
Computing in Cirrus Clouds: The Challenge of Intermittent
Connectivity

Cong Shi, Mostafa H. Ammar, Ellen W. Zegura, and Mayur Naik
School of Computer Science

Georgia Institute of Technology, Atlanta, Georgia 30332
{cshi7, ammar, ewz, naik}@cc.gatech.edu

ABSTRACT
Mobile devices are increasingly being relied on for tasks that go
beyond simple connectivity and demand more complex process-
ing. The primary approach in wide use today uses cloud com-
puting resources to off-load the “heavy lifting” to specially des-
ignated servers when they are well connected. In reality, a mobile
device often encounters, albeit intermittently, many entities capable
of lending computational resources. In this work-in-progress paper
we first give an overview of this environment, which we call a Cir-
rus Cloud due to its intermittent connectivity feature, and explain
how it provides a spectrum of computational contexts for remote
computation in a mobile environment. An ultimately successful
system will need to have the flexibility to handle intermittent con-
nectivity and use a mix of options on that spectrum. We investigate
two scenarios at the extremes of the spectrum: 1) a scenario where
a mobile device experiences intermittent connectivity to a central
cloud computing resource, and 2) a scenario where a mobile device
off-loads computation to other mobile devices it might meet inter-
mittently. We present preliminary designs, implementations, and
evaluations of systems that enable a mobile application to use re-
mote computational resources to speedup computing and conserve
energy in these scenarios. The preliminary results show the effec-
tiveness of our systems and demonstrate the potential of computing
in Cirrus Clouds.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems —Distributed applications

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Mobile Cloud, Computation Off-loading, Task Allocation, Inter-
mittent Connectivity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCC’12,August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-XXXX-X/12/08 ...$10.00.

1. INTRODUCTION
Mobile devices are increasingly used to perform compute-intensive

tasks ranging from the leisurely to mission-critical. These include
pattern recognition to aid in identifying audio snippets or images
captured locally or remotely, reality augmentation to enhance our
daily lives, collaborative tasks that enhance distributed decision
making, and planning and coordination, potentially in real-time.

Smartphones and tablets are examples of ubiquitous truly portable
devices on which we have to come to rely heavily in everyday life.
These devices are becoming increasingly powerful in terms of pro-
cessing capability and storage. Battery power availability, while
still constrained, continues to improve with each device generation.
In addition, such devices enjoy the availability of improved con-
nectivity options. These have enabled applications that transcend
an individual device’s capabilities by leveraging remote processing
and storage.

Offloading computation from mobile devices to the cloud is in
wide use today. Despite its success, however, it suffers from a num-
ber of shortcomings.These include the inflexibility in apportioning
work between the mobile device and the remote cloud, the latency
inherent in accessing remote cloud resources, and the inability to
handle intermittent connectivity as a consequence of device mobil-
ity [7, 16]. A related technique for remote processing of mobile
applications proposes the use ofcloudletswhich provide software
instantiated in real-time on nearby computing resources using vir-
tual machine technology [16] to address latency issues. Meanwhile,
MAUI [8], CloneCloud [7] and ThinkAir [12] automatically appor-
tion processing between a local device and a remote cloud resource
based on the computation and communication environments.

None of the above approaches address the important and chal-
lenging problem of handlingintermittent connectivityof mobile de-
vices. Moreover, a mobile device often encounters many entities,
including other mobile devices, capable of lending computational
resources. Thus, an approach capable of handling connectivity dis-
ruptions is not limited to using the cloud and might be able to lever-
age this additional computational power.

In this work-in-progress paper we envision a generalized remote
computing paradigm, called a Cirrus Cloud, that uses various com-
pute resources both mobile and not, to enable its operation in the
presence of intermittent connectivity. We posit that an ultimately
successful system should have the flexibility to handle intermittent
connectivity and use a mix of compute resources. As the first step
towards this goal, we investigate how to use specific kinds of re-
sources for remote computing in the presence of intermittent con-
nectivity. Specifically, we report our current progress in two scenar-
ios: 1) a scenario where a mobile device experiences intermittent
connectivity to a central cloud computing resource, and 2) a sce-

Mobile Devices

Mobile Devices

Mobile devices resident on vehicles

Figure 1: System components and network connectivity of Cir-
rus Clouds.

nario where a mobile device off-loads computation to other mobile
devices it might meet intermittently.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of related work. Section 3 presents our vision
of Cirrus Clouds. Sections 4 and 5 present our preliminary work
in the above two mobile scenarios, respectively. Lastly, Section 6
concludes with a note on future work.

