
A Dynamic Evaluation of the Precision of Static Heap Abstractions

Percy Liang
UC Berkeley

pliang@cs.berkeley.edu

Omer Tripp
Tel-Aviv University

omertrip@post.tau.ac.il

Mayur Naik
Intel Labs Berkeley

mayur.naik@intel.com

Mooly Sagiv
Tel-Aviv University

msagiv@post.tau.ac.il

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Measurement, Experimentation, Verifica-
tion

Keywords heap abstractions, static analysis, dynamic anal-
ysis, concurrency

Abstract
The quality of a static analysis of heap-manipulating pro-
grams is largely determined by its heap abstraction. Object
allocation sites are a commonly-used abstraction, but are too
coarse for some clients. The goal of this paper is to investi-
gate how various refinements of allocation sites can improve
precision. In particular, we consider abstractions that use call
stack, object recency, and heap connectivity information. We
measure the precision of these abstractions dynamically for
four different clients motivated by concurrency and on nine
Java programs chosen from the DaCapo benchmark suite.
Our dynamic results shed new light on aspects of heap ab-
stractions that matter for precision, which allows us to more
effectively navigate the large space of possible heap abstrac-
tions.

1. Introduction
Many static analyses of heap-manipulating programs require
reasoning about the heap. This reasoning is driven by a
heap abstraction, a systematic way to partition the typically
unbounded number of concrete objects at run-time into a
finite set of abstract objects. The choice of heap abstraction
impacts the precision and scalability—and ultimately the
usability—of a static analysis.

Object allocation sites are perhaps the most popular kind
of heap abstraction. Analyses based on this abstraction place
all objects allocated at the same site in the program into
the same partition. Though useful in some cases, allocation
sites are too coarse to prove many properties of interest.
Consequently, a plethora of refinements have been proposed

in the literature (e.g., [4, 20, 24, 27, 31]). The goal of this
paper is to understand which types of refinement are most
useful for various clients.

Abstractions We focus on a family of heap abstractions
that refine object allocation sites by augmenting the abstrac-
tion of an object with information of the following kind:

Call stack We add the chain of the k most recent call sites
on the stack of the thread creating the object. The result-
ing heap abstraction, known as k-CFA [31] with heap
cloning or heap specialization, is popular in points-to
analyses for both procedural and object-oriented lan-
guages (e.g. C and Java).

Object recency If an object is the i-th to last allocated at
its allocation site, the recency index of that object is
min{i−1, r}, where r is a fixed maximum depth. Adding
the recency index allows us to distinguish the last r ob-
jects created at an allocation site and from all other ob-
jects created earlier at that site.1 This heap abstraction,
called the recency abstraction [4, 24], is particularly use-
ful for fine-grained reasoning about loops, as it allows
distinctions between objects created in different itera-
tions of the same loop.

Heap connectivity We distinguish objects by their connec-
tivity properties in the heap, e.g., by associating an ob-
ject o with the allocation sites of other objects that can
reach o through the heap graph. These heap connectivity
predicates are common in shape analysis [27], and allow
reasoning about complex data structures.

Clients As we will see, the precision of a heap abstraction
depends heavily on the client. In this study, we study four
clients for Java which are motivated by concurrency—static
race and deadlock detection, in particular.

The THREADESCAPE client asks whether a particular
heap-accessing statement in the program (that is, an access

1 Note that in this paper, we use the term recency to refer to recency of
allocation, not recency of access.

to an instance field or array element) ever accesses objects
which are reachable from a static field (and thus potentially
accessible by more than one thread). The SHAREDACCESS
client asks a stronger question: whether that object is actu-
ally accessed by multiple threads. These two clients are use-
ful for static race detection: a statement is race-free if it only
accesses thread-local data.

The SHAREDLOCK client is related, asking whether a
lock acquisition statement in the program ever holds a lock
that is ever held by more than one thread. This client is
similarly useful for static deadlock detection: a statement
cannot be involved in a deadlock if it holds a lock that is
only ever held by one thread.

Finally, the NONSTATIONARYFIELD client asks whether
a given instance field f in the program is stationary [32],
that is, whether for every object o, all writes to o.f precede
all reads of o.f . This client is again useful for race detection:
a pair of read-write statements accessing f cannot race if f
is stationary.

Methodology We evaluated our heap abstractions on the
clients described above on nine concurrent Java programs
from the DaCapo benchmarks suite [5]. While our motiva-
tion is ultimately static analysis, our methodology for evalu-
ating our family of abstractions and clients is based on a dy-
namic analysis. Specifically, a program is run concretely, and
abstractions are computed on the fly, against which queries
are answered. Working in this setting allows us to focus only
on heap abstractions, since we assume that all other aspects
static analyses must contend with (e.g., primitive data, de-
structive updates, merge points, and method summarization)
are handled optimally.

This dynamic setting therefore provides an upper bound
on the precision of the best possible static analysis that uses
a given heap abstraction. While we cannot say definitively
that an abstraction will work well within a static analysis due
to other compounding factors, we can certainly show that a
heap abstraction is ineffective for some client. For example,
for the THREADESCAPE client on the luindex benchmark,
only 6.3% of the queries reported to be escaping by using
the allocation site abstraction are actually escaping. In this
case, the heap abstraction is clearly a bottleneck: no amount
of work on the other aspects of static analysis can help.

Summary of Main Results

1. We show that the precision of an abstraction on a client
is in part driven by whether the abstraction is in line
with the properties of the client. For example, for the
NONSTATIONARYFIELD client, RECENCY (defined in
Section 4.2) works quite well because both the client and
the abstraction involve temporal properties. On the other
hand, increasing k has virtually no impact.

2. We evaluated the effect of varying the call site depth k
for abstractions based on k-CFA. For THREADESCAPE,
we showed that as k increases, the precision undergoes a

sharp phase transition, with the critical k value occurring
between k = 3 and k = 6.

3. We found that RECENCY is an important dimension over-
all, leading to the highest precision on three of the four
clients. We also show that increasing the recency depth r
improves precision past r = 1, which has been the only
case studied in past work.

4. We show that adding refinements along multiple di-
mensions simultaneously can be important. In one case,
REACHFROM does not improve precision over ALLOC
until we use k-CFA with k ≥ 5. In another case, increas-
ing the recency depth from r = 1 to r = 2 is useless
unless k is large enough.

5. We use the number of abstract objects (which we call
abstraction size) to measure the potential scalability of
an abstraction. We found that RECENCY offers the best
tradeoff between precision and size.

The rest of the paper is organized as follows. Section 2
formalizes our methodology. Section 3 describes our four
clients and Section 4 describes our family of heap abstrac-
tions. Sections 5 and 6 describe the benchmarks and exper-
imental setup, respectively. Section 7 presents our results.
Section 8 surveys related work, and Section 9 concludes.

2. Methodology
We present the general framework for our empirical study.
The basic idea is this: We run a dynamic analysis that main-
tains the concrete environment, heap, and various other in-
strumentation. At various points along the execution trace,
the abstraction is applied to the concrete state to produce an
abstract state, which is used to answer client queries.

2.1 Program Syntax and Semantics
We now present our dynamic analysis. Figure 1 provides
the relevant notation. A program is described by a set of
program points P, where each program point p ∈ P has
a statement stmt(p) ∈ S. Figure 1 provides the full list
of statements; For example, an instance field read takes the
form v1 = v2.f for local variables v1, v2 ∈ V and instance
field f ∈ F.2 The statement spawn v creates a new thread by
calling java.lang.Thread.start() with this set to the
object pointed to by v. The statement lock v acquires a lock
on the object pointed to by v. We are not concerned with the
control-flow graph of the program as our analysis is dynamic
and depends only on the execution trace (defined below).

Having established the syntax, we now describe the se-
mantics of program execution. When the program executes,
there are a set of threads indexed by a set of thread IDs T. For
each thread ID t ∈ T, θ(t) specifies two pieces of informa-
tion about that thread: (1) a current program point θ(t).p ∈ P
and (2) an environment θ(t).ρ ∈ Λ, which maps each local

2 We use f to denote both instance fields and array indices.

Syntactic domains:

(program point) p ∈ P
(static field) g ∈ G

(local variable) v ∈ V
(instance field or array index) f ∈ F

(primitive stmt.) s ∈ S
s ::= v = null | v = new
| v1 = v2 | v = g | g = v
| v1 = v2.f | v1.f = v2
| spawn v | lock v

(stmt. at point) stmt ∈ P→ S

Semantic domains:

(object) o ∈ O
(environment) ρ ∈ Λ = V→ (O ∪ {null})

(thread ID) t ∈ T
(threads) θ ∈ Θ = T→ (P× Λ)

(heap) σ ∈ Σ = (O× F)→ (O ∪ {null})
(auxiliary instr.) u ∈ U

(state) ω ∈ Ω = T×Θ× Σ× U
(trace) r ::= [ω1, ..., ωn]

(query) q ∈ Q ⊂ (Ω→ bool)

Figure 1: Program trace syntax and semantic domains. Let
ω.t, ω.θ, ω.σ, and ω.u correspond to the components of
a state ω. For convenience, also define ω.p = ω.θ(ω.t).p
to be the program point of the current thread ω.t, and let
ω.ρ = ω.θ(ω.t).ρ be the environment of thread ω.t.

variable v ∈ V to the concrete object θ(t).ρ(v) ∈ O that
v points to. All threads share a heap σ ∈ Σ, which is a di-
rected graph whose nodes are concrete objects and edges are
pointers labeled with an instance field or array index. In par-
ticular, σ(o, f) = o′ means object o ∈ O points to o′ ∈ O
via field f ∈ F.

