the same Database object.

The rest of the paper is organized as follows. In Section 2,
we present our race detection algorithm and its implementation in
Chord. Section 3 presents our experimental results. In Section 4,
we survey related work and, finally, Section 5 concludes.

2. Race Detection Algorithm
In this section, we present our race detection algorithm and its
implementation in our tool Chord. We describe harness synthesis
in Section 2.1, the four stages of our algorithm along with the
four static analyses it uses in Section 2.2, a post-processing phase
in Section 2.3, and soundness aspects in Section 2.4.

2.1 Harness Synthesis

Our race detection algorithm performs a whole-program analysis.
As argued in Section 1.2, however, the ability to detect races in
open programs is important. There are two problems with analyz-
ing open programs: missing callees and missing callers.

We model missing callees using “stubs” in place of commonly
used native methods in the JDK standard library and treat all other
missing and native methods unsoundly as no-ops. We model miss-
ing callers by automatically synthesizing a harness that simulates
many scenarios in which the program’s environment might exer-
cise its interface. Due to the complexity of the Java language, our
current harness synthesis algorithm is not sound in that it does not
simulate all possible scenarios. Nevertheless, it is much easier in
principle to construct a sound harness for our technique than for
a model checker that also performs whole-program analysis, be-
cause model checkers are typically path sensitive whereas none of
the static analyses used in our technique is path sensitive and so the
harness required by our technique need not be as elaborate.

Our harness synthesis algorithm takes as input an open program
and a set I of interfaces whose implementations must be checked,
and builds a main method that, for each interface I ∈ I:

1. declares a local variable of each type allowed as an argument
type or result type of any method declared in I ,

2. non-deterministically assigns to each local variable of reference
type T , an object of each concrete class of type T , and

3. non-deterministically invokes each method declared in I on
each combination of local variables respecting the argument
types of the method and assigns the return value if any to each
local variable respecting the result type of the method.

The non-determinism is needed to prevent the Soot framework [48]
used in Chord from performing flow sensitive peep-hole optimiza-
tions (our race detection algorithm, being flow insensitive, does not
need the non-determinism). We denote the set of call sites gen-
erated in step (3) by Iext . Notice that the synthesized harness is
single-threaded: our race detection algorithm simulates executing
each pair of calls in Iext in separate threads on shared data. An
example harness synthesized for the open program in Figure 2 is
shown in Figure 3.

For convenience, we assume that a main method is synthesized
for closed programs as well, containing a single call site that ex-

plicitly starts a thread that invokes the main method of the original
program. We define Iext as the set containing this lone call site.

Henceforth, we assume that irrespective of whether we are given
an open or a closed program, we are looking at a complete pro-
gram with a main method main generated by our harness synthesis
algorithm, and a set Iext of call sites that spawn threads in main.
We use the program in Figure 4 as our running example. The set
Iext for this program consists of call sites a.get and a.inc in the
main method generated by our harness synthesis algorithm.

2.2 Algorithm

Our race detection algorithm is illustrated in Figure 1. It consists
of the following four stages that successively refine an initial over-
approximation of the set of pairs of memory accesses potentially
involved in a race:

1. reachable-pairs computation,

2. aliasing-pairs computation,

3. escaping-pairs computation, and

4. unlocked-pairs computation.

These stages employ four static analyses: call-graph construction,
alias analysis, thread-escape analysis, and lock analysis.

Given a complete program with a main method generated by
our harness synthesis algorithm, we use the Soot framework [48]
to compute OriginalPairs, our initial over-approximation of the set
of unordered pairs of memory accesses potentially involved in a
race. Java’s strong typing dictates that a pair of accesses may be
involved in a race only if both access the same instance or static
field or both access array elements (and at least one access is a
write). We use this fact to compute OriginalPairs (see Figure 5). It
requires the following program information, where x, y, and i are
local variables:

• The set Fr (resp. Fw) characterizing statements y = x.f (resp.
x.f = y) that read (resp. write) instance field f .

• The set Gr (resp. Gw) characterizing statements y = C.g (resp.
C.g = y) that read (resp. write) static field g of class C.

• The set Ar (resp. Aw) characterizing statements y = x[i] (resp.
x[i] = y) that read (resp. write) an array element.

It is easy to transform a Java program such that each statement that
accesses a field or an array element is of one of the above forms.

In our running example in Figure 4, the set OriginalPairs con-
tains pairs (fr, fw), (fw, fw), (fr, f

′
w), (f′w, f′w), and (fw, f′w),

where fr denotes the read access referencing field f in method
rd, and fw and f′w denote the write accesses referencing field f
in method wr and the constructor of class A, respectively.

We also use Soot to obtain program information needed as in-
put to the four static analyses used by our race detection algorithm.
These analyses, expressed in Datalog, are solved using bddbddb,
in an order respecting the dependencies between them. We post-
pone describing each analysis until the presentation of the stage
that uses it. Once all four analyses have been computed, we per-
form the four stages of our algorithm in order. Like the analyses,
the stages are also specified in Datalog and solved using bddbddb.
We next describe these stages in Sections 2.2.1–2.2.4.

2.2.1 Reachable-Pairs Computation

The first stage of our algorithm prunes OriginalPairs using the fact
that a pair of accesses may be involved in a race only if each access
is reachable from a thread-spawning call site that is itself reachable
from the synthesized main.

public class A {
int f;
static public void main() {

A a;
if (*) a = new A();
if (*) a.get();
if (*) a.inc();

}
public A() { this.f = 0; }
private int rd() { return this.f; }
private int wr(int x) { this.f = x; return x; }
public int get() { return this.rd(); }
public synchronized int inc() {

int t = this.rd() + (new A()).wr(1);
return this.wr(t);

}
}

Figure 4. Running example.

(instance field) f ∈ F

(static field) g ∈ G

(memory access) e ∈ E = Ef ∪ Eg ∪ Ea

(get/set instance field) Fr, Fw ⊆ Ef × F

(get/set static field) Gr, Gw ⊆ Eg × G

(get/set array element) Ar, Aw ⊆ Ea

F =
S

f∈F
{ (e1, e2) | (e1, f) ∈ Fr ∪ Fw ∧ (e2, f) ∈ Fw }

G =
S

g∈G
{ (e1, e2) | (e1, g) ∈ Gr ∪ Gw ∧ (e2, g) ∈ Gw }

A = { (e1, e2) | e1 ∈ Ar ∪ Aw ∧ e2 ∈ Aw }

OriginalPairs = F ∪ G ∪ A

Figure 5. Computation of OriginalPairs.