2. RELATED WORK
Our work can be viewed as enabling a truly general vision ofcy-

ber foraging[3, 4] which envisions mobile applications “living off
the land” by exploiting infrastructure-based computing resources.
Because of the popularity of powerful mobile devices, it is now pos-
sible to extend the flexibility of this vision to include “foraging” of
the available resources in other mobile devices as we propose to do
in this work.

Our work also leverages recent advances in the understanding
of data transfer over intermittently-connected wireless networks
(also known as disruption-tolerant networks or opportunistic net-
works). These networks have been studied extensively in a variety
of settings, from military [14] to disasters [9] to the developing
world [15].

Our work is also related to systems that use non-dedicated ma-
chines with cycles that are donated and may disappear at any time.
In this vein, our work takes some inspiration from the Condor sys-
tem architecture [19]. Our work also resembles in part distributed
computing environments that have well-connected networks but
unreliable participation in the computation. Examples of these sys-
tems include BOINC [1], SETI@home [2], and folding@home [6],
all leveraging the willingness of individuals to dedicate resources
to a large computation problem. More recently, the Hyrax project
envisions a somewhat similar capability to opportunistically use the
resources of networked cellphones [13].

3. COMPUTING IN CIRRUS CLOUDS
In this section we describe our vision and the challenges of com-

puting in Cirrus Clouds.

3.1 System Components and Network Connec-
tivity

Mobile devices roam in a very rich communication and comput-
ing environment today, as shown in Figure 1. For our purposes we
classify elements of this environment in the following four cate-
gories.

• User-carried mobile devices: Today such devices are typi-
cally smartphones or tablets. They are portable and thus ex-

perience significant mobility. Applications requiring compu-
tation are initiated on these devices.

• Mobile computing resources attached to moving vehicles: It
is increasingly possible to piggyback computing resources on
vehicles such as buses [18]. Such systems are not resource
constrained since they can derive power from a vehicle’s bat-
tery. They may also have somewhat predictable mobility pat-
terns.

• Infrastructure-based computing resources: These are similar
to cloudlets[16] in the sense that they are pre-provisioned
computing resources that are accessible locally over a wire-
less access point.

• Central cloud resources: These are data centers that are al-
ways equipped and ready to undertake a particular computa-
tion task.

We are interested in enhancing computation in mobile user de-
vices without constraining their mobility patterns. While user de-
vices will, over time, come in contact with other devices that can
provide computing resources, such contact will be intermittent and
of potentially indeterminate duration. Two nodes within commu-
nication range of each other experience a contact opportunity that
lasts for as long as they can hear each other. One way to char-
acterize such connectivity is by describing the pattern of contact
opportunities. During a contact, nodes can transfer data to each
other. Both the duration and the transfer bandwidth of a contact are
limited. A node can deliver data to a destination node directly if
the latter is within radio range, otherwise delivery occurs through
routing via intermediate nodes.

Intermittent connectivity could be totally unpredictable, only sta-
tistically predictable or sometimes highly predictable. Additionally
control channels can be used when available to help predict contact
opportunities [5]. We consider all these variations in our research.

3.2 Computational Contexts
Based on our categorization of the system components, we en-

vision a spectrum of computational contexts, some of which are
shown in Figure 2.

a) Intermittent Cloud b) Intermittent Cloudlets c) Intermittent mobile devices

Figure 2: Senarios on spectrum of computational contexts in
Cirrus Clouds.

At one extreme is the traditional cloud-computing context where
a mobile device is intermittently connected to remote cloud re-
sources maintained by a service provider with which it has an es-
tablished relationship, as shown in Figure 2(a). We present our
preliminary work on handling the intermittent connectivity in this
scenario in Section 4.

Next on the spectrum is the use of cloudlets on which service
software is dynamically instantiated to enable the off-loading of
computation from the mobile device, as shown in Figure 2(b). The
original cloudlet concept implicitly constrained the off-loading of
computation to a single cloudlet. In our work we consider the case
when the mobile device has contact with a number of cloudlet-like
resources on an intermittent basis.