At any time during program execution, there is a state
ω ∈ Ω, which contains the following information: (1) the
ID ω.t ∈ T of the thread that is about the execute, (2)
the threads ω.θ ∈ Θ, (3) the heap ω.σ ∈ Σ, and (4) any
auxiliary instrumentation ω.u ∈ U which is needed either
by the abstraction or client. This instrumentation (detailed
in Figure 2) includes information such as object allocation
sites and call stack information.

A full program execution is represented by a trace r,
which is a sequence of states [ω1, . . . , ωn]. We omit the
concrete semantics for the various statements as it is stan-
dard. The auxiliary instrumentation warrants more discus-
sion, which we defer to Section 3.

For abstractions:

(allocation site) h ∈ H
(allocation site of object) as ∈ O→ H

(objects in order of creation) os ∈ O∗
(method call site) i ∈ I

(method call stack of object) cs ∈ O→ I∗

For clients:

(thread-escaping objects) esc ∈ P(O)
(threads accessing an object) accs ∈ O→ P(T)

(threads locking an object) lcks ∈ O→ P(T)
(object-field pairs read) rds ∈ P(O× F)

Figure 2: Auxiliary instrumentation u ∈ U needed by
various abstractions and clients. Let ω.esc, ω.accs, ω.lcks,
and ω.rds denote the instrumentation collected for state ω.
Sections 3 and 4 provide the semantics of these quantities.

(abstract object) a ∈ A
(abstraction function) α ∈ (Ω×O)→ A

(abstract env.) ρα ∈ Λα = V→ A
(abstract threads) θα ∈ Θα = T→ (P× Λα)

(abstract heap) σα ∈ Σα = (A× F)→ P(A)
(abstract aux. instr.) uα ∈ Uα

(abstract state) ωα ∈ Ωα = T×Θα × Σα × Uα
(abstract query) qα ∈ Q ⊂ (Ω→ bool)

Figure 3: Abstract versions of our semantic domains.

2.2 Abstractions
An abstraction function α, the central object of interest in
this paper, maps a concrete object o ∈ O, in the context of
a concrete state ω ∈ Ω, to an abstract object a = α(ω, o)
in some abstract domain A (see Figure 3).3 Intuitively, α
defines an equivalence relation over objects such that objects
in the same equivalence class are not distinguished. For
example, the classical object allocation site abstraction maps
o ∈ O to the site h ∈ H where o was allocated. However,
the abstraction function can in general depend on any aspect
of the current state ω, which will be crucial for defining the
reachability and recency abstractions (Section 4).

The abstraction function α can be used to map concrete
objects to abstract objects, but in order to answer queries,
we will use α to map a concrete state ω to an abstract state
ωα. We construct ωα by applying α to the various parts of
ω = (t, θ, σ, u) as follows:

1. For the current thread ID t, no abstraction is performed.

3 For convenience, define α(ω, null) = null.

2. For the thread θ(t) = (p, ρ) with program point p and
environment ρ, we define θα(t) = (p, ρα), where the
abstract environment ρα is computed by applying the
abstraction α to the object ρ(v) to which a variable v ∈ V
points:

ρα(v) = α(ω, ρ(v)). (1)

3. For the heap σ, we define the abstract heap σα by col-
lapsing objects in the heap graph that map to the same
abstract object:

σα(a, f) = {a′ ∈ A : ∃o′ ∈ O, σ(o, f) = o′,

a = α(ω, o), a′ = α(ω, o′)}. (2)

Note that in the abstract graph, there might be more than
one edge leaving a node with the same field label.

4. For a given auxiliary instrumentation u, the abstract in-
strumentation uα consists of abstracted versions of the
information needed for clients (the concrete versions are
described in Section 3):
• The abstract escaping set escα consists of the set of

abstract values taken on by some concrete object in
the concrete escaping set esc:

escα = {α(ω, o) : o ∈ esc}. (3)

• Whereas accs maps a concrete object to the set of
threads that have accessed it, accsα maps an abstract
object a to the set of threads that have accessed any
concrete object with abstraction a:

accsα(a) =
⋃

o:α(ω,o)=a

accs(o). (4)

• Similarly, lcksα maps an abstract object a to all the
threads that have locked any concrete object with ab-
straction a:

lcksα(a) =
⋃

o:α(ω,o)=a

lcks(o). (5)

• Finally, rdsα is the set of all pairs (a, f) such that
some object with abstraction a had its field f read:

rdsα = {(α(ω, o), f) : (o, f) ∈ rds}. (6)

From these four cases, we can observe the general recipe
for constructing abstract instrumentations: for sets whose
elements involve objects (e.g., esc and rds), project these
objects onto their abstractions; for functions mapping
objects to sets (e.g., accs and lcks), construct a mapping
from abstract values to a union of those sets.

2.3 Answering Queries
A client is specified by a set of queries which each operate
on a trace. An example of a query for THREADESCAPE is:
at program point p, does variable v ever point to an object
which is reachable from a static field or was the argument of
spawn?

It will be useful to formulate a query q on a trace r =
[ω1, . . . , ωn] in terms of a disjunction over individual queries
on each state ωi in the trace:

q(r) =
n∨
i=1

q(ωi). (7)

For example, the THREADESCAPE query specified by (p, v)
is true if at any point in the trace where the current statement
is p, v points to thread escaping data (see Section 3.1 for
more details).

Henceforth, we will consider the client to be defined by a
set of queries Q, where each query q ∈ Q maps a concrete
state ω to a boolean indicating whether a given property
holds on that state. These queries induce the quantity of
interest via a disjunction over the states in the dynamic trace
(7). Note that a static answer to the query would involve a
further disjunction over all possible traces of a program.

To evaluate an abstraction with respect to a client, we
must be able to answer queries against the abstraction. For a
query q ∈ Q and an abstraction α, we let qα ∈ Ωα → bool
denote an abstract query.

The optimal abstract query, based on supervaluational se-
mantics, would return true for an abstract state if the concrete
query is true for any state ω with that abstract state:

qαopt(x) =
∨

ω:ωα=x

q(ω). (8)

This query is both sound and complete, but is in general
a difficult quantity to compute, so we will present sound
approximations—that is, qα for which the following condi-
tion holds:

q(ω) = 1 ⇒ qα(ωα) = 1. (9)

We measure the quality of an abstraction α by precision,
the fraction of queries answered true under the abstraction
which are actually true concretely:

precision(α, r) =
|{q ∈ Q : q(r)}|
|{q ∈ Q : qα(rα)}|

. (10)

Note that queries are based on static code artifacts (for
example, for THREADESCAPE, queries correspond to all
variables at all heap-accessing program points), not on dy-
namic objects. Therefore, a small change in a single ob-
ject which is pointed to by many variables can affect many
queries, and thus have a large impact on precision. Some
of this sensitivity is intrinsic to the clients. For example, in
THREADESCAPE, adding a single link in the heap can cause
an arbitrary large set of objects to escape.

3. Clients
We study four clients motivated by concurrency. In partic-
ular, these clients can be used by higher-level analyses for
findings concurrency defects such as races and deadlocks.
Some have additional applications which we will discuss
later.

We chose the clients to satisfy three requirements: (1) the
client should be useful for solving a real-world problem;
(2) the client should have a clear evaluation metric based
on precision; and (3) the client should require reasoning
about the heap and thus depend on the quality of the heap
abstraction. For low-level clients with no clear application,
it would be hard to appreciate the effect of the abstraction.
On the other hand, high-level clients are more problematic
from a methodological perspective, as they often require
more than a good heap abstraction and might be harder to
evaluate.

For each client, we formulate the property of interest in
terms of queries of the form q ∈ Ω → bool. We show how
these queries can be computed form the auxiliary instrumen-
tation. We also define the abstract query qα.

3.1 THREADESCAPE

A key problem in the analysis of concurrent programs is
identifying which data in a program is thread-local, i.e.,
reachable from at most one thread. Information about thread-
locality is useful for reducing false positives in static race
and deadlock analyses [25], as well as reducing the run-
time overhead of software-transactional memory [35] and
dynamic analyses for finding concurrency defects [10].
More efficient memory allocators and garbage collectors for
multi-threaded programs, as well as optimizations in multi-
threaded programs under sequentially-consistent memory
models, can also benefit from thread-locality [15].