The set ReachablePairs, a subset of OriginalPairs, is computed
as shown in Figure 6. It uses a call-graph analysis that provides a
context sensitive call graph of the program via:

• The function M that, given a call site i ∈ I, returns the method
containing i. For convenience, we extend M to provide the
containing method of each memory access e ∈ E as well.

• The function T that, given a call site i ∈ I and a caller context
c ∈ C, returns all pairs of callee methods and callee contexts.

• The set Ifork of all call sites that spawn threads, namely, those
occurring in the synthesized main (Iext) and those occurring in
the original program (Iint).

We use (i, c′)−→∗(m, c) to denote that method m is reachable
(can be called directly or indirectly) in context c from call site
i in context c′. We use (i, c′)=⇒∗(m, c) to denote that method
m is reachable in context c from call site i in context c′ without
switching threads, that is, without executing a call site i′ ∈ Ifork .
Intuitively, −→∗ and =⇒∗ capture thread insensitive and thread
sensitive paths, respectively, in the context sensitive call graph of
the program.

We employ a recent notion of context sensitivity called k-object
sensitivity [36, 37]. The set of abstract contexts C in this form of
context sensitivity includes, for each instance method, each string
of at most k object allocation sites representing an abstract object
to which its distinguished 0th argument this may be bound at
run-time. (For brevity, we henceforth use the terms context and
object without qualifying them as abstract.) Static methods like
main that lack the this argument possess a single context denoted

ε. We construct the call graph on the fly, that is, we perform call-
graph construction and alias analysis simultaneously (see Figure 1)
thereby yielding more precise versions of both than in a setting in
which the call graph is constructed separately.

We next compute the set of roots R containing each (i, c) such
that thread-spawning call site i in context c is reachable from main
in context ε. Then, a pair of accesses in OriginalPairs is retained in
ReachablePairs only if each access is reachable, without switching
threads, from some thread spawned at a root.

Due to lack of flow sensitivity in our approach, ReachablePairs
may contain spurious elements in the presence of the flow sensitive
fork/join synchronization idiom. The definition of ReachablePairs
assumes R2 = R×R by default, that is, every pair i1, i2 ∈ Ifork

may spawn a pair of threads that may execute in parallel. But a pair
(i1, i2) may be excluded if no pair of threads spawned at i1 and i2
can execute in parallel due to fork/join synchronization. Hence, we
allow the user to provide annotations for pruning ReachablePairs.
We also piggyback other cases in these annotations, such as allow-
ing the user to exclude:

• A pair (i1, i2) where i1, i2 ∈ Iext invoke methods in the
interface of an open program that are not intended to be invoked
in parallel on shared data by a client.

• A pair (i, i) where i ∈ Iint spawns a single thread (or spawns
multiple threads but only one is alive at any instant).

The annotation burden is small because call sites in Iext , which
is often large, may be specified at the interface-level (e.g., merely
specifying that any pair of methods in interfaces I1 and I2 may not
be called in parallel on shared data) while call sites in Iint , which
is small even for large programs, may be specified individually. The
total number of such annotations needed for each of our benchmark
programs is shown in the “roots” column in Figure 11.

In our running example in Figure 4, pairs (fr, f
′
w), (f′w, f′w)

and (fw, f′w) in OriginalPairs are not retained in ReachablePairs
because each of these pairs involves an access f′w occurring in
a constructor and we elide checking races in constructors (see
item (3) of Section 2.4). Using 1-object sensitivity (which suf-
fices for this example), method rd is reachable in a single context
ca from both thread-spawning call sites a.get and a.inc in con-
text ε, while method wr is reachable in two contexts ca and cb

from a single thread-spawning call site a.inc in context ε, where
ca and cb denote the new A() allocation sites in methods main and
inc, respectively. As a result, ReachablePairs′ contains elements
(fr,ca,fw ,ca), (fr,ca,fw ,cb), (fw,ca,fw ,ca), (fw,ca,fw ,cb),
(fw,cb,fw ,ca), and (fw,cb,fw,cb).

2.2.2 Aliasing-Pairs Computation

The second stage of our algorithm prunes ReachablePairs using the
fact that a pair of accesses may be involved in a race provided they
access the same location. A pair of instance field or array element
accesses, that is, a pair of accesses referencing either x.f and y.f
or x[i] and y[j], may access the same location only if x and y are
aliases.1 A pair of accesses to the same static field, on the other
hand, always alias and so this stage cannot eliminate such pairs.

The set AliasingPairs is computed as shown in Figure 7. It uses
an alias analysis that provides a function P that, given a statement
in Ef or Ea referencing instance field x.f or array element x[i],
and a context of the containing method, returns the set of objects
to which variable x may point in that context. It is convenient to
assume that, given a statement in Eg and a context of the containing
method, this function returns { h0 } where h0 is a distinguished

1 More precisely, a pair of accesses referencing array elements x[i] and y[j]
access the same location if (i) x and y are aliases and (ii) i = j. However,
we conservatively elide checking condition (ii).

dummy object. It is conventional for alias analyses to define such
an object and treat every static field defined in the program as an
instance field of this object. We exploit this property in our thread-
escape analysis (see Section 2.2.3).

The alias analysis we use is k-object sensitive alias analysis [36,
37] which is a flow insensitive, context sensitive, object sensitive,
field sensitive, and inclusion-based alias analysis. In this form of
alias analysis, objects and contexts are treated uniformly, that is,
domains H and C are one and the same. We distinguish between
them in our presentation, however, since H and C are disjoint for
most alias analyses.

Returning to the computation of the set AliasingPairs, a pair of
accesses in ReachablePairs referencing either x.f and y.f or x[i]
and y[j] is retained in AliasingPairs if there exist contexts c1 and c2

of their containing methods, respectively, and there exists an object
h such that both x in context c1 and y in context c2 may point to h.

In our running example in Figure 4, elements (fr,ca,fw ,cb),
(fw,ca,fw ,cb), and (fw,cb,fw ,ca) in ReachablePairs′ are not re-
tained in AliasingPairs′ because accesses fr and fw are of the
form this.f and variable this in contexts ca and cb has disjoint
points-to sets {ca} and {cb}, respectively, using 1-object sensitive
alias analysis. Thus, AliasingPairs′ contains only (fr,ca,fw,ca),
(fw,ca,fw ,ca), and (fw,cb,fw,cb).

2.2.3 Escaping-Pairs Computation

The third stage of our algorithm prunes AliasingPairs using the fact
that a pair of accesses may be involved in a race only if they access
thread-shared data.

The set EscapingPairs, a subset of AliasingPairs, is computed
as shown in Figure 8. It uses a thread-escape analysis that specifies
a set E of objects that may be thread-shared. The thread-escape
analysis we use is specified in 3 lines of Datalog. It depends on
the call-graph and alias analyses for the set of thread-spawning call
sites, Ifork , and:

• The set A containing each triple (i, n, h) such that argument n
of call site i may point to object h in some context.

