Searching

Also: Logarithms
Searching an array of integers

- If an array is not sorted, there is no better algorithm than linear search for finding an element in it

```java
static final int NONE = -1; // not a legal index

static int linearSearch(int target, int[] a) {
    for (int p = 0; p < a.length; p++) {
        if (target == a[p]) return p;
    }
    return NONE;
}
```
Searching an array of Strings

- Searching an array of Strings is just like searching an array of integers, except
 - Instead of `int1==int2` we need to use `string1.equals(string2)`

```java
static final int NONE = -1; // not a legal index

static int linearSearch(String target, String[] a) {
    for (int p = 0; p < a.length; p++) {
        if (target.equals(a[p])) return p;
    }
    return NONE;
}
```
Searching an array of Objects is just like searching an array of Strings, \textit{provided}\n
- The operation \texttt{equals} has been defined appropriately

```java
static final int NONE = -1; // not a legal index

static int linearSearch(Object target, Object[] a) {
    for (int p = 0; p < a.length; p++) {
        if (target.equals(a[p])) return p;
    }
    return NONE;
}
```
There is no way, in Java, to write a general linear search method for any data type

We can write a method that works for an array of objects (because Object defines the equals method)
- For arbitrary objects, equals is just ==
- For your own objects, you may want to override public boolean equals(Object o)
 - The parameter must be of type Object!
- The method we defined for Objects also works fine for Strings (because String overrides equals)

A search method for objects won’t work for primitives
- Although an int can be autoboxed to an Integer, an int[] cannot be autoboxed to an Integer[]
Review: Overriding methods

- To **override** a method means to replace an inherited method with one of your own.
- Your new method must be a *legal replacement* for the inherited version.
 - **Consequences:**
 - Your new method must have the exact **same signature** (name, order and types of parameters—but parameter names are irrelevant).
 - Your new method must have the **same return type**.
 - Your new method must be **at least as public** as the method it replaces.
 - Your new method can throw **no new exceptions** that the method being overridden doesn’t already throw.
- In Java 5 and later, you should put `@Override` in front of your method.
 - This lets the compiler check that you got the signature right.
The `Object` class defines

```java
public boolean equals(Object obj)
```

For most objects, this just tests *identity*: whether the two objects are really one and the same.

This is *not* generally what you want.

The `String` class overrides this method with a method that is more appropriate for Strings.

You can override `equals` for your own classes.

If you override `equals`, there are some rules you should follow.
Overriding `equals`

- If you override `equals`, your method should have the following properties (for your objects `x`, `y`, `z`)
 - **Reflexive**: for any `x`, `x.equals(x)` should return `true`
 - **Symmetric**: for any non-null objects `x` and `y`, `x.equals(y)` should return the same result as `y.equals(x)`
 - For any non-null `x`, `x.equals(null)` should return `false`
 - **Transitive**: if `x.equals(y)` and `y.equals(z)` are `true`, then `x.equals(z)` should also be `true`
 - **Consistent**: `x.equals(y)` should always return the same answer (unless you modify `x` or `y`, of course)

- Java cannot check to make sure you follow these rules
Reference implementation for equals

- public class Person {
 String name;

 public Person(String name) {
 this.name = name;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (! (o instanceof Person)) return false;
 Person p = (Person)o;
 return (name.equals(p.name));
 }
}

Overriding `hashCode`

- Whenever you override `equals`, you should also override `public int hashCode()`.
 - This method “makes hash” of its instance, producing a value that looks random.
 - The purpose of this function is not discussed here.
- There is only one rule that the `hashCode` method must follow:
 - If `object1.equals(object2)`, then it must be true that `object1.hashCode() == object2.hashCode()`.
 - Note that the reverse is *not* necessarily true—unequal objects may have equal hash codes.
About sorted arrays

- An array is **sorted in ascending order** if each element is no smaller than the preceding element.
- An array is **sorted in descending order** if each element is no larger than the preceding element.
- When we just say an array is “sorted,” by default we mean that it is sorted in ascending order.
- An array of **Object** cannot be in sorted order!
 - There is no notion of “smaller” or “larger” for arbitrary objects.
 - We can *define* an ordering for some of our objects.
java.lang provides a Comparable interface with the following method:

- `public int compareTo(Object that)`
- This method should return
 - A negative integer if `this` is less than `that`
 - Zero if `this` equals `that`
 - A positive integer if `this` is greater than `that`

Reminder: you implement an interface like this:

```java
class MyObject implements Comparable {
    public int compareTo(Object that) {
        // Implement the logic...
    }
}
```
Rules for implementing Comparable

You must ensure:

- \texttt{x.compareTo(y)} and \texttt{y.compareTo(x)} either are both zero, or else one is positive and the other is negative
- \texttt{x.compareTo(y)} throws an exception if and only if \texttt{y.compareTo(x)} throws an exception
- The relation is transitive: \((\texttt{x.compareTo(y)}>0 \land \texttt{y.compareTo(z)}>0)\) implies \texttt{x.compareTo(z)}>0
- if \texttt{x.compareTo(y)}==0, then \texttt{x.compareTo(z)} has the same sign as \texttt{y.compareTo(z)}

You should ensure:

- \texttt{compareTo} is consistent with \texttt{equals}
Consistency with equals

- `compareTo` is consistent with `equals` if:
 \[x.compareTo(y) == 0 \]
 gives the same boolean result as
 \[x.equals(y) \]

- Therefore: if you implement `Comparable`, you really should override `equals` as well.

- Java doesn’t actually require consistency with `equals`, but sooner or later you’ll get into trouble if you don’t meet this condition.
Binary search

- **Linear search** has linear time complexity:
 - Time \(n \) if the item is not found
 - Time \(n/2 \), on average, if the item is found
- If the array is sorted, we can write a faster search
- How do we look up a name in a phone book, or a word in a dictionary?
 - Look somewhere in the middle
 - Compare what’s there with the thing you’re looking for
 - Decide which half of the remaining entries to look at
 - Repeat until you find the correct place
- This is the **binary search algorithm**
Binary search algorithm (p. 43)

To find which (if any) component of \(a[left..right]\) is equal to \(target\) (where \(a\) is sorted):

1. Set \(l = left\), and set \(r = right\)
2. While \(l <= r\), repeat:
 - Let \(m\) be an integer about midway between \(l\) and \(r\)
 - If \(target\) is equal to \(a[m]\), terminate with answer \(m\)
 - If \(target\) is less than \(a[m]\), set \(r = m-1\)
 - If \(target\) is greater than \(a[m]\), set \(l = m+1\)
3. Terminate with answer none

<table>
<thead>
<tr>
<th>l</th>
<th>m-1</th>
<th>m</th>
<th>m+1</th>
<th>r</th>
</tr>
</thead>
</table>
Example of binary search

Search the following array a for 36:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>23</td>
<td>28</td>
<td>28</td>
<td>32</td>
<td>32</td>
<td>37</td>
<td>41</td>
<td>46</td>
</tr>
</tbody>
</table>

1. $(0+15)/2=7$; $a[7]=19$; too small; search 8..15

2. $(8+15)/2=11$; $a[11]=32$; too small; search 12..15

3. $(12+15)/2=13$; $a[13]=37$; too large; search 12..12

4. $(12+12)/2=12$; $a[12]=32$; too small; search 13..12...but 13>12, so quit: 36 not found
static int binarySearch(Comparable target,
 Comparable[] a, int left, int right) {
 int l = left, r = right;
 while (l <= r) {
 int m = (l + r) / 2;
 int comp = target.compareTo(a[m]);
 if (comp == 0) return m;
 else if (comp < 0) r = m – 1;
 else /* comp > 0 */ l = m + 1;
 }
 return NONE; // As before, NONE = -1
}
Recursive binary search in Java

```java
static int binarySearch(Comparable target,
    Comparable[] a, int left, int right) {
    if (left > right) return NONE;
    int m = (left + right) / 2;
    int comp = target.compareTo(a[m]);
    if (comp == 0) return m;
    else if (comp < 0)
        return binarySearch(target, a, left, m-1);
    else {
        assert comp > 0;
        return binarySearch(target, a, m+1, right);
    }
}
```
Strings of bits

