Procedures

- So far looked at **intraprocedural** analysis: analyzing a single procedure
- **Interprocedural analysis** uses calling relationships among procedures
 - Enables more precise analysis information
Call graph

• First problem: how do we know what procedures are called from where?
 • Especially difficult in higher-order languages, languages where functions are values
 • We’ll ignore this for now, and return to it later in course…

• Let’s assume we have a (static) call graph
 • Indicates which procedures can call which other procedures, and from which program points.
Call graph example

```c
f() {
  1:  g();
  2:  g();
  3:  h();
}

g() {
  4:  h();
}

h() {
  5:  f();
  6:  i();
}

i() { ... }
```
Interprocedural dataflow analysis

• How do we deal with procedure calls?
• Obvious idea: make one big CFG

```c
main() {
    x := 7;
    r := p(x);
    x := r;
    z := p(x + 10);
}

p(int a) {
    if (a < 9) {
        y := 0;
    } else {
        y := 1;
    }
    return a;
}
```

Diagram: [Diagram of the program's control flow and data flow]
Interprocedural CFG

- CFG may have additional nodes to handle call and returns
 - Treat arguments, return values as assignments
- Note: a local program variable represents multiple locations

```
6
```

Set up environment for calling p

```
a := x, ...

Enter main
```
Invalid paths

- Problem: dataflow facts from one call site “tainting” results at other call site
 - p analyzed with merge of dataflow facts from all call sites

- How to address?
Inlining

- Inlining
 - Use a new copy of a procedure’s CFG at each call site

- Problems? Concerns?
 - May be expensive! Exponential increase in size of CFG
 - \(p() \{ q(); q(); \} \quad q() \{ r(); r() \} \quad r() \{ \ldots \} \)
 - What about recursive procedures?
 - \(p(\text{int } n) \{ \ldots p(n-1); \ldots \} \)
 - More generally, cycles in the call graph

```plaintext
p() { q(); q(); } q() { r(); r() } r() { ... }
```
Context sensitivity

- Solution: make a **finite** number of copies
- Use **context information** to determine when to share a copy
 -Results in a **context-sensitive** analysis
- Choice of what to use for context will produce different tradeoffs between precision and scalability
- Common choice: approximation of call stack
Context sensitivity example

main() {
 1: p();
 2: p();
}
p() {
 3: q();
}
q() {
 ...
}

Context: -
Enter main
1: Call p()
1: Return p()
2: Call p()
2: Return p()
Exit main

Context: 1
Enter p
3: Call q()
3: Return q()
Exit p

Context: 2
Enter p
3: Call q()
3: Return q()
Exit p

Context: 3
Enter q
... Exit q

© 2010 Stephen Chong, Harvard University
Context sensitivity example

```c
main() {
    1: p();
    2: p();
}
p() {
    3: q();
    ...
}
q() {
    …
}
```
Other contexts

- Context sensitivity distinguishes between different calls of the same procedure
 - Choice of contexts determines which calls are differentiated
- Other choices of context are possible
 - Caller stack
 - Less precise than call-site stack
 - E.g., context “2::2” and “2::3” would both be “fib::fib”
 - Object sensitivity: which object is the target of the method call?
 - For OO languages.
 - Maintains precision for some common OO patterns
 - Requires pointer analysis to determine which objects are possible targets
 - Can use a stack (i.e., target of methods on call stack)
Other contexts

• More choices
 • Assumption sets
 • What state (i.e., dataflow facts) hold at the call site?
 • Used in ESP paper
 • Combinations of contexts, e.g., Assumption set and object
Procedure summaries

- In practice, often don’t construct single CFG and perform dataflow
- Instead, store **procedure summaries** and use those
- When **call** \(p \) is encountered in context \(C \), with input \(D \), check if procedure summary for \(p \) in context \(C \) exists.
 - If not, process \(p \) in context \(C \) with input \(D \)
 - If yes, with input \(D' \) and output \(E' \)
 - if \(D' \subseteq D \), then use \(E' \)
 - if \(D' \not\subseteq D \), then process \(p \) in context \(C \) with input \(D' \cap D \)
 - If output of \(p \) in context \(C \) changes then may need to reprocess anything that called it
 - Need to take care with recursive calls
Flow-sensitivity

• Recall: in a flow insensitive analysis, order of statements is not important
 • e.g., analysis of $c_1;c_2$ will be the same as $c_2;c_1$
• Flow insensitive analyses typically cheaper than flow sensitive analyses
• Can have both flow-sensitive interprocedural analyses and flow-insensitive interprocedural analyses
 • Flow-insensitivity can reduce the cost of interprocedural analyses
Infeasible paths

- Context sensitivity increases precision by analyzing the same procedure in possibly many contexts
- But still have problem of **infeasible paths**
 - Paths in control flow graph that do not correspond to actual executions
Infeasible paths example

```c
main() {
  1: p(7);
  2: x:=p(42);
}

p(int n) {
  3: q(n);
}

q(int k) {
  return k;
}
```

Context: -
- Enter main
- 1: Call p(7)
- 1: Return p(7)
- Exit main

Context: 1
- Enter p
- 3: Call q(n)
- 3: Return q(n)
- Exit p

Context: 2
- Enter p
- 2: Call p(42)
- 2: Return p(42)
- Exit p

Context: 3
- Enter q
- return k
- Exit p
Realizable paths

• Idea: restrict attention to **realizable paths**: paths that have proper nesting of procedure calls and exits

• For each call site i, let’s label the call edge “(i)” and the return edge “(i)”