• The setF containing each triple (h′, f, h) such that the instance
field f of object h′ may point to object h.

It states that an object may be thread-shared if (i) it is reachable
from some argument of a thread-spawning call site or (ii) it is
reachable from some static field. Specifically, h ∈ E , that is, object
h may be thread-shared, if any of the following holds:

1. Some argument of a thread-spawning call site i ∈ Ifork may
point to h. This rule uniformly captures explicit and implicit
thread-spawning call sites: explicit sites, which invoke the
start() method, have a single argument (the this object
of type java.lang.Runnable) whereas implicit sites, gen-
erated by our harness synthesis algorithm for open programs
(see Section 2.1), may have arbitrary arguments since they in-
voke user-defined methods. This rule in combination with the
following one captures situation (i) above.

2. There exists some thread-shared object h′ and instance field f
of h′ that may point to h.

3. Object h is the distinguished dummy object h0. Recall from
Section 2.2.2 that all static fields defined in the program are
instance fields of h0. Thus, this rule in combination with the
previous one captures situation (ii) above.

Returning to the computation of the set EscapingPairs, a pair of
accesses in AliasingPairs referencing either x.f and y.f or x[i]
and y[j] is retained in EscapingPairs provided there exist contexts
c1 and c2 of the methods containing those accesses, respectively,
and an object h such that x in context c1 and y in context c2 may

(method) m ∈ M = { main, ... }
(call site) i ∈ I = { all call sites }
(context) c ∈ C = { ε, ... }

M : (I ∪ E) → M

T : (I × C) → P(M × C)
Ifork = Iext ∪ Iint

R ⊆ (I × C)

ReachablePairs = { (e1, e2) | ∃c1, c2 : (e1, c1, e2, c2) ∈ ReachablePairs′ }
ReachablePairs′ = { (e1, c1, e2, c2) | (e1, e2) ∈ OriginalPairs ∧ ∃(i1, c

′
1, i2, c

′
2) ∈ R2 :

(i1, c
′
1) =⇒∗ (M(e1), c1) ∧ (i2, c

′
2) =⇒∗ (M(e2), c2) }

R = { (i, c) | i ∈ Ifork ∧ ∃i′ : M(i′) = main ∧ (i′, ε)−→∗ (M(i), c) }

(i, c′) =⇒ (m, c) , (i, c′) −→ (m, c) ∧ i /∈ Ifork

(i, c′) −→ (m, c) , (m, c) ∈ T (i, c′)

(i, c′′) =⇒n+1 (m, c) , ∃m′, i′, c′ : (i, c′′) =⇒n (m′, c′) ∧ M(i′) = m′ ∧ (i′, c′) =⇒ (m, c)

(i, c′′) −→n+1 (m, c) , ∃m′, i′, c′ : (i, c′′) −→n (m′, c′) ∧ M(i′) = m′ ∧ (i′, c′) −→ (m, c)

Figure 6. Call graph and computation of ReachablePairs.

(object) h ∈ H = { h0, ... }

P : (E × C) → P(H)

AliasingPairs = { (e1, e2) | ∃c1, c2 : (e1, c1, e2, c2) ∈ AliasingPairs′ }
AliasingPairs′ = { (e1, c1, e2, c2) | (e1, c1, e2, c2) ∈ ReachablePairs′ ∧ (

T

j∈{1,2} P(ej , cj)) 6= ∅ }

Figure 7. Alias analysis and computation of AliasingPairs.

E ⊆ H

A ⊆ I × N × H

F ⊆ H × F × H

E(h) :− A(i, n, h), Ifork (i).
E(h) :− E(h′), F(h′, f, h).
E(h) :− h = h0.

EscapingPairs = { (e1, e2) | ∃c1, c2 : (e1, c1, e2, c2) ∈ EscapingPairs′ }
EscapingPairs′ = { (e1, c1, e2, c2) | (e1, c1, e2, c2) ∈ AliasingPairs′ ∧

(
T

j∈{1,2} P(ej , cj)) ∩ E 6= ∅ }

Figure 8. Escape analysis and computation of EscapingPairs.

(sync stmt) s ∈ S

(path) w ∈ W

S : (I ∪ E) → P(S)
P : (S × C) → P(H)
W : (I × C × M × C) → P(W)
Q : (M × C) → P(W)
L : (W × E × C) → P(H)

UnlockedPairs = { (e1, e2) | ∃c1, c2 : (e1, c1, e2, c2) ∈ UnlockedPairs′ }

UnlockedPairs′′ = { (e1, c1, e2, c2) | (e1, c1, e2, c2) ∈ EscapingPairs′ ∧
∃w1 ∈ Q(M(e1), c1) : ∃w2 ∈ Q(M(e2), c2) : L(w1, e1, c1) ∩ L(w2, e2, c2) = ∅ }

UnlockedPairs′ = { (e1, c1, e2, c2) | (e1, c1, e2, c2) ∈ EscapingPairs′ ∧
T

{ L(w1, e1, c1) | w1 ∈ Q(M(e1), c1) } ∩
T

{ L(w2, e2, c2) | w2 ∈ Q(M(e2), c2) } = ∅ }

W(i, c′, m, c) = {w | w is of the form (i, c′) =⇒∗ (m, c) }

Q(m, c) =
[

{w | ∃i, c′ : (i, c′) ∈ R ∧ w ∈ W(i, c′, m, c) }

L(w, e, c) = { h | ∃s ∈ S(e) : P(s, c) = {h} } ∪ { h | ∃i′′, c′′ : w contains (i′′, c′′) ∧ ∃s ∈ S(i′′) : P(s, c′′) = {h} }

Figure 9. Lock analysis and computation of UnlockedPairs.

point to h and h may be thread-shared. This stage, like the previous
one, does not eliminate any pairs referencing static fields.

The set EscapingPairs may contain spurious elements in the
presence of the flow sensitive fork/join synchronization idiom,
namely, even if an object is thread-shared, multiple threads may
not be able to access it simultaneously because of fork/join syn-
chronization. Hence, we allow the user to provide an annotation
per field (resp. class) to exclude from EscapingPairs all pairs
referencing that field (resp. any field of that class). The annotation
burden is minor because the field-based view (resp. object-based
view) of races in the output of Chord (see Section 2.3) helps iden-
tify such fields (resp. classes) readily. The total number of such
annotations needed for each of our benchmark programs is shown
in the “local” column in Figure 11.