Moving along the spectrum, at the other extreme, we consider
the case where a mobile device’s contacts are only with other mo-
bile devices, as shown in Figure 2(c). This is an extreme compu-
tational environment where both the computation initiator and the
remote computational resources are mobile. We summarize our
prior work on such environments in Section 5.

Our long-term work is based on the premise that an initiator mo-
bile device’s environment for remote computation will be, in the
most general case, ahybrid of such systems. As such the device
needs to learn about the capabilities of its environment and adapt
its remote computation decisions accordingly.

3.3 Challenges
There are many challenges facing the realization of our vision as

described above. We next outline these challenges.
Dealing with intermittent connectivity: This is one of the dis-

tinguishing features of our work and necessitates a fresh look at the
issues concerned with remote execution of mobile services. Inter-
mittent connectivity causes two types of problems. The first is the
possibility that the duration of a contact may not be long enough
to complete the process of handing off the computation subtask,
waiting for it to complete on the remote device, and receiving the
result. The second problem is the potential unpredictability of con-
tacts. The manner in which the issue is addressed depends on the
details of both the type of computation and the exact networking
and computational context. In our description of preliminary work,
we show examples of how these issues may be dealt with in specific
scenarios.

Structuring computation to make it amenable to remote ex-
ecution: Executing an application across multiple mobile or fixed
devices with varying connectivity poses the challenge of how to
partition the execution between the devices automatically, efficiently,
and optimally. Today, a mobile application is either written in a
monolithic fashion, accommodating as much functionality as possi-
ble on the mobile device; or in the traditional client-server paradigm,
by delegating most computation to a remote server; or it is tailored
to match an expected combination of client, environment, and ser-
vice. Our setting, however, demands significantly more flexibility
in how an application is partitioned: a partitioning that is optimal
in one scenario (e.g., a low-end mobile device with good connec-
tivity) might fare poorly in another (e.g., a high-end mobile device
with intermittent connectivity). Often, such characteristics of the
devices and network are unknown to programmers ahead of time,
or the possible configurations are too numerous to customize.

Designing a decision-making framework for handing-off com-
putation to remote resources: Addressing the application parti-
tioning challenge above needs to be accompanied by a framework
that enables adaptive and possibly real-time decisions of computa-
tion subtask allocation. Subtask profiling in terms of running time,
communication requirements, and power consumption is a neces-
sary input to enable allocation decisions.

4. INTERMITTENTLY CONNECTED CLOUD
In this section, we study the scenario that a mobile device experi-

ences intermittent connectivity to a central Cloud, as shown in Fig-
ure 2(a). Specifically, we investigate how to extend CloneCloud [7]
to work efficiently in that scenario.

CloneCloud [7] is a system that automatically partitions mobile
applications and offloads the “heavy lifting” to the Cloud to min-
imize the execution time and energy consumption. It uses static
analysis to identify legal choices for placing migration points in the
code and dynamic profiling to construct a profile tree for every ap-

plication. Each tree node represents a method that can be migrated
and is annotated with its execution cost. Each edge represents the
method call and is annotated with the data size to be transfered. At
runtime, CloneCloud migrates an application from the mobile de-
vice at chosen migration points to the Cloud and re-intergrates it
back after finishing execution.

Since CloneCloud uses the current communication condition to
choose the migration points at runtime, it will experience extra de-
lay when it intermittently connects to the Cloud. For example, if the
mobile device loses its connection to the Cloud after migrating the
application, it will have to wait for a long time to reconnect to it and
re-intergrate the application back. In this situtation it may be bet-
ter to execute the application locally. In another case, CloneCloud
will decide to execute the application locally if the mobile device
is currently disconnected to the Cloud. However, it is possible that
shortly after that decision the connection is resumed. In this situa-
tion it may be better to wait for a while and migrate the application
to the cloud.

To understand the impact of intermittent connectivity on CloneCloud,
and as a first step in our preliminary investigation, we consider an
ideal situation where the computation and future network connec-
tivity are accurately known. This is useful to identify the best per-
formance of the system with intermittent connectivity. In this set-
ting, without any change to the CloneCloud system architecture, we
propose a novel algorithm to choose the migration points by using
the information of the network connectivity.