One way to obtain this information is by asking thread-
escape queries: At a program point p ∈ P, can a given
variable v ∈ V ever point to an object which is reachable
from more than one thread (e.g., by following a series of field
pointers from a static field)? This question can be expressed
as a disjunction over the states ω in the trace (7) of the
following query:

THREADESCAPE(p, v)(ω) , (11)
ω.p = p ∧ ω.ρ(v) ∈ ω.esc.

We now define the escaping set esc. The set esc of the
initial state ω1 is empty. Given the set esc of a state ω, the
set esc′ of the next state ω′ is defined to be the set of objects
o′ which are reachable via the heap graph ω.σ (denoted
o
ω.σ
 o′) from an object o satisfying any of the following

three conditions:

1. o ∈ esc,
2. the current statement sets some static field g ∈ G to point

to o (that is, stmt(ω.p) ≡ g = v and ω.ρ(v) = o), or

3. the current statement executed is spawn v and v points to
o (that is, stmt(ω.p) ≡ spawn v and ω.ρ(v) = o). This
condition captures the fact that objects owhich are passed
into newly created threads (via spawn) also escape.

Now, we need to define the set of queries Q. Motivated
by race detection, we include query THREADESCAPE(p, v)
if p is an instance field or array element read/write statement
and v is the variable whose field is being accessed, namely
v.f = y or y = v.f for some variable y.

Given an abstraction α, the natural abstract query would
be as follows:

THREADESCAPEα(p, v)(ωα) , (12)
ωα.p = p ∧ ωα.ρα(v) ∈ ωα.escα.

However, this abstract query is costly to evaluate, because
we would need to compute graph reachability to ascertain
α(ω, o) ∈ ωα.escα for each state ω in the trace. We therefore
define a new set ω.esc, which is a relaxation of the escaping
set ω.esc (that is, ω.esc ⊂ ω.esc): The transfer function
for esc is analogous to that of esc, with the exception that
reachability is defined with respect to the abstract heap—
that is, o reaches o′ iff α(ω, o) ω

α.σα

 α(ω, o′).
Intuitively, we are using the abstraction to update the

escaping information directly, instead of only using it to
answer queries. The resulting query under the relaxation is
the same as (12), only with escα replaced with

escα , {α(ω, o) : o ∈ ω.esc}. (13)

Note that ω.escα ⊂ ω.escα, so the resulting relaxed abstract
query is still sound.

3.2 SHAREDACCESS

Another property that captures the notion of thread non-
locality is SHAREDACCESS. Unlike THREADESCAPE, which
deems an object to be non-local simply when it is reachable
from more than one thread, SHAREDACCESS deems an ob-
ject to be non-local when it is actually accessed from more
than one thread—a stronger property.

We define an access to be an instance field or array ele-
ment read/write. Intuitively, an object o is considered thread
shared if there are two states along the execution trace
ω1 and ω2, such that the two statements stmt(ω1.p) and
stmt(ω2.p) access some field of the same object but are
executing under different threads (ω1.t 6= ω2.t). This prop-
erty is easy to answer given the the auxiliary instrumentation
ω.accs, which provides for each object the set of threads that
have accessed it:

SHAREDACCESS(p, v)(ω) , (14)
ω.p = p ∧ |ω.accs(ω.ρ(v))| > 1.

The set of queries Q corresponds to all field accessing state-
ments, as in THREADESCAPE (Section 3.1).

We now define the access sets accs. For the initial state,
accs(o) is empty for each object o. Given the set accs(o) of
state ω, the set accs′(o) of the next state ω′ includes threads
t which satisfy any of the following:

1. t ∈ accs(o), or

2. t is the current thread (ω.t = t) and a field of o is accessed
(that is, stmt(ω.p) ∈ {x.f = y, y = x.f} for any y and
ω.ρ(x) = o).

The abstract query SHAREDACCESSα(p, v) is answered
by seeing if v points to an object with an abstraction ω.ρα(v)
that has been accessed by more than one thread:

SHAREDACCESSα(p, v)(ωα) , (15)
ωα.p = p ∧ |ωα.accsα(ωα.ρα(v))| > 1.

Recall that ωα.accsα(a) is the union of ω.accs(o) over
objects o with abstraction a.

3.3 SHAREDLOCK

A thread-shared lock is an object used by a lock acquisition
statement that is executed by more than one thread. The
statement lock v captures the three cases of lock acquisition
in Java: (1) synchronized static methods, in which the lock
object is the class object; (2) synchronized instance methods,
in which the lock object is the this object; and (3) blocks
of the form synchronized(v) { ... }, in which the lock
object is v.

One natural application of the SHAREDLOCK client is
synchronization removal [2, 3, 6–8, 26]. However, in re-
cent years this problem has been obviated by advances
in hardware and JVMs. Static deadlock detection, on the
other hand, remains an important problem, which can ben-
efit greatly from knowing which synchronization operations
can safely be ignored.

By analogy to SHAREDACCESS, we define SHAREDLOCK
by replacing accs with lcks:

SHAREDLOCK(p, v)(ω) , (16)
ω.p = p ∧ |ω.lcks(ω.ρ(v))| > 1.

The definition of lock sets lcks is similar to that of accs.
Initially, lcks(o) is empty. Given the set lcks(o) of state ω,
the set lcks′(o) of the next state ω′ includes threads t which
satisfy any of the following:

1. t ∈ lcks(o), or

2. t is the current thread (ω.t = t) and a lock is placed on o
(stmt(ω.p) = lock v and ω.ρ(v) = o).

The abstract query SHAREDLOCKα(p, v) is defined accord-
ing to SHAREDLOCK(p, v), but replacing ω with ωα, ρ with
ρα, and lcks with lcksα in (17).

3.4 NONSTATIONARYFIELD

Stationary fields were first introduced by Unkel and Lam [32]
as a generalization of the final keyword in Java. A field is

considered stationary if all instances of the class declaring
the field satisfy the property that all writes to the field occur
before all reads.

As noted in [32], knowing which fields are stationary pro-
vides an object-oriented basis for reasoning about aliasing
relations across time; such information can be used, e.g., by
a deadlock analysis when reasoning about aliasing between
locks stored as object fields. A more immediate application
is in race detection, where a pair of read/write statements on
the same field f is race-free if f is stationary.

We define the query on the negation of the stationary-field
property. A field is non-stationary if there exists a state ω in
the trace such that NONSTATIONARYFIELD(f)(ω) returns
true, where NONSTATIONARYFIELD(f)(ω) returns true if
the current statement (stmt(ω.p)) writes to field f of an
object o which has been previously read ((o, f) ∈ ω.rds).
Formally:

NONSTATIONARYFIELD(f)(ω) , (17)
(stmt(ω.p) ≡ x.f = y) ∧ (ω.ρ(x), f) ∈ ω.rds.

We need to define rds. Given the set rds of state ω, the
set rds′ of the next state ω′ includes each (o, f) satisfying
any of the following:

1. (o, f) ∈ rds, or

2. the current statement reads from field f of object o (that
is, stmt(ω.p) ≡ y = x.f for any y and ω.ρ(x) = o).

The abstract query NONSTATIONARYFIELDα(f) is an-
swered analogously to NONSTATIONARYFIELD(f), but re-
placing ω with ωα, ρ with ρα, and rds with rdsα.

4. Abstractions
In this section, we present a family of heap abstractions that
we will study. Abstractions in this family refine the classic
allocation site abstraction along three dimensions: call stack,
object recency, and heap connectivity.

Recall that an abstraction function α maps an object o ∈
O in a state ω ∈ Ω to an abstract object α(ω, o) ∈ A, where
this mapping is computed using the appropriate auxiliary
instrumentation ω.u ∈ U (see Figure 2). The allocation
site abstraction, denoted ALLOC, maps an object to the site
where it was allocated:

ALLOC(ω, o) = ω.as(o). (18)

Although very popular, the plain allocation site abstrac-
tion can be too coarse to prove many properties [17]. In the
subsequent three sections, we will walk through the three di-
mensions of refinement, using a THREADESCAPE example
as motivation (Figure 4).

4.1 Call Stack
Consider Example 1 in Figure 4. Variables x and y point to
distinct objects, but because they are allocated at the same

getnew() {
h1: return new

}
p2: x = getnew()
p3: y = getnew()

spawn y
p1: ... x.f ...

while (*) {
x = new

p1: ... x.f ...
spawn x

}

h1: s = new
spawn s

h2: x = new
y = x
while (*) {

h3: z = new
y.f = z
if (x.f == y)
s.f = z

y = z
}
x = x.f

p1: ... x.f ...