In our running example in Figure 4, the element (fw,cb,fw ,cb)
from AliasingPairs′ is not retained in EscapingPairs′ whereas ele-
ments (fr,ca,fw,ca) and (fw,ca,fw,ca) are retained because ac-
cesses fr and fw are of the form this.f, variable this in contexts
ca and cb has points-to sets {ca} and {cb}, respectively, and our
thread-escape analysis states that cb is thread-local but ca may be
thread-shared since argument a of thread-spawning call sites a.inc
and a.get in method main may point to it.

2.2.4 Unlocked-Pairs Computation

The final stage of our algorithm prunes EscapingPairs using the
fact that a pair of accesses may be involved in a race only if they
are executed by a pair of threads without holding a common lock.

The set UnlockedPairs, a subset of EscapingPairs, is com-
puted as shown in Figure 9. It uses a lock analysis that depends
on the call-graph and alias analyses. We first characterize the set of
locks held by a given thread while executing a given access along
a given path in the context sensitive call graph. It is important to
note, however, that we use paths only to simplify our presentation:
computing UnlockedPairs involves performing a traversal of the
entire graph once and for all instead of enumerating paths.

Let W denote the set of all paths in the context sensitive call
graph and let W denote the function that, given a call site i in
context c′ and a method m in context c, returns the set of all paths
(i, c′)=⇒∗(m, c). Given a thread spawned at call site i in context
c′, that is, (i, c′) ∈ R, an access e in context c, and a path w in
the context sensitive call graph that the thread may execute from
(i, c′) to (M(e), c), that is, w ∈ W(i, c′,M(e), c), we say that
lock h ∈ L(w, e, c) is held by that thread during that access along
that path if either of the following holds:

• The access e is lexically enclosed in a synchronized (l)
{...} statement and the points-to set of l in context c is {h}.

• The path w executes some call site i′′ in context c′′ such
that call site i′′ is lexically enclosed in a synchronized (l)
{...} statement and the points-to set of l in context c′′ is {h}.

Notice that we approximate the lock held on l by its singleton
points-to set {h}, which is unsound, as we show next.

The set UnlockedPairs′′ is computed as shown in Figure 9.
It retains an (e1, c1, e2, c2) ∈ EscapingPairs′ provided accesses
e1 and e2 may be executed in contexts c1 and c2 by a pair of
threads along a pair of paths w1 and w2 without holding a common
lock, that is,

T

j∈{1,2} L(wj , ej , cj) = ∅. Determining whether
a common lock is held requires a must-alias analysis whereas
we use our may-alias analysis in the computation of L above,
which is an unsound approximation. In particular, if our algorithm
declares a pair of accesses race-free, then it guarantees that each
pair of threads executing it will hold a lock on a pair of concrete
objects o1 and o2 represented by the same abstract object h in
our alias analysis, but it cannot guarantee that o1 = o2. In our
experiments, however, we did not find any case in which locks were
held on different concrete objects that were represented by the same
abstract object in our k-object sensitive alias analysis. Henceforth,
we use the phrase common lock to mean the same abstract object.

The set UnlockedPairs′′ is precise in that a pair of accesses
is excluded from it (that is, declared race-free) even if different
pairs of paths leading to it hold different sets of locks, as long
as the sets of locks held along each pair of paths contain some
common lock. This precision, however, comes at the exponential
cost of enumerating every pair of paths in the context sensitive call
graph leading from every pair of roots in R to every pair of ac-
cesses in EscapingPairs′. We therefore compute an approximation
UnlockedPairs′ to UnlockedPairs′′.

The set UnlockedPairs′ is computed as shown in Figure 9. It
excludes an (e1, c1, e2, c2) ∈ EscapingPairs′ only if a common
lock is held along all paths in the set of paths that includes every
path originating at some root (i, c) ∈ R and terminating in (e1, c1)
or (e2, c2) without switching threads. It is immediate that our
approximation is sound:

Fact 1. UnlockedPairs′′ ⊆ UnlockedPairs′.

Besides being cheap to compute — computing it involves perform-
ing a single traversal of the entire context sensitive call graph as
opposed to enumerating each pair of paths from each pair of roots
leading to each pair of accesses — it is nearly complete, in a sense
made precise by the following lemma:

Lemma 2. (e1, c1, e2, c2) ∈ UnlockedPairs′ and (e1, c1, e2, c2) /∈
UnlockedPairs′′ implies ∃j ∈ {1, 2} : ∀w ∈ Q(M(ej), cj) :
|L(w, ej , cj)| > 1.

Proof. By contradiction. Let (1) (e1, c1, e2, c2) ∈ UnlockedPairs′

and (2) (e1, c1, e2, c2) /∈ UnlockedPairs′′. From (1) and the defn.
of UnlockedPairs′, we have (3) (e1, c1, e2, c2) ∈ EscapingPairs′

and (4)
T

{ L(w1, e1, c1) | w1 ∈ Q(M(e1), c1) } ∩
T

{ L(w2, e2, c2) | w2 ∈ Q(M(e2), c2) } = ∅
From (2) and the defn. of UnlockedPairs′′ and (3), we have:

(5) ∀w1 ∈ Q(M(e1), c1) : ∀w2 ∈ Q(M(e2), c2) :
L(w1, e1, c1) ∩ L(w2, e2, c2) 6= ∅

To prove ∃j ∈ {1, 2} : ∀w ∈ Q(M(ej), cj) : |L(w, ej , cj)| > 1.
Suppose for the sake of contradiction that:

(6) ∃w3 ∈ Q(M(e1), c1) : |L(w3, e1, c1)| ≤ 1
∃w4 ∈ Q(M(e2), c2) : |L(w4, e2, c2)| ≤ 1

From (5) and (6), we have:
(7) L(w3, e1, c1) = L(w4, e2, c2) = {h} (say)

From (5) and (7), we have:

(8) ∀w1 ∈ Q(M(e1), c1) : h ∈ L(w1, e1, c1)
∀w2 ∈ Q(M(e2), c2) : h ∈ L(w2, e2, c2)

which contradicts (4).

Lemma (2) states that if a pair of accesses is declared race-free
using UnlockedPairs′′ but not using UnlockedPairs′, then it must
be the case that at least one of those accesses is guarded by multiple
locks along every path reaching it in some context. An access that
happens to be guarded by multiple locks is conceivable but one that
relies on it for race-freedom appears at most very rare.

Returning to our running example in Figure 4, the element
(fw,ca,fw ,ca) in EscapingPairs′ is excluded from UnlockedPairs′

because the only path in the context sensitive call graph leading
from thread-spawning call site a.inc in context ε to method wr in
context ca holds a lock on this, whose points-to set in context ca

is {ca}. However, the element (fr,ca,fw ,ca) in EscapingPairs′

is contained in UnlockedPairs′ since there exists a path leading
from thread-spawning call site a.get in context ε to method rd in
context ca along which no lock is held.