Algorithm 1 Find Migration Points
procedure FINDMIGRATIONPOINTS(root, t0) ⊲ root is the root
of the profile tree of an application;t0 is its start time.

results = {}; t=t0;
for v ∈ root.children do

results.addAll(FINDMIGRATIONPOINTS(v, t));
t = computeCompletionTime(root, results,t0);

end for
migrateAll = computeCompletionTime(root, {root},t0);
migratePart = computeCompletionTime(root, results,t0);
exeLocal = getLocalCompletionTime(root,t0);
if migrateAll≥ exeLocal && migratePart≥ exeLocalthen
return {};

else ifmigrateAll≤ migratePartthen
return {root};

else
return results;

end if
end procedure

Algorithm 1 describes how to choose the migration points of an
application that minimizes its execution time with intermittent con-
nectivity. Given the profile tree of an application, the algorithm re-
cursively chooses the optimal migration points from the root. At
every node, it computes the completion times to decide if it exe-
cutes the entire subtree locally, migrates it entirely to the cloud, or
migrates some parts to the cloud. For the last choice, it iteratively
applies the same algorithm to all the children of the node according
to their execution order. The functioncomputeCompletionT ime

uses the information of computation time and future connectivity
to compute the completion time. As stated in the following theo-
rem, this algorithm finds the optimal partitioning. Because of space
limit, we omit the proof in this paper.

THEOREM 1. Given accurate information on the computation
and future network connectivity, Algorithm 1 finds the optimal par-
titioning of the application that minimizes its execution time.

4.1 Preliminary Experimental Results
We describe results from a set of preliminary experiments we ran

to evaluate the performance of our algorithm and demonstrate the
impact of intermittent connectivity.

To obtain realistic network connectivity traces for experiments,
we rode a campus shuttle bus and measured the network connec-
tivity between a tablet that we carried and the WiFi access points
deployed on our campus. We also used the applicationFaceRe-
cognition(whose profile tree was described in [8]) as the basic ap-
plication. In all the experiments, we randomly choose the time to
start the application and repeated every experiment 100 times. The
reported results represent average values. We use three strategies
as baselines: always running on the phone (i.e., labeled as Phone),
always migrating the entire application to Cloud (i.e., labeled as
Cloud), and CloneCloud. Our strategy which uses algorithm 1 to
make offloading decision is labeled as CirrusCloud.

0 50 100 150 200
0

50

100

150

200

Completion time on the phone (second)

C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

Phone
Cloud
CloneCloud
CirrusCloud

Figure 3: The impact of applications’ execution time

In the first set of experiments, we evaluate the impact of com-
putation on the performance of the migration algorithms by pro-
portionally scaling the computation time of every method of the
application. The computation time on the phone is assumed to be
ten times of that in the Cloud, a typical value obtained from [7].
Figure 3 shows the results.

As expected, CirrusCloud performs best in all the experiments.
With the increase of the computation complexity, the performance
gap between CloneCloud and CirrusCloud is also increasing, while
the Cloud strategy is approaching CirrrusCloud. This means that if
the application’s computation time is very small, it’s good enough
to use current network condition to make the migration decision.
Meanwhile, if the application’s computation time is very large, it’s
a good strategy to wait for the migration opportunity.

In the second set of experiments, we evaluate the impact of the
computation power of Cloud resources on the performance of the
migration algorithms by changing the speedup of the Cloud to the
phone. Figure 4 shows the results.

CirrusCloud also performs best in all the experiments. Moreover,
we make the following observations. First, when the speedup is
large enough (e.g., 10 in the experiments), the completion times of

0 5 10 15 20
0

20

40

60

80

100

The speedup of Cloud to the phone

C
om

pl
et

io
n

tim
e

(s
ec

on
d)

Phone
Cloud
CloneCloud
CirrusCloud

Figure 4: The impact of the speedup of the Cloud

all the systems converge. This is because the extra delay caused by
intermittent connectivity dominates the completion time. Second,
when the speedup is small (e.g., 2 in the experiments), always mi-
grating to the Cloud will perform worse than running on the phone.
This is because the low speedup cannot compensate for the extra
network delay.

4.2 Future Work
We will continue to investigate computation offloading in more

practical settings (e.g., the intermittent connectivity is statistically
predictable, or it is totally unpredictable). In such settings, besides
the migration algorithm, we also need to change CloneCloud’s sys-
tem architecture to overcome the uncertainty of network connec-
tivity. For example, besides migrating the application to the Cloud,
the mobile device may also run a local clone to ensure that it will
finish in time.

