More About Values
Casts

- To *cast* is to take a value of one type and return the corresponding value of some other type (or an error, if the cast is impossible)
 - `int(x)` casts a string, float, or boolean `x` to an integer
 - `float(x)` casts a string, integer, or boolean `x` to a float
 - `str(x)` returns the value of `x` as a string
 - `hex(int)` returns a string representing the hexadecimal value of the integer `int`
 - `oct(int)` returns a string representing the octal value of the integer `int`
 - `bin(int)` returns a string representing the binary value of the integer `int`
 - `chr(int)` returns the character represented by the Unicode value `int`
 - `ord(ch)` returns the integer value of the Unicode character `ch`
 - `unichr(x)` is in the textbook, but no longer exists, because in Python 3, all strings are in Unicode
ASCII and Unicode

• On consumer laptops, memory is organized into **bytes**
 • A **byte** is eight **bits**
 • A **bit** is a single on/off (or 0/1, or true/false) value
• For many years, **ASCII** *(American Standard Code for Information Exchange)* has been the world standard
 • ASCII uses **seven** bits to represent each character
 • This is enough to represent all the characters on a standard (American) keyboard, with one bit left over
 • By also using the leftover **eighth** bit, every company could add more characters (like “smart quotes”)--and every company did
 • This is why smart quotes (and em-dashes, and many other characters) typed in Windows turn into other, weird characters on a Macintosh...and vice versa
• **Unicode** is a much newer standard (~1988) that solves this problem
 • Unicode uses single bytes to represent ASCII characters, and multiple bytes for any additional characters
Numbers

• In mathematics, *integers* (whole numbers) are *exact* and may be *arbitrarily large*

• In programming, integers are *exact* and in Python (but not most languages) they may be *arbitrarily large*

• In mathematics, *real numbers* have *infinite precision*
 • π has been calculated to 2.7 trillion digits

• In programming, *floating point* numbers have limited precision
 • >>> 10 / 3
 3.3333333333333335
Equality

• **Rule:** Never compare floating point numbers for exact equality (==) or exact inequality (!=)
 • This comparison usually works, but you can’t trust it
 • It’s safe to compare integers
 • Except:
    ```
    >>> i = 12345678901234567890
    >>> i == int(float(i))
    False
    ```

• **Rule:** If exact results are required, use only integers.
 • It’s probably to use floats to keep track of your own dollars and cents
 • Don’t do this for banks or other financial institutions!
Approximate equality

- What if you want to determine whether two floating point numbers are approximately equal?
 - You can test if the absolute value of their difference is small
 - \(\text{abs}(x - y) < \epsilon \)
 - What is \(\epsilon \)?
 - For “ordinary” numbers, maybe \(0.00001 \) is a reasonable value
 - For distances between atoms, maybe \(1.0e^{-9} \) is a better value
 - For distances between stars, maybe \(1.0e9 \) is a better value
 - You can test if the absolute value of their quotient is near \(1 \)
 - \(\text{abs}(x / y - 1.0) < \epsilon \)
 - With this approach, \(\epsilon \) is more like a “percentage” difference, and doesn’t have to be adjusted for the expected size of \(x \) and \(y \)
 - Unfortunately, if \(y \) is zero, this will cause your program to crash
Short-circuit logic

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>x and y</th>
<th>x or y</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Consider **x and y**: If x is **False**, Python doesn’t have to evaluate y

Consider **x or y**: If x is **True**, Python doesn’t have to evaluate y

Consider:

\[(y == 0) \text{ or } (\text{abs}(x / y - 1.0)) < 0.00001\]

- What will this do if **y == 0**?
- Do you think this is a correct test for equality?
The **ternary operator**

- Python has an **if-else operator** as well as an **if-else** statement
- **Syntax:** `true_expr if condition else false_expr`
- **Semantics:** Evaluate the **condition**; if **True**, evaluate the **true_expr**, otherwise evaluate the **false_expr**. Whichever gets evaluated becomes the value of the expression

- **Example:** `abs_x = x if x >=0 else -x`
- **Example:**
  ```python
  if (x == 0 if y == 0 else abs(x / y - 1.0) < eps):
      # do something when x and y are almost equal
  ```
 - The outer parentheses are not necessary in the above, but make it somewhat less difficult to read
 - I think the ternary operator is usually confusing and should be avoided
- What is the result of this expression if `x == 1.3e-50` and `y == 0`?
- What is the result of this expression if `x == 0` and `y == 1.3e-50`?
Number systems

- The **binary** (base 2) number system uses two “binary digits, ” (abbreviation: bits) -- 0 and 1
- The **octal** (base 8) number system uses eight digits: 0, 1, 2, 3, 4, 5, 6, 7
- The **decimal** (base 10) number system uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The **hexadecimal**, or “**hex**” (base 16) number system uses sixteen digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- In Python, write binary, octal, or hexadecimal numbers by prefixing them with **0b**, **0o**, or **0x**, respectively
- Regardless of how they are written, numbers are **stored** in binary and **displayed** in decimal
Using octal and hex

• Computers use binary, but the numbers are too long and confusing for people--it’s easy to lose your place
• Octal or hex is better for people
• Translation between binary and octal or hex is easy
• One octal digit equals three binary digits:
 \[
 \begin{array}{cccccccc}
 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
 \hline
 \text{octal} & 5 & 5 & 3 & 4 & 5 & 0 & 1 & 3
 \end{array}
 \]
• One hexadecimal digit equals four binary digits:
 \[
 \begin{array}{cccccccc}
 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
 \hline
 \text{hex} & B & 5 & C & A & 0 & B
 \end{array}
 \]
Bitwise operators

- ~ is “bitwise not” (or “invert” or “toggle”)
- & is “bitwise and”
- | is “bitwise or”
- ^ is “bitwise exclusive or” (or “xor”)
- x >> i shifts the bits in x to the right i places
- x << i shifts the bits in x to the left i places

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>~x</th>
<th>x & y</th>
<th>x</th>
<th>y</th>
<th>x ^ y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Precedence

- $2 + 3 \times 4$ is 14, not 20
- This is because multiplication has higher precedence than addition
- Here’s what you should remember about precedence:
 - Exponentiation ($**$) has highest precedence
 - Unary operators have higher precedence than the related binary operators in the same family
 - By “family” I mean arithmetic, logic, or bitwise operators, so $\text{not } x \text{ or } y$ means the same as $(\text{not } x) \text{ or } y$
 - Multiplication, division, and “and” operators have higher precedence than additions, subtraction, and “or” operators
 - $x \text{ or } y \text{ and } z$ means the same as $x \text{ or } (y \text{ and } z)$
 - For everything else, use parentheses to clarify your meaning, even if they aren’t needed
Comparison chaining

• In Python, you can *chain* comparisons
 • Example: \(x < y < z \) is legal and meaningful
• In every other language that I know, \(x < y \) would result in a *boolean* value, which would then be compared with \(z \)
• Comparison chaining is a nice feature, and you should feel free to use it, but...
 • It’s not allowed in Java
 • In C or C++ or C# it is allowed, but \(x < y \) will result in 0 or 1, which is then compared with \(z \)
Shorthand assignments

• \(x += y \) is shorthand for \(x = x + y \)
 • Example: \(x += 1 \) adds 1 to x
 • This same shorthand works for \textit{all} the other binary operators: \(-=, *=, \) etc.
Why do programmers confuse Halloween with Christmas?

Because Oct 31 == Dec 25.