2.3 Post-processing

We report each (e1, c1, e2, c2) ∈ UnlockedPairs′ as a possible race.
Reporting races found by a static race detection tool in a useful
manner poses several challenges:

• Since a race involves a pair of accesses, a potentially quadratic
blowup is inherent in the output of the tool.

• Races are symptoms as opposed to causes of bugs. Thus, a
single race may indicate multiple bugs and, conversely, multiple
races may indicate the same bug.

• Determining whether a reported race is real or a false alarm
involves manually inspecting various aspects such as the object
on which the race occurs, the pair of threads accessing the
object, and the sets of locks held by the threads.

• Even if a reported race is real, manual inspection is needed
to determine whether it is a symptom of a bug or a benign
race. The problem is exacerbated by the subtleties of the Java
memory model [34].

We address the above issues by reporting counterexamples for
each race and by categorizing races. For each (e1, c1, e2, c2) ∈
UnlockedPairs′, we provide a graph representing each pair of paths
in the context sensitive call graph leading to the containing meth-
ods of e1 and e2 in contexts c1 and c2. We also provide two views,
a field-based view and an object-based view, categorizing races in
UnlockedPairs′ by the field and the set of abstract objects, respec-
tively, on which the races occur. The field-based view is useful in
quickly discarding all races reported on a field that is intention-
ally accessed without synchronization (e.g., an integer-valued field
that tracks statistics approximately, a boolean field that one thread
periodically polls and another writes to notify it, etc. [39]). The
object-based view is useful in:

• quickly identifying all false alarms arising from a single source
of imprecision in our alias or thread-escape analysis (such races
are distributed over multiple categories in the field-based view)

• grouping races on elements of different arrays separately (such
races are clumped into a single category in the field-based view)

• grouping races triggered on fields of classes used by different
clients separately, for instance, if unrelated classes A and B have
a field of type C, then categorizing races triggered on a field of
C through objects of A and B separately.

In our running example in Figure 4, we report not only that there
is a race between the pair of accesses fr and fw , but also that the

race occurs on the field f of an object allocated at the new A()
allocation site in the main method. Furthermore, we provide the
pair of paths in the call graph illustrating that the race can occur
when the get and inc methods are executed in separate threads on
the same object of class A.

2.4 Soundness

Our race detection approach has four sources of unsoundness:

1. Lacking must-alias analysis, the fourth stage of our algorithm
uses may-alias analysis to check whether a pair of accesses is
guarded by a common lock, which is unsound.

2. We do not analyze open programs soundly: missing callee
methods are treated as no-ops while missing caller methods
are modeled by an automatically synthesized harness that sim-
ulates many but not all usage scenarios.

3. Like most static race detectors, we elide checking races on
accesses in class initializers, constructors, and finalizers which
typically lack synchronization and seldom contain races but
cause many false alarms without a method-escape analysis.

4. We ignore the effects of reflection and dynamic class loading.

classes LOC brief description
tsp 370 76,026 TSP implementation from ETH
hedc 422 82,992 web crawler from ETH
ftp 493 103,183 Apache FTP Server
vect 1.1 19 2,632 JDK 1.1 java.util.Vector
htbl 1.1 21 2,688 JDK 1.1 java.util.Hashtable
htbl 1.4 366 75,342 JDK 1.4 java.util.Hashtable
vect 1.4 370 75,675 JDK 1.4 java.util.Vector
jdbm 461 115,364 transactional persistence engine
jdbf 465 121,569 object-relational mapping system
pool 388 123,878 Apache Commons Pool
jtds 553 164,820 JDBC driver
derby 1,746 646,447 Apache Derby, an RDBMS

Figure 10. Benchmarks.

3. Experiments
We evaluate our race detection algorithm on a suite of open-source
multi-threaded Java programs. Figure 10 shows, for each of these
programs, the number of classes and lines of Java source code
in the initial call graph computed by Soot. We use the best call
graph computable using Soot, namely, one constructed on-the-
fly using context insensitive alias analysis. The benchmark suite
contains three closed programs: tsp, hedc, and ftp. The rest are
open programs that provide interfaces to clients. Programs tsp,
hedc, vect 1.1, and htbl 1.1 have been analyzed in previous work
on race detection; the rest are mature and widely-used programs,
except for jdbf, which is in its developmental stages.

The results of our experiments are shown in Figure 11. All ex-
periments were done on a 2.4GHz machine with 4GB memory.
The “time” column shows the total running time of our tool for
each benchmark. The next two columns show the number of anno-
tations we provided: those in the “roots” column specifying which
threads cannot execute in parallel (see Section 2.2.1) and those in
the “local” column specifying which fields/objects, although thread-
shared, cannot be accessed simultaneously by different threads
(see Section 2.2.3). The next five columns give the sizes of
OriginalPairs, ReachablePairs, AliasingPairs, EscapingPairs, and
UnlockedPairs, namely, the number of pairs of accesses in the ini-
tial over-approximation computed by Soot followed by the number

of pairs of accesses retained after each of the four successive stages
in our race detection algorithm. The next three columns partition
UnlockedPairs into harmful races, benign races, and false alarms.
Finally, the “bugs” column reports the number of distinct fixes that
were needed in the source code to eliminate all harmful races. Most
fixes involved one of the following: (1) adding synchronization to
a piece of code where none existed, (2) extending an existing syn-
chronized block, (3) changing the object on which the lock was
held by a synchronized block, (4) declaring a field volatile, or (5)
removing synchronization because one of the above rendered it re-
dundant (letting it remain could degrade performance or introduce
deadlocks). In many cases, a harmful race was triggered in code far
from the code where synchronization was needed to eliminate the
race, for instance, we found many harmful races in library code that
were eliminated by adding synchronization to application code. We
next describe each experiment briefly.

The tsp program contains a main thread that creates an array of
worker threads which are objects of class TspSolver. The instance
fields of TspSolver are local to each worker thread but its static
fields are shared by all worker threads. We provided 2 annotations:
one to restrict reporting to races between worker threads (and not
between the main thread and a worker thread since the main thread
is idle from the point it forks the worker threads to the point it
joins them), and another to suppress reporting races on instance
fields of TspSolver, since these fields are local to each worker
thread but our thread-escape analysis cannot infer that because the
alias analysis does not distinguish between different elements in the
array of worker threads. Chord reported 7 harmful races, 0 benign
races, and 12 false positives due to flow insensitivity. The harmful
races, all on static field MinTourLen of TspSolver, were grouped
in a single category, making it easy to identify the underlying bug.
This bug has been reported by previous race detectors. The false
positives were grouped in just 2 categories in the object-based view
of the race reports and were therefore easy to identify and ignore.