Example 1 Example 2 Example 3

x

y

h1

x

h1

x s
h1,0

h2,0 h3,1 h3,0

Alloc Allock=∞ Recency

x

y

h1,p2

h1,p3

x

h1,1 h1,0

x s
{h1}

{h2} {h2,h3} {h1,h2,h3}

Allock=1 Recency ReachFrom

Figure 4: Three examples that show the strengths and weaknesses of various abstractions. In each example, the goal is to
prove that x is thread-local at p1, corresponding to the query at the field-accessing statement ... x.f The heap graphs
at query time for two abstractions are shown below each code snippet. In Example 1, x is local but y escapes. Since both are
allocated at h1, the allocation site abstraction (ALLOC) cannot prove x local, but ALLOCk=1, which augments h1 with the call
site (p2 and p3) can. In Example 2, no k value suffices to distinguish x from the rest, but object recency does differentiate
the last object allocated from the rest. In Example 3, RECENCY is insufficient to distinguish x from the other elements of the
linked-list, but REACHFROM can because the other elements are reachable from an additional allocation site h1.

allocation site (h1), the allocation site abstraction cannot
distinguish between the two objects, and thus x cannot be
proven thread-local at p1.

The most common way to refine this abstraction is to use
k-CFA with heap cloning; let {ALLOCk : k = 0, 1, 2, . . . }
denote these abstractions. Specifically, ALLOCk maps an
object o to the allocation site of o (ω.as(o)) and the k most
recent call sites on the stack of the thread at the point at
which o was allocated (ω.cs(o)[1..k]):

ALLOCk(ω, o) = 〈ω.as(o), ω.cs(o)[1..k]〉. (19)

When k = 0, we recover the original allocation site abstrac-
tion. With call stack information, we can see that ALLOCk=1

can make the relevant distinctions in Example 1 to prove x
thread-local at p1.

The calling context is especially important in code where
factory methods are frequently used, since in this case, many
different objects are allocated at only one site and cannot be
distinguished by ALLOC. Large k values might be especially
important when such methods exist deep in heavily-reused
code such as the JDK standard library. One of the goals of
this paper is to study how large k must be in order to prove
various queries.

We can also implement k-object sensitivity [20] in our
framework by simply replacing the call sites in (19) with

the appropriate allocation sites, but we did not pursue this
empirically.

4.2 Object Recency
In some cases, no amount of call stack information (even
k = ∞) can help distinguish enough objects to prove a
query. Consider Example 2 in Figure 4. The program repeat-
edly creates an object and renders it thread escaping. There-
fore, at p1, all objects except for the most recent one are
escaping. But since all objects have the same allocation site
and call stack, even ALLOCk=∞ cannot prove x thread-local
at p1.

This example therefore motivates refining allocation site
abstractions to distinguish objects by their creation time.
This is object recency idea, proposed by [4], which allows
fine-grained reasoning about loops.

Recall that ω.os is the sequence of objects which have
been allocated so far (in that order). For an object o (whose
abstraction we’re trying to compute), define the subsequence
of ω.os which contains only objects with the same ALLOCk
abstraction as o:

relosk(ω, o) = (20)
[o′ : o′ ∈ ω.os,ALLOCk(ω, o) = ALLOCk(ω, o′)].

Now define the recency index of object o to be the position
of o relative to the end of list relosk(ω, o), truncated at r:

recidxk(ω, o) = (21)
min{indexof(reverse(relosk(ω, o)), o), r}.

We have recidxk(ω, o) = 0 if o is the last element of
relosk(ω, o), 1 if it is next to last, etc.

Finally, define abstraction RECENCYrk to map an object o
to its ALLOCk abstraction along with its recency index:

RECENCYrk(ω, o) = 〈ALLOCk(ω, o), recidxk(ω, o)〉. (22)

Note that when r = 0, we recover ALLOCk. For r >
0, we can distinguish between r + 1 objects with the
same allocation site abstraction. The only setting consid-
ered in past work is r = 1, so for convenience, we sim-
ply write RECENCYk for RECENCYr=1

k , RECENCYr for
RECENCYrk=0, and RECENCY for RECENCYr=1

k=0.
Returning to Example 2, we see that RECENCY distin-

guishes between the last allocated object (which x points to)
and the others, allowing us to prove the query thread-local.

The form of Example 2 is a common paradigm in server-
like programs, where new objects are repeatedly constructed
and subsequently released to other threads. The point is that
during the construction phase, the objects are thread-local,
but in order to prove this, one needs to distinguish the objects
in the current loop iteration from the ones in previous loop
iterations.

4.3 Heap Connectivity
Note that the RECENCYr abstraction is heavily tied to single
allocation sites; objects allocated at a site eventually collapse
to the same abstraction after r objects are created. For pro-
grams that maintain complex data structures, objects allo-
cated at one site might enter into a diverse set of relationships
and have different properties over time. For these programs,
more sophisticated shape analysis might be important.

We consider two kinds of abstractions, POINTEDTOBYk
[33] and REACHFROMk [27], which combine shape pred-
icates with k-CFA. Standard shape analysis predicates are
based on local variable names [16, 27], which offer more
distinctions than allocation sites. However, we use allocation
sites instead of variable names in order to focus on the effect
of adding shape information without conflating the contribu-
tion of variable names (which are another orthogonal dimen-
sion of refinement which warrants further investigation).

Specifically, POINTEDTOBYk maps an object o to the set
of allocation sites of objects which can reach o in at most
one step:

POINTEDTOBYk(ω, o) = (23)
{ALLOCk(ω, o′) : o′ = o ∨ o′.f = o}.

Note this is a reflexive version of the pointed-to-by relation
(the allocation site of o is always included in the set), which
is non-standard. Similarly, REACHFROMk maps an object o
to the set of allocation sites of objects which can reach o in
a finite number of steps:

REACHFROMk(ω, o) = {ALLOCk(ω, o′) : o′ ω.σ o}. (24)

Consider Example 3 in Figure 4. Here, a linked-list is cre-
ated whose third node is rendered escaping. RECENCY can-
not distinguish between the second node and any following
node except the last. One could increase r to let RECENCY
make more distinctions, but r would have to grow linearly
with the list’s length, rendering the approach impractical.

Turning to REACHFROM, note that the second node is
reachable from allocation sites h2 (the first node) and h3
(the second node), while the third node onwards are in addi-
tion reachable from h1. Therefore, REACHFROM is able to
separate the second node and deem it thread-local.

RECENCY and REACHFROM really capture different as-
pects of the heap—one does not strictly dominates the other.
Which one works better depends on the benchmark and
client involved, and thus for the remainder of the paper, we
turn to an empirical study to provide more insight.

An implementation note: computing the REACHFROM
abstraction is expensive since the abstraction of an object
o depends on other objects in the heap, and thus each lo-
cal heap update requires computing reachability information
and updating the abstraction for a potentially large set of
nodes. We use a dynamic data structure which maintains,
for each object o, the set of objects that can reach o. We effi-
ciently handle cases where a node is not on a cycle with any

of its immediate predecessors; various other optimizations
are also employed.

A final remark: Note that POINTEDTOBY, REACHFROM,
and RECENCY are state-dependent in that α(ω, o) depends
on ω. This dependence gives these abstractions more power,
but also at some computational expense. In contrast, ALLOCk
for any k value is state-independent.

5. Benchmarks
We experimented with nine Java programs from the DaCapo
benchmark suite (version 9.12) [5]:

antlr A parser generator and translator generator
avrora A simulation and analysis framework for

AVR microcontrollers
batik A Scalable Vector Graphics (SVG) toolkit
fop An output-independent print formatter
hsqldb An SQL relational-database engine
luindex A text indexing tool
lusearch A text search tool
pmd A source-code analyzer
xalan An XSLT processor for transforming XML

The suite provides three progressively larger inputs for each
benchmark, via the “-s [small|default|large]” options, hence-
forth called SMALL, MEDIUM, and LARGE inputs, respec-
tively. Due to computational constraints, we used SMALL
inputs for our experiments. In Section 6, we show that the
effect of the larger inputs on our conclusions is likely to be
insignificant.

Table 1 provides various statistics of the benchmarks.
The numbers refer only to classes, methods, and bytecodes
that were visited during execution under SMALL inputs.
The “app.” columns provide numbers for application code
(i.e., excluding the JDK standard library) while the “total”
columns provide numbers for the entire code.

6. Experimental Setup
Our experiments were performed using IBM J9VM 1.6.0
on 32-bit Linux machines. We implemented all our abstrac-
tions and clients using Chord [1], an extensible static and
dynamic program analysis framework for Java bytecode,
built on top of the Joeq compiler infrastructure [34] and the
Javassist bytecode instrumentation library [9]. Chord takes
as input the class files, main entry point, and input data for
each benchmark. Chord first runs the uninstrumented bench-
mark on the provided input data, and uses a lightweight
JVM agent to observe all classes that are loaded, includ-
ing both application and JDK library classes. It then in-
struments each class that was loaded (with the exception of
java.lang.J9VMInternals) to generate an event when-
ever one of the following types of actions is executed in a
method of that class:

• an object allocation (each new and newarray),

• a write to a static field of reference type (each putstatic),
• a read or write to an instance field or an array element of

primitive or reference type (each getfield, putfield,
aload, and astore),

• an explicit thread creation site (each call to the start()
method of class java.lang.Thread),

• a lock acquisition site (each monitorenter as well as
the entry point of each synchronized method), and

• the points immediately before and after method calls
(each invokevirtual, invokestatic, etc.).

