More About Values
Casts

• To cast is to take a value of one type and return the corresponding value of some other type (or an error, if the cast is impossible)
 • `int(x)` casts a string, float, or boolean `x` to an integer
 • `float(x)` casts a string, integer, or boolean `x` to a float
 • `str(x)` returns the value of `x` as a string
 • `hex(int)` returns a string representing the hexadecimal value of the integer `int`
 • `oct(int)` returns a string representing the octal value of the integer `int`
 • `bin(int)` returns a string representing the binary value of the integer `int`
 • `chr(int)` returns the character represented by the Unicode value `int`
 • `ord(ch)` returns the integer value of the Unicode character `ch`
 • `unichr(x)` is in the textbook, but no longer exists, because in Python 3, all strings are in Unicode
ASCII and Unicode

- On consumer laptops, memory is organized into **bytes**
 - A **byte** is eight **bits**
 - A **bit** is a single on/off (or 0/1, or true/false) value
- For many years, **ASCII** (American Standard Code for Information Exchange) has been the world standard
 - ASCII uses **seven** bits to represent each character
 - This is enough to represent all the characters on a standard (American) keyboard, with one bit left over
 - By also using the leftover **eighth** bit, every company could add more characters (like “smart quotes”)--and every company did
 - This is why smart quotes (and em-dashes, and many other characters) typed in Windows turn into other, weird characters on a Macintosh...and vice versa
- **Unicode** is a much newer standard (~1988) that solves this problem
 - Unicode uses single bytes to represent ASCII characters, and multiple bytes for any additional characters
Numbers

- In mathematics, *integers* (whole numbers) are *exact* and may be *arbitrarily large*
- In programming, integers are *exact* and in Python (but not most languages) they may be *arbitrarily large*

- In mathematics, *real numbers* have *infinite precision*
 - π has been calculated to 2.7 trillion digits
- In programming, *floating point* numbers have limited precision
 - >>> 10 / 3
 3.3333333333333335
Equality

- **Rule:** Never compare floating point numbers for exact equality (==) or exact inequality (!=)
 - This comparison usually works, but you can’t trust it
 - It’s safe to compare integers
 - Except:
      ```python
      >>> i = 12345678901234567890
      >>> i == int(float(i))
      False
      ```

- **Rule:** If exact results are required, use only integers.
 - It’s probably to use floats to keep track of your own dollars and cents
 - Don’t do this for banks or other financial institutions!
Approximate equality

• What if you want to determine whether two floating point numbers are approximately equal?
 • You can test if the absolute value of their difference is small
 • \(\text{abs}(x - y) < \epsilon \)
 • What is \(\epsilon \)?
 • For “ordinary” numbers, maybe 0.00001 is a reasonable value
 • For distances between atoms, maybe 1.0e-9 is a better value
 • For distances between stars, maybe 1.0e9 is a better value
 • You can test if the absolute value of their quotient is near 1
 • \(\text{abs}(x / y - 1.0) < \epsilon \)
 • With this approach, \(\epsilon \) is more like a “percentage” difference, and doesn’t have to be adjusted for the expected size of \(x \) and \(y \)
 • Unfortunately, if \(y \) is zero, this will cause your program to crash
Short-circuit logic

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x and y</th>
<th>x or y</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

- Consider **x and y**: If **x** is **False**, Python doesn’t have to evaluate **y**
- Consider **x or y**: If **x** is **True**, Python doesn’t have to evaluate **y**
- Consider:
 \[(y == 0) \text{ or } (\text{abs}(x / y - 1.0)) < 0.00001\]
 - What will this do if **y == 0**?
 - Do you think this is a good way to determine if **x** and **y** are approximately equal?
The **ternary operator**

- Python has an `if-else` operator as well as an `if-else` statement
- **Syntax:** `true_expr if condition else false_expr`
- **Semantics:** Evaluate the `condition`; if `True`, evaluate the `true_expr`, otherwise evaluate the `false_expr`. Whichever gets evaluated becomes the value of the expression
- **Example:** `abs_x = x if x >=0 else -x`
- **Example:**
  ```
  if (x == 0 if y == 0 else abs(x / y - 1.0) < eps):
      # do something when x and y are almost equal
  ```
 - The outer parentheses are not necessary in the above, but make it somewhat less difficult to read
- I think the ternary operator is usually confusing and should be avoided
- What is the result of this expression if `x == 1.3e-50` and `y == 0`?
- What is the result of this expression if `x == 0` and `y == 1.3e-50`?
Number systems

- The **binary** (base 2) number system uses two “binary digits,” (abbreviation: bits) -- 0 and 1
- The **octal** (base 8) number system uses eight digits: 0, 1, 2, 3, 4, 5, 6, 7
- The **decimal** (base 10) number system uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The **hexadecimal**, or “**hex**” (base 16) number system uses sixteen digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- In Python, write binary, octal, or hexadecimal numbers by prefixing them with **0b**, **0o**, or **0x**, respectively
- Regardless of how they are written, numbers are **stored** in binary and **displayed** in decimal
Using octal and hex

- Computers use binary, but the numbers are too long and confusing for people--it’s easy to lose your place
- Octal or hex is better for people
- Translation between binary and octal or hex is easy
- One octal digit equals three binary digits:
 \[
 \begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 5 & 5 & 3 & 4 \\
 5 & 0 & 1 & 3 \\
 \end{array}
 \]

- One hexadecimal digit equals four binary digits:
 \[
 \begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 1 & 0 & 1 & 1 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 B & 5 & C & A \\
 0 & 1 & B \\
 \end{array}
 \]
Bitwise operators

- ~ is “bitwise not” (or “invert” or “toggle”)
- & is “bitwise and”
- | is “bitwise or”
- ^ is “bitwise exclusive or” (or “xor”)
- x >> i shifts the bits in x to the right i places
- x << i shifts the bits in x to the left i places

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>~x and y</th>
<th>x & y</th>
<th>x</th>
<th>y</th>
<th>x ^ y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Precedence

- \(2 + 3 \times 4\) is 14, not 20
- This is because multiplication has higher precedence than addition
- Here’s what you should remember about precedence:
 - Exponentiation (**) has highest precedence
 - Unary operators have higher precedence than the related binary operators in the same family
 - By “family” I mean arithmetic, logic, or bitwise operators, so \(\text{not } x \text{ or } y\) means the same as \((\text{not } x) \text{ or } y\)
 - Multiplication, division, and “and” operators have higher precedence than additions, subtraction, and “or” operators
 - \(x \text{ or } y \text{ and } z\) means the same as \(x \text{ or } (y \text{ and } z)\)
 - For everything else, use parentheses to clarify your meaning, even if they aren’t needed
Comparison chaining

- In Python, you can *chain* comparisons
 - Example: \(x < y < z \) is legal and meaningful
- In every other language that I know, \(x < y \) would result in a *boolean* value, which would then be compared with \(z \)
- Comparison chaining is a nice feature, and you should feel free to use it, but...
 - It’s not allowed in Java
 - In C or C++ or C# it is allowed, but \(x < y \) will result in 0 or 1, which is then compared with \(z \)
Shorthand assignments

- $x += y$ is shorthand for $x = x + y$
 - Example: $x += 1$ adds 1 to x
 - This same shorthand works for all the other binary operators
The End

• Why do programmers confuse Halloween with Christmas?

• Because Oct 31 == Dec 25.