- There is only one possible zero-length sequence of bits
- There are two possible “sequences” of a single bit: 0, 1
- There are four sequences of two bits: 00, 01, 10, 11
- There are eight sequences of three bits: 000, 001, 010, 011, 100, 101, 110, 111
- Each time you add a bit, you double the number of possible sequences
 - Add 0 to the end of each existing sequence, and do the same for 1
- “Taking the logarithm” is the inverse of exponentiation
 - \[2^0 = 1\quad 2^1 = 2\quad 2^2 = 4\quad 2^3 = 8,\text{ etc.}\]
 - \[\log_2 1 = 0\quad \log_2 2 = 1\quad \log_2 4 = 2\quad \log_2 8 = 3,\text{ etc.}\]
Logarithms

- In computer science, we almost always work with logarithms base 2, because we work with bits
- $\log_2 n$ (sometimes written as $\lg n$) tells us how many bits we need to represent n possibilities
 - Example: To represent 10 digits, we need $\lg 10 = 3.322$ bits
 - Since we can’t have fractional bits, we need 4 bits, with some bit patterns not used: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, and not 1010, 1011, 1100, 1101, 1110, 1111
- Logarithms also tell us how many times we can cut a positive integer in half before reaching 1
 - Example: $16/2=8$, $8/2=4$, $4/2=2$, $2/2=1$, and $\lg 16 = 4$
 - Example: $10/2=5$, $5/2=2.5$, $2.5/2=1.25$, and $\lg 10 = 3.322$
Relationships

- Logarithms of the same number to different bases differ by a constant factor

<table>
<thead>
<tr>
<th>Base</th>
<th>Logarithm (Base 2)</th>
<th>Logarithm (Base 10)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.000</td>
<td>0.301</td>
<td>3.322</td>
</tr>
<tr>
<td>3</td>
<td>1.585</td>
<td>0.477</td>
<td>3.322</td>
</tr>
<tr>
<td>4</td>
<td>2.000</td>
<td>0.602</td>
<td>3.322</td>
</tr>
<tr>
<td>5</td>
<td>2.322</td>
<td>0.699</td>
<td>3.322</td>
</tr>
<tr>
<td>6</td>
<td>2.585</td>
<td>0.778</td>
<td>3.322</td>
</tr>
<tr>
<td>7</td>
<td>2.807</td>
<td>0.845</td>
<td>3.322</td>
</tr>
<tr>
<td>8</td>
<td>3.000</td>
<td>0.903</td>
<td>3.322</td>
</tr>
<tr>
<td>9</td>
<td>3.170</td>
<td>0.954</td>
<td>3.322</td>
</tr>
<tr>
<td>10</td>
<td>3.322</td>
<td>1.000</td>
<td>3.322</td>
</tr>
</tbody>
</table>
Logarithms—a summary

- Logarithms are exponents
 - if $b^x = a$, then $\log_b a = x$
 - if $10^3 = 1000$, then $\log_{10} 1000 = 3$
 - if $2^8 = 256$, then $\log_2 256 = 8$
- If we start with $x = 1$ and multiply x by 2 eight times, we get 256
- If we start with $x = 256$ and divide x by 2 eight times, we get 1
- \log_2 is how many times we halve a number to get 1
- \log_2 is the number of bits required to represent a number in binary (fractions are rounded up)
Binary search takes log \(n \) time

- In binary search, we choose an index that cuts the remaining portion of the array in half
- We repeat this until we either find the value we are looking for, or we reach a subarray of size 1
- If we start with an array of size \(n \), we can cut it in half \(\log_2 n \) times
- Hence, binary search has logarithmic (log \(n \)) time complexity
- For an array of size 1000, this is 100 times faster than linear search (\(2^{10} \approx 1000 \))
Conclusion

- Linear search has linear time complexity
- Binary search has logarithmic time complexity
- For large arrays, binary search is far more efficient than linear search
 - However, binary search requires that the array be *sorted*
 - If the array *is* sorted, binary search is
 - 100 times faster for an array of size 1000
 - 50,000 times faster for an array of size 1,000,000

This is the kind of speedup that we care about when we analyze algorithms
The End