Chord reported 4 harmful races, 2 benign races, and 13 false
positives for hedc. The harmful races indicating 1 bug as well as
the benign races have been diagnosed by previous race detectors.
All the 13 false positives are due to flow insensitivity. We provided
9 annotations specifying thread-local objects/fields.

Chord reported 45 harmful races, 3 benign races, and 23 false
positives for ftp. The harmful races revealed 12 distinct bugs: 11
bugs were fixed within a day of reporting and developers acknowl-
edged the remaining bug but it remains open because fixing it in-
volves making widespread changes. Indeed, 21 of the 45 harmful
races are attributed to this bug. The 23 false positives may be at-
tributed to 2 causes: once we identified those causes, it was easy to
determine whether a race report was a real race or a false positive.
We provided 11 annotations: 7 specifying which threads may exe-
cute in parallel and 4 specifying certain objects/fields thread-local.

We provided 1 annotation for each of the vect and htbl pro-
grams instructing our tool to report races between every pair of
methods in the java.util.Vector and java.util.Hashtable
interfaces, respectively. Chord reported 5 harmful races in vect
1.1, all due to a single bug first reported in [20]. All benign races
are due to lack of synchronization in tiny methods such as size and
isEmpty (client code is expected to explicitly synchronize calls to
these methods) except for the 9 benign races in htbl 1.4, which are
due to unsynchronized methods values, keySet, and entrySet.
One of these methods is:

private volatile Set keySet = null;

public Set keySet() {
if (keySet == null)

keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;

}

annotations pairs of accesses races
time roots local original reachable aliasing escaping unlocked harmful benign false bugs

tsp 1m03s 1 1 6398784 1115 475 363 19 7 0 12 1
hedc 1m10s 0 9 6417868 3052 1492 958 19 4 2 13 1
ftp 1m17s 7 4 6662532 712 349 268 71 45 3 23 12
vect 1.1 0m08s 1 0 32216 338 292 292 17 5 12 0 1
htbl 1.1 0m07s 1 0 32564 220 154 150 6 0 6 0 0
htbl 1.4 1m04s 1 0 6174952 214 161 161 9 0 9 0 0
vect 1.4 1m02s 1 0 6178650 1139 1046 1022 0 0 0 0 0
jdbm 1m33s 1 0 11189853 33443 7511 2756 91 91 0 0 2
jdbf 1m42s 1 0 12632041 95410 6849 307 130 130 0 0 18
pool 5m29s 5 0 9741876 959 776 705 115 105 10 0 17
jtds 3m23s 2 0 28773219 386241 26506 8430 48 34 14 0 16
derby 26m03s 7 0 57681326 847236 83817 80662 1018 1018 0 0 319

Figure 11. Experimental results.

There are 3 races in the above method because it contains one
write access and two read accesses of the keySet instance field.
Hence, there are 9 races in all in the 3 methods. If two threads
simultaneously invoke the keySet method on the same Hashtable
object, then one of the updates to keySet may be lost. However,
this does not affect correctness, and hence we regarded these races
as benign.

Chord reported 91 harmful races in jdbm indicating 2 distinct
bugs that have not yet been confirmed by developers. It also found
130 harmful races in jdbf indicating 18 distinct bugs, prompting
developers to overhaul the synchronization in the project. In both
programs, we provided 1 annotation to restrict reporting to races
between methods of their only exported interface.

Chord reported 105 harmful races in pool, a generic object-
pooling library that provides two APIs and five reference imple-
mentations (three of one plus two of the other). The races exposed
bugs in each of the five implementations, for a total of 17 distinct
bugs. All bugs were fixed and five patches were released in less than
a week from reporting the bugs. The 5 annotations were needed be-
cause, although the five implementations are logically distinct, we
generated a single harness exercising all of them. The annotations
instructed Chord to report races only within each implementation
as opposed to between different implementations.

Chord reported 34 harmful races revealing 16 distinct bugs in
jtds. The developers initially expressed concerns about degrading
performance and introducing deadlocks in the process of fixing the
bugs in what they said was fairly mature code that seems to work
well enough for most people. However, the seriousness of the bugs
manifested in the counterexamples reported by our tool led them to
conclude that it was dangerous to let the races lurk, and they fixed
all of them and released a patch.

Finally, in our largest benchmark, derby, Chord reported 1018
races revealing 319 distinct bugs. The developers acknowledged the
bugs, requested us to file bug reports, and promised to look at them
in detail in the near future. They also inquired about the possibility
of running our tool regularly on the Apache Derby source code to
prevent new races from being introduced over time.

4. Related Work
In this section, we discuss related work, including dynamic race
detection techniques (Section 4.1), static race detection techniques
(Section 4.2), and recent work on atomicity (Section 4.3).

4.1 Dynamic Race Detection

State-of-the-art race detection tools are predominantly dynamic.
Dynamic race detectors enjoy both precision and, more recently,

scalability. However, besides being inherently unsound, they are
difficult to apply to a program early in development either be-
cause the program is an open one that lacks sufficient client code
or because the program is closed but lacks sufficient input data.
Dynamic race detectors may be broadly classified into happens-
before-based, lockset-based, and hybrid.

Happens-before-based dynamic race detectors [1, 13–15, 35,
43, 46] are based on Lamport’s happens-before relation [31] which
is a partial order on all events of all threads in a concurrent execu-
tion such that if a pair of accesses performed by a pair of threads
on a memory location are not ordered by this relation, then they
are deemed to be involved in a race because there exists a con-
current execution in which they can occur simultaneously. The key
problems with happens-before-based race detection are that it is
difficult to implement efficiently and, although it produces no false
positives, it produces many false negatives.

The lockset algorithm is tailored to the common lock-based
synchronization discipline: a pair of accesses performed by a pair
of threads on a memory location are deemed to be involved in
a race if the threads do not hold a common lock. The original
implementation in the Eraser tool [45] incurred a slow-down of
10–30X but several static and dynamic optimization techniques,
e.g., [2, 38, 49, 50], have reduced it significantly, with a recent
implementation having a run-time overhead of only 13–42% [11].
The primary problems with lockset-based race detection are that it
produces many false positives when synchronization idioms other
than lock-based synchronization are used, as well as having the
usual potential for false negatives of any dynamic analysis.

Dinning and Schonberg [16] first proposed combining happens-
before-based and lockset-based race detection (in fact, they origi-
nated the lockset-based approach in order to improve the happens-
before-based approach). Since then, several hybrid techniques have
been proposed that gain the benefits of both approaches without
suffering the disadvantages of either [28, 39, 40, 54].