• Define a grammar that represents balanced paren strings

 $\text{matched ::= } \in \begin{array}{l} \varepsilon \quad \text{empty string} \\ l \ e \quad \text{anything not containing parens} \\ l \ \text{matched matched} \\ l \ (i \ \text{matched })_i \end{array}$

 • Corresponds to matching procedure returns with procedure calls

• Define grammar of partially balanced parens (calls that have not yet returned)

 $\text{realizable ::= } \in \begin{array}{l} \varepsilon \\ l \ (i \ \text{realizable} \\ l \ \text{matched realizable} \end{array}$
Example

main() {
 1: p(7);
 2: x:=p(42);
}

p(int n) {
 3: q(n);
}

q(int k) {
 return k;
}

© 2010 Stephen Chong, Harvard University
Meet over Realizable Paths

• Previously we wanted to calculate the dataflow facts that hold at a node in the CFG by taking the meet over all paths (MOP)
• But this may include infeasible paths
• Meet over all realizable paths (MRP) is more precise
 • For a given node \(n \), we want the meet of all realizable paths from the start of the CFG to \(n \)
 • May have paths that don’t correspond to any execution, but every execution will correspond to a realizable path
 • realizable paths are a subset of all paths
 • \(\Rightarrow \) MRP sound but more precise: \(\text{MRP} \subseteq \text{MOP} \)
Program analysis as CFL reachability

- Can phrase many program analyses as context-free language reachability problems in directed graphs
 - "Program Analysis via Graph Reachability" by Thomas Reps, 1998
 - Summarizes a sequence of papers developing this idea
CFL Reachability

• Let L be a context-free language over alphabet Σ
• Let G be graph with edges labeled from Σ
• Each path in G defines word over Σ
• A path in G is an L-path if its word is in L
• CFL reachability problems:
 • All-pairs L-path problem: all pairs of nodes n_1, n_2 such that there is an L-path from n_1 to n_2
 • Single-source L-path problem: all nodes n_2 such that there is an L-path from given node n_1 to n_2
 • Single-target L-path problem: all nodes n_1 such that there is an L-path from n_1 to given node n_2
 • Single-source single-target L-path problem: is there an L-path from given node n_1 to given node n_2
Why bother?

- All CFL-reachability problems can be solved in time cubic in nodes of the graph
- Automatically get a faster, approximate solution: graph reachability
- **On demand** analysis algorithm for free
- Gives insight into program analysis complexity issues
Encoding 1: IFDS problems

- Interprocedural finite distributive subset problems (IFDS problems)
 - Interprocedural dataflow analysis with
 - Finite set of data flow facts
 - Distributive dataflow functions \(f(a \cap b) = f(a) \cap f(b) \)

- Can convert any IFDS problem as a CFL-graph reachability problem, and find the MRP solution with no loss of precision
 - May be some loss of precision phrasing problem as IFDS
Encoding distributive functions

• Key insight: distributive function \(f:2^D \rightarrow 2^D \) can be encoded as graph with \(2D+2 \) nodes

• W.L.O.G. assume \(\cap \equiv \cup \)

• E.g., suppose \(D = \{x, g\} \)

• Edge \(\Lambda \rightarrow d \) means \(d \in f(S) \) for all \(S \)

• Edge \(d_1 \rightarrow d_2 \) means \(d_2 \notin f(\emptyset) \) and \(d_2 \in f(S) \) if \(d_1 \in S \)

• Edge \(\Lambda \rightarrow \Lambda \) always in graph (allows composition)
Encoding distributive functions

- $\lambda S. \{x, g\}$

- $\lambda S. S-\{x\}$
Encoding distributive functions

\(\lambda S. S\{x\} \circ \lambda S. \{x, g\}\)
Exploded supergraph $G^\#$

- Let G^* be supergraph (i.e., interprocedural CFP)
- For each node $n \in G^*$, there is node $\langle n, \Lambda \rangle \in G^\#$
- For each node $n \in G^*$, and $d \in D$ there is node $\langle n, d \rangle \in G^\#
- For function f associated with edge $a \to b \in G^*$
 - Edge $\langle a, \Lambda \rangle \to \langle b, d \rangle$ for every $d \in f(\emptyset)$
 - Edge $\langle a, d_1 \rangle \to \langle b, d_2 \rangle$ for every $d_2 \in f(\{d_2\}) - f(\emptyset)$
 - Edge $\langle a, \Lambda \rangle \to \langle b, \Lambda \rangle$
Possibly uninitialized variable example

```plaintext
declare g: int

procedure main
begin
  declare x: int
  read(x)
  call P(x)
end

procedure P(value a: int)
begin
  if (a > 0) then
    read(g)
    a := a - g
    call P(a)
    print(a, g)
  fi
end
```

- Closed circles represent nodes reachable along realizable paths from \langle start_{\text{main}}, \Lambda \rangle

Program Analysis via Graph Reachability by Reps, Information and Software Technology 40(11-12) 1998

© 2010 Stephen Chong, Harvard University
Encoding 2: IDE problems

• **Interprocedural Distributive Environment problems (IDE problems)**
 • Interprocedural dataflow analysis with
 • Dataflow info at program point represented as a finite environment (i.e., mapping from variables/locations to finite height domain of values)
 • Transfer function distributive “environment transformer”
 • E.g., copy constant propagation
 • interprets assignment statements such as \(x=7\) and \(y=x\)
 • E.g. linear constant propagation
 • also interprets assignment statements such as \(y = 5*z + 9\)
Encoding distributive environment-transformers

- Similar trick to encoding distributive functions in IFDS
- Represent environment-transformer function as graph with each edge labeled with micro-function