We will also study various computation offloading strategies for
different kinds of applications to achieve the desired tradeoff be-
tween energy consumption and computation completion time. For
example, some applications are delay tolerant, while others are
real-time applications. These applications should be treated dif-
ferently when offloading their computation. We will study how to
express their requirements in a uniform framework and design the
system to adaptively support these applications.

5. MOBILE NETWORKS AS A COMPUT-
ING PLATFORM

In this section, we summarize our prior work on Serendipity [17],
a system that enables a mobile computation initiator to use remote
computational resources available in other mobile devices in its en-
vironment to speedup computing and conserve energy, as shown in
Figure 2(c). This scenario represents the opposite extreme in turns
of cmputation and network connectivity. Thus, the challenges call
for a different solution.

Intermittent connectivity poses three key challenges for remote
computing. First, because the underlying connectivity is often un-
known and variable, it is difficult to map computations onto nodes
with an assurance that the necessary code and data can be delivered
and the results received in timely fashion. This suggests a conser-
vative approach to distributing computation so as to provide protec-
tion against future network disruptions. Second, given that the net-
work connectivity is intermittent, the network is more likely to be a
bottleneck for the completion of the distributed computation. This
suggests scheduling sequential computations on the same node so
that the data available to start the next computation need not tra-
verse the network. Third, when there is no control channel, the
network cannot be relied upon to provide reachability to all nodes
as needed for coordination and control. This suggests maintaining
local control and developing mechanisms for loose coordination.

In response to these challenges, we propose a computation model
and various subtask allocation strategies based on it.

5.1 Task Allocation in Serendipity
Different from the tree-structured applications supported by CloneCloud,

an application supported by Serendipity is described as a directed
acyclic graph whose nodes arePNP-blocks. A PNP-block is com-
posed of apre-processprogram,n parallel task programs and a
post-processprogram. The pre-process program processes the in-
put data and passes them to the tasks. The workload of every task
should be similar to each other to simplify the task allocation. The
post-process program processes the output of all tasks. All pre-
process and post-process programs can be executed on one initiator

time

PNP-block starts

PNP-block finishes

Node 1 Node 2 Node 3 Node k

Execute Tasks

Disseminate Tasks

Collect Results

Figure 5: The PNP-block completion time is composed of a) the
time to disseminate subtasks, b) the time to execute subtasks
and c) the time to collect results.
device, while parallel tasks are executed independently on other de-
vices. The data transfer delay can be reduced as the initiator device
can choose nearby devices to execute tasks.

Efficient subtask allocation algorithms will reduce the PNP-block
completion time and, thus, the entire computation completion time.
Figure 5 illustrates the timing and components of a PNP-block ex-
ecution. Along thex-axis are thek remote nodes that will execute
the parallel subtasks of the block. Along they-axis is a depiction
of the time taken at each remote node to receive disseminated sub-
tasks from the initiator, execute those subtasks, and provide the re-
sult collection back to the initiator. Our goal for subtask allocation
is to reduce the completion time of the last subtask which equals to
the PNP-block completion time. We consider three types of inter-
mittent connectivity and design subtask allocation algorithms for
them.

Predictable Connectivity w/ Control Channel: We first con-
sider an ideal setting where the future contacts can be accurately
predicted, and a control channel is available for information shar-
ing.

Dijkstra’s routing algorithm for DTNs [11] uses future contact
information to compute the required data transfer time. The con-
trol channel is used to obtain the time and number of subtasks to be
executed on the target node with which to estimate the time to exe-
cute a subtask on that node. Therefore, given the starting time and
the target node, the subtask completion time can be accurately esti-
mated. Using this information, we propose a greedy allocation al-
gorithm,WaterFilling, that iteratively chooses the destination node
for every subtask with the minimum completion time.

Predictable Connectivity w/o Control Channel: It is impossi-
ble to reserve subtask execution time in advance without a control
channel. WaterFilling will cause contention for execution among
different computations on popular nodes. To solve this problem,
we propose an algorithm framework, Compute on Dissemination
(CoD).

The basic idea of CoD is that during the subtask dissemination
process, every intermediate node can execute these subtasks. In-
stead of explicitly assigning a destination node to every subtask,
CoD opportunistically disseminates them among those encountered
nodes until all finish. Every time two nodes meet, they exchange a
set of subtasks to minimize their completion time. The key function
of the framework is how to exchange the subtasks.