4.2 Static Race Detection

Static race detectors are either primarily flow insensitive type-based
systems [7, 8, 19, 20, 41, 44], flow sensitive static versions of the
lockset algorithm [12, 17, 47], or path sensitive model checkers
[29, 42].

The most closely related work is that of Choi et al. [12]. Their
approach has the same basic inspiration as ours: using a series of
stages, the pairs of memory accesses potentially involved in a race
can be gradually filtered to a very small, high quality set. Also, at a
high level, the static analyses they use are similar to ours (alias anal-
ysis, escape analysis, etc.). However, their implementation appar-
ently was never applied beyond small Java programs, most likely

due to several key differences. Their algorithm is context insensi-
tive, whereas we have found context sensitivity central to producing
useful results; indeed, they conclude that even for small Java pro-
grams, more precise analysis is needed. The ordering of the phases
is different; we have found the choice of phase ordering affects
scalability, as it is desirable to place the relatively cheaper stages
that filter out the most pairs early in the pipeline. Finally, they do
not address the other aspects of usability, such as counterexamples
and handling open programs.

Two static versions of the lockset algorithm we are aware of
for C are Warlock [47] and RacerX [17]. Warlock does not trace
paths through loops or recursive functions while RacerX targets
operating systems code and uses heuristics specific to such code to
determine which locks guard which accesses, which code is multi-
threaded, and which unguarded accesses are benign.

Type-based and model-checking-based approaches to race de-
tection are appealing in part because of their ability to check open
programs and to produce counterexamples, respectively. Our ap-
proach possesses both these abilities. The key difference between
our approach and the type-based ones is that the latter focus on
specifying the synchronization discipline by means of types. In-
ferring this information automatically has proven difficult and, al-
though significant advances have been made, it remains an ac-
tive area of research [3, 21, 23, 44]. The key difference between
our approach and the model-checking-based ones is that the lat-
ter are typically path sensitive. As a result, they can handle var-
ious synchronization idioms whereas we handle only lexically-
scoped, lock-based synchronization, fork/join synchronization, and
wait/notify synchronization. However, path sensitivity, besides af-
fecting scalability, tends to limit model checkers to closed programs
since they require an elaborate harness for open programs.

Finally, our technique finds more bugs than all previous static
race detection techniques. RacerX [17] found 16 bugs in all in
two operating systems (Linux comprising 1.8 MLOC and “Sys-
tem X” comprising 500 KLOC) which, to the best of our knowl-
edge, is the largest number of bugs reported in any previous work
on static race detection. Tools like RacerX handle large programs
but apparently imprecisely so that not many bugs are found. The
other class of static tools, including those based on type systems
and model checking, perform a relatively precise analysis but have
only been applied to small programs. However, there are just not
many bugs to find in such programs, as the results of these tools,
many of which are sound, indicate. Our tool, despite being un-
sound, detected all bugs that those tools found in such programs
(specifically, the tsp, hedc, vect 1.1, and htbl 1.1 programs in
our benchmark suite in Section 3).

Other static approaches to race detection include language-
based ones such as nesC [27] for C and Guava [5] for Java. Finally,
Aiken and Gay [4] present an effect inference system that checks
whether SPMD programs use barrier synchronization correctly.

4.3 Atomicity Checking

Recent work on verification of concurrent programs has focused on
checking atomicity [2, 18, 22, 24–26, 44, 51, 52]. The motivation
behind atomicity is that race freedom is neither sound nor com-
plete: the presence of races does not necessarily indicate the pres-
ence of concurrency errors (so-called benign races) and the absence
of races does not necessarily indicate the absence of concurrency
errors. However, we believe race freedom is important because of
the following reasons:

1. Race freedom is a natural property for existing languages.
Atomicity requires programmers to specify which code frag-
ments are intended to be atomic. In the absence of such spec-
ifications, atomicity checkers check whether every method in
the program is atomic. But this can lead to “benign atomicity

violations”, one of the very shortcomings of race freedom that
atomicity was intended to remedy.

2. Many concurrency errors manifested as atomicity violations are
also manifested as races. As a result, from the perspective of
finding bugs in existing programs that lack atomicity specifica-
tions, checking for races is a viable alternative.

3. Race freedom is a first step in many atomicity checkers. In par-
ticular, atomicity checkers based on Lipton’s theory of reduc-
tion [33] must show that each statement accessing a memory
location is both a so-called left mover and a right mover, which
is done by proving the absence of races on that location.

5. Conclusions
We have presented a novel technique for static race detection. We
have shown its effectiveness by implementing it in a tool, applying
it to several large, widely-used multi-threaded Java programs, and
finding tens to hundreds of concurrency bugs in these systems.

Acknowledgments
We thank Suhabe Bugrara, Jong-Deok Choi, Brian Hackett, John
Kodumal, Ondrej Lhotak, Paul Twohey, Yichen Xie, and the anony-
mous PLDI reviewers for useful comments. We also thank Dawson
Engler and Manu Sridharan for helpful discussions. Christoph von
Praun kindly provided us the benchmarks used in previous work on
race detection. This research was supported in part by NSF grants
CCF-0430378 and CNS-0509558 and a Microsoft fellowship.

References
[1] S. Adve, M. Hill, B. Miller, and R. Netzer. Detecting data

races on weak memory systems. In Proceedings of the 18th
Annual International Symposium on Computer Architecture
(ISCA’91), pages 234–243, 1991.

[2] R. Agarwal, A. Sasturkar, Wang L, and S. Stoller. Optimized
run-time race detection and atomicity checking using partial
discovered types. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering
(ASE’05), pages 233–242, 2005.

[3] R. Agarwal and S. Stoller. Type inference for parameterized
race-free Java. In Proceedings of the 5th International Con-
ference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’04), pages 149–160, 2004.

[4] A. Aiken and D. Gay. Barrier inference. In Proceedings of
the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’98), pages 342–354, 1998.

[5] D. Bacon, R. Strom, and A. Tarafdar. Guava: A dialect of
Java without data races. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’00), pages 382–
400, 2000.

[6] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee.
Points-to analysis using BDDs. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’03), pages 103–114, 2003.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’02), pages 211–230, 2002.

[8] C. Boyapati and M. Rinard. A parameterized type system
for race-free Java programs. In Proceedings of the ACM

SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’01), pages 56–
69, 2001.

[9] R. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 35(8):677–691,
1986.

[10] G. Cheng, M. Feng, C. Leiserson, K. Randall, and A. Stark.
Detecting data races in Cilk programs that use locks. In Pro-
ceedings of the 10th Annual ACM Symposium on Parallel Al-
gorithms and Architectures (SPAA’98), pages 298–309, 1998.