Each of these events is required by some abstraction (e.g.,
the pre- and post-method call events are required by k-CFA)
or by some client (e.g., the putstatic event is required by
the THREADESCAPE client to detect when objects become
reachable from a static field).

Chord then runs the instrumented benchmark on the input
data. Chord allows for the option of processing the generated
events on-the-fly in a separate JVM with an uninstrumented
JDK that communicates with the event-generating JVM via
a POSIX pipe.4 We did not employ this on-the-fly option as
it produced non-deterministic traces for highly concurrent
benchmarks. Instead, we ran the program once and wrote
the trace of generated events to a binary file on disk. This
allowed us to perform our analysis across different abstrac-
tions and clients on the same trace, yielding results which
are meaningful to compare. However, saving to disk forced
us to use the SMALL inputs for the DaCapo benchmarks be-
cause the MEDIUM and LARGE inputs resulted in enormous
traces. The “# events generated” column in Table 2 shows
the number of events generated on various input sizes; en-
tries marked “?” denote that the experiment either ran for
too long or ran out of memory.

While the number of reachable queries did generally in-
crease for larger inputs as more application code became
reachable, there was not much variation in the answers for
the queries that were reachable under both SMALL and
LARGE inputs. This observation is quantified in Table 2
for the THREADESCAPE client. The column “% change in
reachable queries” has entries of the form (−n,+m) mean-
ing that the number of queries reachable under the indicated
larger input but not under the SMALL input was m% of
the queries reachable under the SMALL input; likewise, the
number of queries reachable under the SMALL input but not
under the indicated larger input was n%. The most signifi-
cant increases are for antlr (90%) and batik (38%).

The column “% change in true queries” is defined analo-
gously with true queries instead of reachable queries. By this
metric, even the most significant changes are quite small: 6%
for batik and 4% for pmd.

4 Using separate JVMs circumvents performance and correctness issues
that would arise when event-processing code itself calls instrumented JDK
libraries if one JVM were used.

benchmark version # classes # methods # bytecodes # threads
app. total app. total app. total app. total

antlr 2.7.2 89 290 845 1,663 102,426 147,774 1 5
avrora cvs-20090612 399 678 1,726 2,882 89,397 161,925 4 8
batik 1.7 613 1,300 2,308 5,676 157,575 388,601 2 8
fop 0.95 868 1,357 4,467 6,764 373,657 511,713 1 5
hsqldb 1.8.0.4 111 465 1,013 2,597 103,879 212,472 42 46
luindex 2.4.1 170 495 1,019 2,453 73,527 161,152 1 5
lusearch 2.4.1 126 448 734 2,142 55,053 132,677 9 13
pmd 4.2.5 420 817 2,394 4,086 173,045 268,497 2 7
xalan 2.7.1 400 720 2,529 3,879 184,390 261,396 9 12

Table 1: Statistics of the DaCapo benchmarks used in this study.

benchmark # events generated (in millions) % change in reachable queries % change in true queries
SMALL MEDIUM LARGE MEDIUM LARGE MEDIUM LARGE

antlr 45.7 772 1,926 −0.4, +90.1 −0.4, +90.1 −0.0, +0.0 −0.0, +0.0
avrora 18.3 3,193 18,468 −0.0, +0.2 −0.3, +5.8 −0.0, +0.0 −0.0, +0.5
batik 59.4 572 731 −0.0, +21.5 −0.0, +38.2 −0.0, +6.0 −0.0, +6.0
fop 44.1 235 - −5.9, +5.2 - −0.3, +0.2 -
hsqldb 50.1 849 2,035 −0.0, +0.3 −0.0, +0.3 −0.0, +0.0 −0.0, +0.0
luindex 6.0 ? ? ? ? ? ?
lusearch 16.6 2,184 4,662 −0.0, +1.8 −0.0, +1.8 −0.0, +0.0 −0.0, +0.0
pmd 13.2 940 ? −0.4, +11.1 ? −0.0, +4.2 ?
xalan 29.6 2,219 ? −0.0, +0.0 ? −0.0, +0.0 ?

Table 2: Trace lengths and variation in results for THREADESCAPE on different input data sets. A “-” means that the input size
does not exist, and “?” means the experiment ran out of resources.

abstraction sub-family refinements
{ALLOCk}k∈N k-CFA
{RECENCYrk}k∈N,r∈N k-CFA, object recency to depth r
{POINTEDTOBYk}k∈N k-CFA, heap connectivity
{REACHFROMk}k∈N k-CFA, heap connectivity

Table 3: Abstractions we consider in this study.

7. Results
This section presents our empirical results on the family of
abstractions considered in Section 4. Recall that we consider
refinements of the basic allocation site abstraction (ALLOC)
along three dimensions: k-CFA, object recency, and heap
connectivity. Table 3 describes the abstractions we studied
empirically.

For each abstraction, we obtain precision numbers for
four clients and nine benchmarks. To navigate this large
result space, we structure this section around the following
questions:

• Independent of abstraction, what is the fraction of true
queries (queries for which the answer is true) for a given
client? (Section 7.1)

• Which abstraction works best for a given client? (Sec-
tion 7.2)

• What is the effect of the k in k-CFA? (Section 7.3)
• What is the effect of the recency depth r? (Section 7.4)
• How scalable are the high-precision abstractions? (Sec-

tion 7.5)

7.1 Client Statistics
Table 4 shows the queries which were true in the concrete
execution for each benchmark and client (without abstrac-
tion). For the NONSTATIONARYFIELD client, the fraction
of true queries is stable across benchmarks, but for the other
three clients, this fraction varies considerably. In particular,
variation in THREADESCAPE and SHAREDACCESS corre-
late with the amount and nature of concurrency in the bench-
mark program (Table 1).

Recall that THREADESCAPE measures reachability while
SHAREDACCESS measures actual accesses. Indeed, we see
the latter client has strictly fewer true queries, and moreover,
the gap between the two clients is quite substantial for some
benchmarks (notably fop and xalan), suggesting generally
a higher use of static fields.

benchmark THREADESCAPE SHAREDACCESS SHAREDLOCK NONSTATIONARYFIELD
true # total percent # true # total percent # true # total percent # true # total percent

antlr 17 3490 0.5 0 3490 0.0 0 78 0.0 101 377 26.8
avrora 1983 5169 38.4 1755 5169 34.0 17 76 22.4 132 1037 12.7
batik 312 5028 6.2 0 5028 0.0 13 165 7.9 215 988 21.8
fop 3791 13734 27.6 0 13734 0.0 5 123 4.1 391 2114 18.5
hsqldb 1674 3817 43.9 1095 3817 28.7 41 135 30.4 157 576 27.3
luindex 139 3616 3.8 0 3616 0.0 5 160 3.1 202 637 31.7
lusearch 144 2490 5.8 51 2490 2.0 20 105 19.0 109 459 23.7
pmd 513 6345 8.1 45 6345 0.7 16 94 17.0 161 928 17.3
xalan 3702 7717 48.0 496 7717 6.4 43 116 37.1 291 1306 22.3

Table 4: For each benchmark (row) and client (column), we report the number of total queries issued (|Q|), the number of
queries for which the answer is true, and the corresponding percentage. For all clients except for SHAREDLOCK, only queries
from application code are reported; for SHAREDLOCK, queries from the JDK standard library are also included because there
are few locks in application code.

7.2 Effect of Abstraction on Clients
In this section, we focus on four abstractions (ALLOC,
ALLOCk=5, RECENCY, and REACHFROM), which allows us
to explore the three dimensions of refinement independently.
Tables 5–8 provide the precision results for the four clients
on all nine benchmarks. Benchmark-client pairs where all
queries are false are marked with “-” as a placeholder. A
bold number indicates that it is within 1% of the precision
of the best abstraction on that benchmark-client pair.

Let us start with the THREADESCAPE client. From Ta-
ble 5, we see that the plain allocation site abstraction is
quite imprecise (average precision of 34.8%). ALLOCk=5

improves the precision significantly for the majority of
the benchmarks (e.g., fop), but has little impact on oth-
ers (e.g., batik). RECENCY is on average less effective
than ALLOCk=5, though there are exceptions (e.g., hsqldb).
REACHFROM performs slightly better than RECENCY.

The SHAREDACCESS and SHAREDLOCK clients have
similar behavior, as seen in Tables 6 and 7. In contrast to
THREADESCAPE, these two clients receive little improve-
ment from ALLOCk=5. On the other hand, RECENCY is
quite effective, outperforming or tying the other three ab-
stractions uniformly across all benchmarks. REACHFROM
seems to perform similarly to ALLOC and ALLOCk=5, sug-
gesting that these clients and benchmarks do not need so-
phisticated reasoning about the shape of the heap. Instead,
the simple temporal notion captured by RECENCY seems to
suffice.