Unpredictable Connectivity: We develop a version of the CoD
subtask allocation algorithm for unpredictable contacts (upCoD). It
is still based on CoD with the constraint that future contact infor-
mation is unavailable. Every time two nodes meet, they exchange
a set of subtasks to minimize their execution time.

By replacing the time with an energy aware utility function, we
can adapt these algorithms to optimize energy use.

5.2 Experimental Results

We built a testbed on Emulab which loads the node contact traces
to emulate intermittent connectivity. Two contact traces, Haggle [10]
and RollerNet [20], are used in the experiments. To evaluate our
ideas, we implemented Serendipity on the testbed and tested a speech-
to-text application that translates audio to text.

We carried out an extensive set of experiments. A complete anal-
ysis of our results can be found in [17]. We describe below a sam-
ple of those results that explore the impact of job size and contact
traces. We use three audio files of different sizes, i.e., 20 Mb, 200
Mb, and 600 Mb.

Figure 6 shows how Serendipity improves performance com-
pared with executing locally. We make the following observations.
First, as the workload increases, Serendipity achieves greater ben-
efits in improving application performance. When the audio file is
600 Mb, it can achieve as large as 6.6 and 5.8 time speedup. Con-
sidering the number of nodes (11 for RollerNet and 9 for Haggle),
the system utilization is more than 60%. Second, the ratio of the
confidence intervals to the average values also decreases with the
workload, indicating all nodes can obtain similar performance ben-
efits. Third, in all the experiments WaterFilling consistently per-
forms better than pCoD which is better than upCoD. In the Haggle
trace of Figure 6(c), WaterFilling achieves 5.8 time speedup while
upCoD only achieves 4.2 time speedup. The The results indicate
that with more information Serendipity can perform better.

6. DISCUSSION AND FUTURE WORK
To summarize, our work explores paradigms for enabling com-

putationally intensive mobile applications that make opportunistic
use of available resources in nearby cloud/cloudlet infrastructure or
other mobile nodes. It is based on the following observations: 1)
The computational need of mobile devices often exceeds an indi-
vidual device’s capability, 2) The current trends in mobile devices
point to increasingly capable mobile resources, with some devices
deployed on vehicles or other mobile infrastructure providing high-
end capability, 3) Often, mobile applications are collaborative or
replicated in nature making it natural to involve multiple mobile
devices in a particular computation, and 4) Mobile devices experi-
enceintermittent connectivity, an inherent feature in how they com-
municate with each other as well as with fixed infrastructure.

We described a spectrum of Cirrus Cloud Computing contexts
(Figure 2) and we presented our preliminary work on two points
on that spectrum, demonstrating the benefits in power consumption
and task completion time.

Our work will continue its consideration of the entire spectrum
of computational contexts. Our ultimate goal is to develop an over-
arching framework for Cirrus Cloud Computing. More specifi-
cally, in addition to continuing to work on the scenarios described
in Sections 4 and 5, we will consider the intermittently-connected
cloudlet scenario shown in Figure 2(b). In this scenario, mobile de-
vices are in intermittent contact with multiple (stationary) cloudlet
resources over time. This scenario adds the multiple compute re-
source dimension to the problem. This environment presents addi-
tional concerns beyond the problem of partitioning for remote exe-
cution. Among the problems is how to provide for continued execu-
tion if a mobile device loses contact with a cloudlet before it com-
pletes the processing of an allocated task. Depending on the contact
model there is the possibility that the mobile device will meet the
same cloudlet again, in which case results can be obtained at this
subsequent meeting. Alternatively, we can consider a “hand-off”
process where data and computation are migrated among cloudlets
over the Internet in anticipation of future contacts with the initiator
device.

Executing Locally Serendipity(WF) Serendipity(pCoD)Serendipity(upCoD)
0

20

40

60

80

100

120

140

160
Jo

b
C

om
pl

et
io

n
T

im
e

(s
)

RollerNet
Haggle

1.8x1.8x
1.7x 1.7x

1.6x
1.5x

(a) 10 tasks

Executing Locally Serendipity(WF) Serendipity(pCoD)Serendipity(upCoD)
0

200

400

600

800

1000

1200

1400

1600

Jo
b

C
om

pl
et

io
n

T
im

e
(s

)

RollerNet
Haggle

4.5x 4.1x
3.6x

4.1x 3.8x

3.0x

(b) 100 tasks

Executing Locally Serendipity(WF) Serendipity(pCoD)Serendipity(upCoD)
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Jo
b

C
om

pl
et

io
n

T
im

e
(s

)

RollerNet
Haggle

5.8x
6.6x

5.1x
5.9x 5.6x

4.2x

(c) 300 tasks

Figure 6: A comparison of Serendipity’s performance benefits. Serendipity(WF), Serendipity(pCoD) and Serendipity(upCoD) cor-
responds the three scenarios discussed in Section 5.1. The average job completion times with their 95% confidence intervals are
plotted. We use two data traces, Haggle and RollerNet, to emulate the node contacts and three input sizes for each.