[11] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’02), pages 258–269, 2002.

[12] J. Choi, A. Loginov, and V. Sarkar. Static datarace analysis
for multithreaded object-oriented programs. Technical Report
RC22146, IBM Research, 2001.

[13] J. Choi, B. Miller, and R. Netzer. Techniques for debug-
ging parallel programs with flowback analysis. ACM Trans-
actions on Programming Languages and Systems, 13(4):491–
530, 1991.

[14] M. Christiaens and K. Brosschere. TRaDe: A topological
approach to on-the-fly race detection in Java programs. In
Proceedings of the 1st Java Virtual Machine Research and
Technology Symposium (JVM’01), pages 105–116, 2001.

[15] A. Dinning and E. Schonberg. An empirical comparison
of monitoring algorithms for access anomaly detection. In
Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP’90), pages 1–
10, 1990.

[16] A. Dinning and E. Schonberg. Detecting access anomalies in
programs with critical sections. In Proceedings of the 1991
ACM/ONR Workshop on Parallel and Distributed Debugging
(PADD’91), pages 85–96, 1991.

[17] D. Engler and K. Ashcraft. RacerX: Effective, static detec-
tion of race conditions and deadlocks. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP’03), pages 237–252, 2003.

[18] C. Flanagan. Verifying commit-atomicity using model-
checking. In Proceedings of the 11th International SPIN
Workshop on Model Checking Software (SPIN’04), pages
252–266, 2004.

[19] C. Flanagan and M. Abadi. Types for safe locking. In
Proceedings of the 8th European Symposium on Programming
(ESOP’99), pages 91–108, 1999.

[20] C. Flanagan and S. Freund. Type-based race detection
for Java. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI’00), pages 219–232, 2000.

[21] C. Flanagan and S. Freund. Detecting race conditions in large
programs. In Proceedings of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE’01), pages 90–96, 2001.

[22] C. Flanagan and S. Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’04), pages 256–267, 2004.

[23] C. Flanagan and S. Freund. Type inference against races. In
Proceedings of the 11th International Static Analysis Sympo-
sium (SAS’04), pages 116–132, 2004.

[24] C. Flanagan, S. Freund, and M. Lifshin. Type inference for
atomicity. In Proceedings of the ACM SIGPLAN Workshop
on Types in Language Design and Implementation (TLDI’05),
pages 47–58, 2005.

[25] C. Flanagan and S. Qadeer. A type and effect system for
atomicity. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI’03), pages 338–349, 2003.

[26] C. Flanagan and S. Qadeer. Types for atomicity. In Proceed-
ings of the ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI’03), pages 1–12, 2003.

[27] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation (PLDI’03), pages 1–11, 2003.

[28] J. Harrow. Runtime checking of multithreaded applications
with visual threads. In Proceedings of the 7th International
SPIN Workshop on Model Checking Software (SPIN’00),
pages 331–342, 2000.

[29] T. Henzinger, R. Jhala, and R. Majumdar. Race checking by
context inference. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion (PLDI’04), pages 1–13, 2004.

[30] M. Lam, J. Whaley, B. Livshits, M. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis
as database queries. In Proceedings of the 24th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS’05), pages 1–12, 2005.

[31] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[32] O. Lhoták and L. Hendren. Jedd: a BDD-based relational ex-
tension of Java. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI’04), pages 158–169, 2004.

[33] R. Lipton. Reduction: A method of proving properties of
parallel programs. Communications of the ACM, 18(12):717–
721, 1975.

[34] J. Manson, W. Pugh, and S. Adve. The Java memory model. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’05), pages
378–391, 2005.

[35] J. Mellor-Crummey. On-the-fly detection of data races for
programs with nested fork-join parallelism. In Proceedings of
the 4th Annual Conference on Supercomputing (SC’91), pages
24–35, 1991.

[36] A. Milanova, A. Rountev, and B. Ryder. Parameterized ob-
ject sensitivity for points-to and side-effect analyses for Java.
In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’02), pages 1–11, 2002.

[37] A. Milanova, A. Rountev, and B. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Transactions
on Software Engineering Methodology, 14(1):1–41, 2005.

[38] H. Nishiyama. Detecting data races using dynamic escape
analysis based on read barrier. In Proceedings of the 3rd Vir-

tual Machine Research and Technology Symposium (VM’04),
pages 127–138, 2004.

[39] R. O’Callahan and J. Choi. Hybrid dynamic data race
detection. In Proceedings of the ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming
(PPoPP’03), pages 167–178, 2003.

[40] E. Pozniansky and A. Schuster. Efficient on-the-fly data race
detection in multithreaded C++ programs. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’03), pages 179–190, 2003.

[41] P. Pratikakis, J. Foster, and M. Hicks. LOCKSMITH: Context-
sensitive correlation analysis for race detection. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’06), 2006.

[42] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’04), pages
14–24, 2004.

[43] M. Ronsse and K. Bosschere. RecPlay: A fully integrated
practical record/replay system. ACM Transactions on Com-
puter Systems, 17(2):133–152, 1999.

[44] A. Sasturkar, R. Agarwal, L. Wang, and S. Stoller. Auto-
mated type-based analysis of data races and atomicity. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’05), pages 83–94,
2005.

[45] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs. In Proceedings of the 16th ACM Sympo-
sium on Operating System Principles (SOSP’97), pages 27–
37, 1997.

[46] E. Schonberg. On-the-fly detection of access anomalies. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’89), pages
285–297, 1989.

[47] N. Sterling. WARLOCK - a static data race analysis tool. In
Proceedings of the Usenix Winter 1993 Technical Conference,
pages 97–106, 1993.

[48] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java optimization framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’99), pages 125–
135, 1999.

[49] C. von Praun and T. Gross. Object race detection. In Proceed-
ings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’01), pages 70–82, 2001.

[50] C. von Praun and T. Gross. Static conflict analysis for multi-
threaded object-oriented programs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI’03), pages 115–128, 2003.

[51] L. Wang and S. Stoller. Static analysis of atomicity for pro-
grams with non-blocking synchronization. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’05), pages 61–71, 2005.

[52] L. Wang and S. Stoller. Runtime analysis of atomicity for
multi-threaded programs. IEEE Transactions on Software
Engineering, 32(2):93–110, 2006.

[53] J. Whaley and M. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’04), pages 131–
144, 2004.

[54] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient de-
tection of data race conditions via adaptive tracking. In Pro-
ceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP’05), pages 221–234, 2005.

[55] J. Zhu and S. Calman. Symbolic pointer analysis revisited. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’04), pages
145–157, 2004.