For NONSTATIONARYFIELD, the case for RECENCY is
stronger. From Table 8, we see that there is a huge gap
between the precision of RECENCY (90.7%) and the other
abstractions. Both ALLOC and ALLOCk=5 perform equally
poorly (40–50%). REACHFROM sits approximately half way
in between. It is intuitive that RECENCY performs well on
NONSTATIONARYFIELD, as this client is intrinsically built

around a temporal property (writes must precede reads), and
RECENCY focuses on making temporal distinctions.

benchmark ALLOC ALLOCk=5 RECENCY REACHFROM

antlr 48.6 85.0 81.0 100.0
avrora 54.7 62.3 69.2 77.8
batik 13.5 15.1 20.9 20.6
fop 36.3 99.3 42.8 41.3
hsqldb 62.6 69.0 94.3 ?
luindex 6.3 97.2 6.8 6.8
lusearch 14.3 90.0 19.0 19.6
pmd 12.4 87.1 14.9 14.6
xalan 64.0 78.9 78.7 76.6
average 34.8 76.0 47.5 ?

Table 5: Precision results for the THREADESCAPE client.

benchmark ALLOC ALLOCk=5 RECENCY REACHFROM

antlr - - - -
avrora 96.2 96.2 98.6 ?
batik - - - -
fop - - - -
hsqldb 51.3 56.8 87.0 ?
luindex - - - -
lusearch 3.5 3.5 3.6 3.5
pmd 1.9 2.0 18.4 3.1
xalan 11.2 11.2 15.0 13.3
average 32.8 34.0 44.5 ?

Table 6: Precision results for the SHAREDACCESS client.

To conclude this section, there is a fair amount of vari-
ation in the precision of abstractions. However, two trends
stand out: (1) RECENCY is a clear winner in three of the four
clients, and in the exceptional THREADESCAPE, k-CFA pro-
vides the most utility. So far, we have not seen REACHFROM
to be very helpful, but we will see a case for REACHFROM

benchmark ALLOC ALLOCk=5 RECENCY REACHFROM

antlr - - - -
avrora 70.8 70.8 85.0 ?
batik 100.0 100.0 100.0 81.2
fop 50.0 100.0 100.0 ?
hsqldb 77.4 78.8 91.1 ?
luindex 50.0 100.0 100.0 100.0
lusearch 29.9 32.8 33.9 32.3
pmd 40.0 43.2 72.7 40.0
xalan 55.1 55.1 59.7 58.1
average 59.1 72.6 80.3 ?

Table 7: Precision results for the SHAREDLOCK client.

benchmark ALLOC ALLOCk=5 RECENCY REACHFROM

antlr 59.1 60.1 91.0 78.3
avrora 33.2 33.6 93.6 77.2
batik 35.8 36.1 99.5 65.3
fop 42.0 44.9 90.9 68.2
hsqldb 45.4 49.5 94.6 ?
luindex 78.0 84.2 94.8 94.8
lusearch 38.2 38.2 64.9 56.5
pmd 37.8 39.9 96.4 69.4
xalan 44.0 44.5 90.4 74.2
average 45.9 47.9 90.7 ?

Table 8: Precision results for the NONSTATIONARYFIELD
client.

in Section 7.3. As mentioned in Section 4, shape analysis
typically considers reachability from local variables rather
than from allocation sites [16]. Since local variables gener-
ally offer finer distinctions than allocation sites, we expect
a variable-based variant of REACHFROM to perform better.
However, the use of variables is an orthogonal dimension
(we could imagine RECENCY based on variables as well),
which is outside the scope of this study.

7.3 Effect of k-CFA
In the previous section, we saw that ALLOCk=5 was very
useful for THREADESCAPE but not for the other clients. Is it
because k needed to be higher? Could we have done just as
well with k < 5 for THREADESCAPE? This section answers
these questions.

Figure 5 plots the precision as a function of k for the
four sub-families of abstractions in Table 3 (taking r = 1).
First, consider the THREADESCAPE client (first row). We
see that all abstractions work extremely poorly (precision
around 20%) for small values of k, but there is a phase tran-
sition where the precision shoots up to nearly 100%. The
critical value varies across abstractions and benchmarks, but
is around k = 3 to k = 6. A partial explanation to the phase
transition is as follows: Recall that THREADESCAPE is de-
fined in terms of reachability, which is a sensitive property:

a localized over-abstraction can render the entire subgraph
downstream to be escaping.

Note that on the batik benchmark, even for k =∞, both
ALLOCk and RECENCYk fail to undergo the positive transi-
tion, but the heap connectivity abstractions (POINTEDTOBY
and REACHFROM) do. On the remaining benchmarks,
POINTEDTOBY and REACHFROM compare favorably with
the other abstractions. After all, the THREADESCAPE client
is defined in terms of reachability. In fact, we can redefine
REACHFROM (24) to include a special label for static fields.
This change actually has extremely positive consequences:
the modified REACHFROM abstraction would always have
100% precision as it will never conflate objects reachable
from static fields from those which are not.

On the other clients, we see that increasing k does not
help in general (even with k = ∞). A notable exception
is the pmd benchmark, where extremely large values of k
make a significant difference. In a separate experiment on
SHAREDACCESS, we saw that the precision did not reach
its limit until k = 18. Further investigation is required to
understand what properties of pmd make it an outlier, and
in particular, which of its objects actually require a large k
value.

In summary, the utility of k depends heavily on the
client (THREADESCAPE versus others), and to a lesser ex-
tent on the benchmark (with the exception of pmd). Fur-
thermore, we find that REACHFROM performs well on
THREADESCAPE—it just takes larger k values to realize
its potential, an instance of the synergy between two dimen-
sions of refinement.

7.4 Effect of Recency Depth r
In Section 7.2, we saw that RECENCYr=1 performed well. In
this section, we investigate whether increasing the recency
depth r adds any additional value.

We study two sub-families of abstractions, RECENCYrk=0

and RECENCYrk=∞, for 0 ≤ r ≤ 6.5 The results are given
in Table 9. We see that for most benchmark-client pairs, the
precision increases by a fair amount as r increases until some
point, larger values of r cease to be useful. An exception is
lusearch, whose precision increases steadily up to r = 6
across all clients. In general, there seems to be a greater
consistency across clients than for benchmarks, whereas for
k-CFA, the effect was the opposite.

Finally, the gains from increasing k and increasing r are
in general subadditive. However, one notable exception is
THREADESCAPE on batik, where going from r = 1 to
r = 2 when k = 0 increases precision by only 0.5%
whereas going from r = 1 to r = 2 when k = ∞ increases
precision by 75.6%. We saw a similar superadditive effect on
the same benchmark-client pair in Section 7.3, where going

5 Note that unlike k = ∞, r = ∞ trivially allows us to distinguish all
objects and thus always achieve 100% precision.

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

(a) (ThreadEscape, batik) (b) (ThreadEscape, luindex) (c) (ThreadEscape, lusearch) (d) (ThreadEscape, pmd)

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

Alloc

Recency

PointedToBy

ReachFrom

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

(e) (SharedAccess, batik) (f) (SharedAccess, luindex) (g) (SharedAccess, lusearch) (h) (SharedAccess, pmd)

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

(i) (SharedLock, batik) (j) (SharedLock, luindex) (k) (SharedLock, lusearch) (l) (SharedLock, pmd)

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

0 1 2 3 4 5 6 7 8 ∞
k

20

40

60

80

100

P
re

ci
si

on

(m) (NonStationaryField, batik) (n) (NonStationaryField, luindex) (o) (NonStationaryField, lusearch) (p) (NonStationaryField, pmd)

Figure 5: Effect of varying k for various abstractions. For THREADESCAPE, there is a sharp increase in precision around a
critical value of k, but the precision does not depend much on k for the other clients (except on the pmd benchmark).

from ALLOC to REACHFROM is useless if k < 5 but very
useful if k ≥ 5.

7.5 Tradeoff between Abstraction Precision and Size
Thus far, we have focused on evaluating the precision of ab-
stractions. However, another important property of abstrac-
tions is how well they can scale inside a static analysis.
To get at the notion of scalability in our dynamic analysis
framework, we introduce the size of an abstraction α, which
we define to be the number of abstract objects |A|.

Figure 6 plots the precision versus size of various ab-
stractions. Good abstractions live in the lower right-hand
corner of the plot (exhibiting high precision with low com-
plexity). As a baseline, we created a RANDOM abstrac-
tion. To construct this abstraction, we fix a finite set of

abstract values, A = {1, . . . , n}, and assign each ob-
ject o independently to a random element of A. We tried
n ∈ {1000, 10000, 100000,∞}, where n = ∞ corresponds
exactly to the concrete result.