Ultimately, we envision that the environment in which a user-
carried mobile device operates will be a hybrid of the individual
scenarios we previously discussed. The goal of our work in gen-
eral is to allow the device to leverage the combination of resource
types available in its environment from which it derives the most
benefit while adhering to the constraints of the environment (such
as willingness of other devices to contribute resources). There are
two types of such environments. The first is where multiple op-
tions for remote computation are available contemporaneously. In
this case the question is how to optimally use the mixture of avail-
able resource types to maximum benefit. The second type is where
the environment can change over time. For example the initiator
device can encounter a cloudlet for some time and then be in an
environment with a number of neighbor user-carried devices some
time later. In this case, the environment needs to be monitored and
strategies for adaptation of the computation off-loading need to be
adopted.

Acknowledgments
We would like to thank the anonymous reviewers for their insight-
ful feedback. This work was supported in part by the US National
Science Foundation through grant CNS 0831714.

7. REFERENCES
[1] D. P. Anderson. BOINC: A system for public-resource

computing and storage. InIEEE/ACM GRID, 2004.
[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and

D. Werthimer. SETI@home: an experiment in
public-resource computing.Commun. ACM, 2002.

[3] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen,
and H.-I. Yang. The case for cyber foraging. InACM
SIGOPS European workshop, 2002.

[4] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb.
Simplifying cyber foraging for mobile devices. InACM
MobiSys, 2007.

[5] N. Banerjee, M. D. Corner, and B. N. Levine. Design and
Field Experimentation of an Energy-Efficient Architecture
for DTN Throwboxes.IEEE/ACM Transactions on
Networking, 2010.

[6] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and
V. S. Pande. Folding@home: Lessons from eight years of
volunteer distributed computing. InIEEE IPDPS, 2009.

[7] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: elastic execution between mobile device and

cloud. InProceedings of the 6th European Conference on
Computer Systems (EuroSys’11), pages 301–314, 2011.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making
smartphones last longer with code offload. InACM MobiSys,
2010.

[9] K. Fall, G. Iannaccone, J. Kannan, F. Silveira, and N. Taft. A
disruption-tolerant architecture for secure and efficient
disaster response communications. InISCRAM, 2010.

[10] P. Hui, J. Scott, J. Crowcroft, and C. Diot. Haggle: a
networking architecture designed around mobile users. In
WONS, 2006.

[11] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant
network.SIGCOMM Comput. Commun. Rev., 34:145–158,
August 2004.

[12] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang.
Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading. InIEEE
Infocom, 2012.

[13] E. Marinelli. Hyrax: Cloud computing on mobile devices
using mapreduce. Master’s thesis, Computer Science Dept.,
CMU, September 2009.

[14] P. Marshall. DARPA progress towards affordable, dense, and
content focused tactical edge networks. InIEEE MILCOM,
2008.

[15] A. S. Pentland, R. Fletcher, and A. Hasson. DakNet:
Rethinking connectivity in developing nations.Computer,
2004.

[16] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
case for VM-based cloudlets in mobile computing.IEEE
Pervasive Computing, 2009.

[17] C. Shi, V. Lakafosis, M. Ammar, and E. Zegura. Serendipity:
Enabling remote computing among intermittently connected
mobile devices. InACM MobiHoc, 2012.

[18] H. Soroush, N. Banerjee, A. Balasubramanian, M. D. Corner,
B. N. Levine, and B. Lynn. DOME: A Diverse Outdoor
Mobile Testbed. InACM HotPlanet, 2009.

[19] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the condor experience.Concurr.
Comput. : Pract. Exper., 2005.

[20] P. U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. D.
de Amorim, and J. Whitbeck. The accordion phenomenon:
Analysis, characterization, and impact on dtn routing. In
Proc. IEEE INFOCOM, 2009.