RANDOM performs quite poorly on THREADESCAPE.
As mentioned earlier, THREADESCAPE requires global rea-
soning about the heap, which is sensitive to arbitrary col-
lapsing of concrete objects. On the other hand, for the
NONSTATIONARYFIELD client, RANDOM actually per-
forms much better than the ALLOC, POINTEDTOBY and
REACHFROM abstractions. This is an artifact of the client:
when random objects of different types are collapsed, no in-
formation is actually lost with respect to stationarity because
the two objects do not even have any fields in common.

RECENCYrk=0 RECENCYrk=∞
r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

T
H

R
E

S
C batik 13.5 20.9 21.4 22.1 22.5 22.6 22.7 15.1 23.4 99.0 99.0 99.0 99.0 99.0

luindex 6.3 6.8 7.1 7.1 7.1 7.2 7.2 97.2 100.0 100.0 100.0 100.0 100.0 100.0
lusearch 14.3 19.0 22.4 22.7 23.0 23.2 23.5 90.0 100.0 100.0 100.0 100.0 100.0 100.0
pmd 12.4 14.9 14.9 14.9 15.0 15.0 15.0 87.4 93.6 93.6 93.6 93.6 93.6 93.6

S
H

R
D

A
C

C batik - - - - - - - - - - - - - -
luindex - - - - - - - - - - - - - -
lusearch 3.5 3.6 3.9 5.3 5.6 6.7 10.6 3.5 3.6 4.0 5.5 6.0 7.6 14.6
pmd 1.9 18.4 20.5 22.1 25.0 29.6 29.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

S
H

R
D

L
C

K batik 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
luindex 50.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
lusearch 29.9 33.9 35.7 40.0 40.8 46.5 74.1 32.8 33.9 35.7 40.8 41.7 47.6 76.9
pmd 40.0 72.7 80.0 80.0 80.0 80.0 80.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

N
O

N
S

T
F

L
D batik 35.8 99.5 99.5 99.5 99.5 99.5 99.5 36.1 99.5 99.5 99.5 99.5 99.5 99.5

luindex 78.0 94.8 99.0 99.0 99.0 99.0 99.0 84.2 98.1 99.0 99.0 99.0 99.0 99.0
lusearch 38.2 64.9 73.6 87.9 88.6 90.1 90.8 38.2 65.3 79.0 93.2 95.6 95.6 95.6
pmd 37.8 96.4 97.0 97.6 97.6 98.2 98.2 65.2 98.2 98.8 98.8 98.8 99.4 99.4

Table 9: Effect of increasing the recency depth r. Each cell shows the precision for the given RECENCY abstraction with a
particular benchmark and client. Bold entries indicate precision within 1% of r = 6.

Note that as k increases, the size of the abstraction
increases substantially, while the precision does not in-
crease appreciably apart from the phase transitions. (Note
that the Y-axis is on a log scale.) Shape-based abstractions
(POINTEDTOBY and REACHFROM), though sometimes ef-
fective for THREADESCAPE, are quite costly because the
abstract values are sets of allocation sites, which suffer from
a combinatorial explosion. The number of abstract values
may even exceed the number of concrete objects, since a
single object may take on many abstractions during its life-
time as its connected heap changes.

Summary Although there is a fair amount of variation in
precision across benchmarks and clients, this variation can
be explained in terms of two main trends: First, the best
abstractions for a client tend to correlate with the proper-
ties of the client: NONSTATIONARYFIELD involves tempo-
ral properties and thus benefits from RECENCY, which offers
temporal distinctions; THREADESCAPE involves heap con-
nectivity properties and thus benefits from REACHFROM.
Second, there are non-trivial interactions between the vari-
ous refinement dimensions (in one example, the potential of
REACHFROM is only realized with k-CFA for large enough
k). Overall, we showed that ALLOC is clearly insufficient,
and RECENCY is a important dimension worthy of further
exploration.

8. Related Work
A comprehensive presentation and evaluation of the k-CFA
heap abstraction, as well as other k-limited abstractions like
k-object-sensitivity, is presented in [17]. The recency ab-
straction was introduced in [4]. Shape analysis, which is
a static technique for verifying properties of dynamically-
allocated data structures, is presented in [27]. Here, we sur-

vey work on evaluating the impact of k-limited heap abstrac-
tions on points-to and call-graph algorithms (Section 8.1)
and work on using connectivity-based heap abstractions to
improve garbage collectors (Section 8.2) and detect memory
bloat (Section 8.3).

8.1 Points-to and Call Graph Algorithms
Liang et al. [19] present a set of empirical studies inves-
tigating the effect of calling contexts on the precision of
Andersen’s algorithm. In particular, the effect of context-
sensitive naming schemes on precision is evaluated, and the
traditional calling context sensitivity is compared to object
context sensitivity. The precision of the points-to informa-
tion computed by each of the algorithms is evaluated vis-
a-vis dynamically-collected data. In an earlier and closely
related study [18], the authors perform a similar set of exper-
iments (again, using reference information collected at run-
time as an approximation of precise reference information),
concluding that hybrid approaches for identifying instances
and computing points-to information are needed.

Lhoták and Hendren [17] follow a similar approach. They
conduct an empirical study on a set of large Java benchmarks
to evaluate the precision of subset-based points-to analysis
under three variations of context sensitivity: call string, ob-
ject sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and
Lam. They evaluate the effects of these variations on the
number of contexts generated, the number of distinct points-
to sets constructed, and the precision of call-graph construc-
tion, virtual-call resolution, and cast-safety analysis. Our
study is complementary to theirs: we measure the effect of
k-CFA on the precision of clients for much higher values
of k, but for a single execution, whereas they measure the
same for smaller values of k but over all executions. Some

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

(a) (ThreadEscape, batik) (b) (ThreadEscape, luindex) (c) (ThreadEscape, lusearch) (d) (ThreadEscape, pmd)

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0
si

ze
ra

ti
o

Random

Alloc

Recency

PointedToBy

ReachFrom

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

(e) (SharedAccess, batik) (f) (SharedAccess, luindex) (g) (SharedAccess, lusearch) (h) (SharedAccess, pmd)

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

(i) (SharedLock, batik) (j) (SharedLock, luindex) (k) (SharedLock, lusearch) (l) (SharedLock, pmd)

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

20 40 60 80 100

precision

0.7

5.3

38.1

275.9

2000.0

si
ze

ra
ti

o

(m) (NonStationaryField, batik) (n) (NonStationaryField, luindex) (o) (NonStationaryField, lusearch) (p) (NonStationaryField, pmd)

Figure 6: Tradeoff between abstraction precision and size ratio for two clients and four benchmarks. (Note the logarithmic
scale.) The size ratio is size of the abstraction |A| divided by the size of the ALLOC abstraction. Multiple points for a given
abstraction indicate increasing values of k which monotonically increases both precision and size. Note that the upper-rightmost
RANDOM point corresponds to the concrete execution.

abstractions we consider are different from theirs (e.g., they
do not evaluate heap connectivity and we do not evaluate k-
object sensitivity). Finally, all our clients are motivated by
concurrency and are different from theirs.

8.2 Garbage Collection
Hirzel and Hind [13] explore whether the connectivity of
objects can yield useful partitions or improve existing par-
titioning schemes. They consider direct points-to relations,
as well as transitive reachability relations, and conclude that
connectivity correlates strongly with object lifetimes, and is
therefore useful for partitioning objects.

Shaham et al. [30] study the potential impact of different
kinds of liveness information on the space consumption of

a program in a garbage-collected environment. They mea-
sure the time difference between the actual time an object is
reclaimed by the garbage collector and the earliest time in
which this could have been done assuming the availability
of liveness information. Four kinds of liveness information
are considered: stack reference, global reference, heap refer-
ence, and any combination of the above.

Inoue et al. [14] introduce a precise method for predicting
object lifetimes, where the granularity of predictions is equal
to the smallest unit of allocation. They construct predictors
based on execution traces including accurate records of each
object’s allocation and death, and rely on a (fixed-length)
prefix of the stack at the time of allocation to disambiguate
allocation contexts and thus improve the precision of the pre-

dictor. Their empirical results suggest that for some applica-
tions, object lifetimes can be predicted to the byte using the
allocation-context heuristic. This finding resonates well with
our empirical results, which show that the THREADESCAPE
client benefits greatly from high k values.

The approach taken in [14] is inspired by the work of
Seidl and Zorn [28, 29], which attempts to predict the refer-
ence and lifetime behavior of heap objects according to four
categories: highly referenced, short lived, low referenced,
and other. Similar to [14], prediction relies on a training trace
containing extensive information, including the number of
loads and stores to each object, the call stack at the time of
each allocation, and the size of the allocated object. Seidl
and Zorn use a stack-based prediction scheme, and conclude
that it is important to choose the right depth for the stack
predictor. Their experiments suggest that a depth of 3 yields
an effective predictor.

While all four of these studies provide insightful obser-
vations that may be leveraged by a static analysis, their goal
differs from ours. Our goal is to evaluate static abstractions
explicitly, so as to provide insight to static-analysis devel-
opers, whereas these studies focus on (concrete) empirical
results, and establish heuristics that may benefit a garbage
collector.

8.3 Memory Bloat
Mitchell [21] investigates ways to summarize the memory
footprint of object-oriented applications in order to discover
cases where high-overhead collections, bulky data models
and large caches are used. As part of the analysis, he devel-
ops a catalog of ownership structures, which are shown to be
prevalent in large-scale applications, and are therefore pow-
erful units of aggregation and filtering. In a related study,
Mitchell and Sevitsky [22] study applications posing large
runtime memory requirements. They introduce “health sig-
natures” to distinguish cases where a large memory footprint
enables an important requirement (e.g., the use of a cache
to ameliorate a performance problem) from instances where
memory is used excessively.

Also closely related is Yeti [23], a tool for summarizing
memory usage to uncover the costs of design decisions. This
is accomplished through a series of progressive abstractions
and corresponding visualizations. The goal behind Yeti is to
assist developers in discovering instances where large-scale
Java applications suffer from memory problems due to an
inefficient design, or lifetime bugs such as leaks.

Similar to our study, these works are concerned with ab-
stracting the concrete heap. However, the abstractions ad-
vocated by these studies are not inspired by static analysis;
rather, they are more heuristic in nature, and are tuned to-
ward an interactive process wherein “simplification” of the
concrete heap is beneficial (indeed mandated) as part of a
reasoning process leading to the identification of evasive
bugs and design flaws.

Dufour et al. [11] introduce blended analysis, an algo-
rithm combining a dynamic representation of the program’s
calling structure with a static analysis applied to a region of
that calling structure with observed performance problems.
In a case study they perform, they show that blended escape
analysis is highly effective at localizing a performance prob-
lem due to overuse of temporary structures. In a subsequent
study [12], new metrics are added to quantify key properties
of temporary data structures and their uses, and an empir-
ical evaluation is conducted to characterize temporaries in
framework-intensive applications.

Dufour’s studies are similar to our work in that a static
representation of the program is computed on top of a dy-
namic trace. However, whereas Dufour’s focus is on localiz-
ing a particular problem or behavior (which is present during
the concrete execution), our goal is to understand which heap
abstractions are likely to be good for static analysis.

9. Conclusion
With the goal of finding good heap abstractions for static
analysis, we have investigated a family heap abstractions on
four clients and nine benchmarks. Our evaluation of these
abstractions revealed many interesting properties about the
role and utility of k-CFA, object recency and heap connec-
tivity. We believe these results can serve as a useful guide
for developing static analyses.

References
[1] Chord: A static and dynamic program analysis framework for

Java. http://code.google.com/p/jchord/.

[2] J. Aldrich, C. Chambers, E. G. Sirer, and S. J. Eggers. Static
analyses for eliminating unnecessary synchronization from
Java programs. In Proceedings of the 6th Intl. Static Analysis
Symp. (SAS), pages 19–38, 1999.

[3] J. Aldrich, E. Sirer, C. Chambers, and S. J. Eggers. Com-
prehensive synchronization elimination for Java. Science of
Computer Programming, 47(2-3):91–120, 2003.

[4] G. Balakrishnan and T. W. Reps. Recency-abstraction for
heap-allocated storage. In Proceedings of the 13th Intl. Static
Analysis Symp. (SAS), pages 221–239, 2006.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Proceedings
of the 21st ACM SIGPLAN Conf. on Object-Oriented Pro-
graming Systems, Languages and Applications (OOPSLA),
pages 169–190, 2006.

[6] B. Blanchet. Escape analysis for Java: Theory and practice.
ACM Transactions on Programming Languages and Systems,
25(6):713–775, 2003.

[7] B. Blanchet. Escape analysis for object-oriented languages:
Application to Java. In Proceedings of the 14th ACM SIG-

PLAN Conf. on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), pages 20–34, 1999.

[8] J. Bogda and U. Hölzle. Removing unnecessary synchro-
nization in Java. In Proceedings of the 14th ACM SIGPLAN
Conf. on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), pages 35–46, 1999.

[9] S. Chiba and M. Nishizawa. An easy-to-use toolkit for effi-
cient Java bytecode translators. In Proceedings of the 2nd Intl.
Conf. on Generative Programming and Component Engineer-
ing (GPCE), pages 364–376, 2003.

[10] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Proceedings of
the ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 258–269, 2002.

[11] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended analysis for
performance understanding of framework-based applications.
In Proceedings of the ACM SIGSOFT Intl. Symp. on Software
Testing and Analysis (ISSTA), pages 118–128, 2007.

[12] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable technique
for characterizing the usage of temporaries in framework-
intensive Java applications. In Proceedings of the 16th ACM
SIGSOFT Intl. Symp. on Foundations of Software Engineering
(FSE), pages 59–70, 2008.

[13] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understand-
ing the connectivity of heap objects. In Proceedings of the
Workshop on Memory Systems Performance (MSP) and the
Intl. Symp. on Memory Management (ISMM), pages 143–156,
2003.

[14] H. Inoue, D. Stefanovic, and S. Forrest. On the prediction of
java object lifetimes. IEEE Transactions on Computers, 55:
880–892, 2006.

[15] K. Lee and S. P. Midkiff. A two-phase escape analysis for par-
allel Java programs. In Proceedings of the 15th Intl. Conf. on
Parallel Architectures and Compilation Techniques (PACT),
pages 53–62, 2006.

[16] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static
analysis to work for verification: A case study. In In Intl.
Symp. on Software Testing and Analysis, pages 26–38, 2000.

[17] O. Lhoták and L. Hendren. Context-sensitive points-to anal-
ysis: is it worth it? In Proceedings of the 15th Intl. Conf. on
Compiler Construction, pages 47–64, 2006.

[18] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the pre-
cision of static reference analysis using profiling. In Proceed-
ings of the ACM SIGSOFT Intl. Symp. on Software Testing and
Analysis (ISSTA), pages 22–32, 2002.

[19] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the
impact of context-sensitivity on andersen’s algorithm for java
programs. In Proceedings of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and Engi-
neering (PASTE), pages 6–12, 2006.

[20] A. Milanova, A. Rountev, and B. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In
Proceedings of the ACM SIGSOFT Intl. Symp. on Software
Testing and Analysis (ISSTA), pages 1–11, 2002.

[21] N. Mitchell. The runtime structure of object ownership. In
Proceedings of the 20th European Conf. on Object-Oriented
Programming (ECOOP), pages 74–98, 2006.

[22] N. Mitchell and G. Sevitsky. The causes of bloat, the limits
of health. In Proceedings of the 22nd ACM SIGPLAN Conf.
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 245–260, 2007.

[23] N. Mitchell, E. Schonberg, and G. Sevitsky. Making sense
of large heaps. In Proceedings of the 23rd European Conf. on
Object-Oriented Programming (ECOOP), pages 77–97, 2009.

[24] M. Naik and A. Aiken. Conditional must not aliasing for static
race detection. In Proceedings of the 34th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages
(POPL), pages 327–338, 2007.

[25] M. Naik, A. Aiken, and J. Whaley. Effective static race
detection for Java. In Proceedings of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI), pages 308–319, 2006.

[26] E. Ruf. Effective synchronization removal for Java. In Pro-
ceedings of the ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation (PLDI), pages 208–218,
2000.

[27] M. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems, 24(3):217–298, 2002.

[28] M. L. Seidl and B. G. Zorn. Segregating heap objects by
reference behavior and lifetime. SIGOPS Oper. Syst. Rev., 32
(5):12–23, 1998.

[29] M. L. Seidl, M. L. Seidl, M. L. Seidl, B. G. Zorn, B. G.
Zorn, and B. G. Zorn. Predicting references to dynamically
allocated objects. Technical report, 1997.

[30] R. Shaham, E. K. Kolodner, and M. Sagiv. Estimating the
impact of heap liveness information on space consumption in
Java. In Proceedings of the Workshop on Memory Systems
Performance (MSP) and the Intl. Symp. on Memory Manage-
ment (ISMM), pages 171–182, 2002.

[31] O. Shivers. Control-flow analysis in Scheme. In Proceed-
ings of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), pages 164–174, 1988.

[32] C. Unkel and M. S. Lam. Automatic inference of stationary
fields: a generalization of Java’s final fields. In Proceedings
of the 35th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL), pages 183–195, 2008.

[33] E. Y.-B. Wang. Analysis of Recursive Types in an Imperative
Language. PhD thesis, Univ. of Calif., Berkeley, CA, 1994.

[34] J. Whaley. Joeq: A virtual machine and compiler infras-
tructure. Science of Computer Programming, 57(3):339–356,
2005.

[35] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai,
and H.-H. S. Lee. Kicking the tires of software transactional
memory: why the going gets tough. In Proceedings of the 20th
ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), pages 265–274, 2008.

