
When Idling is Ideal: Optimizing Tail-Latency for
Heavy-Tailed Datacenter Workloads with Perséphone

Paper #344

Abstract
This paper introduces Perséphone, a new kernel-bypass OS
scheduler designed to minimize tail latency for applications
executing at microsecond-scale and exhibiting wide service
time distributions. Perséphone integrates a new scheduling
policy, Dynamic Application-aware Reserved Cores (DARC),
that reserves cores for requests with short processing times.
Unlike existing kernel-bypass schedulers, DARC is not work
conserving. DARC pro�les application requests and leaves
a small number of cores idle when no short requests are in
the queue, so when short requests do arrive, they are not
blocked by longer-running ones. Counter-intuitively, leaving
cores idle lets DARC maintain lower tail latencies at higher
utilization, reducing the overall number of cores needed to
serve the same workloads and consequently better utilizing
the data center resources.

1 Introduction
Datacenter networks and in-memory systems increasingly
have (single) microsecond [10] latencies. These latencies
are critical for today’s complex cloud applications to meet
SLOs while fanning out to hundreds of datacenter backend
servers [21, 67]. At microsecond-scale, the distribution of
request processing times can be especially extreme; for ex-
ample, Redis can process GET/PUT requests in 2µs [69] but
more complex SCAN and EVAL requests can take hundreds
of microseconds or milliseconds to complete. As a result,
a single long-running request can block hundreds or thou-
sands of shorter requests.
To bound tail latency, especially for short requests, mod-

ern datacenter servers run at low utilization to keep queues
short and reduce the likelihood that a short request will
block behind long requests. For instance, Google reports that
machines spend most of their time in the 10-50% utilization
range [11]. Unfortunately, this approach wastes precious
CPU cycles and does not guarantee that microsecond data-
center systems will always meet SLOs for short requests.
Recent kernel-bypass schedulers have improved utiliza-

tion with shared queues [58] and work-stealing [68, 70] but
these techniques only work for uniform and lightly-tailed
workloads. For workloads with a wide distribution of re-
sponse times, Shinjuku [44] leverages interrupts for pro-
cessor sharing; however, Shinjuku’s interrupts impose non-
negligible delays for single digit microsecond requests and
are too expensive to run frequently (i.e., our experiments saw
⇡2us per interrupt and preempting as frequently as every 5µs
had a high penalty on sustainable load). Furthermore, Shin-
juku’s non-standard use of hardware virtualization features

makes it di�cult to use in the datacenter [58] and public
clouds, e.g., Google Cloud, Microsoft Azure, AWS, etc..

Recent congestion control schemes [3, 63], similarly, opti-
mize network utilization and reduce �ow completion times
by implementing Shortest-Remaining-Processing-Time (SRPT),
which is optimal for minimizing the average waiting time.
Unlike CPU scheduling, though, switch packet schedulers
have a physical ‘preemption’ unit which is the MTU in the
worst case, they process packet headers that include the
actual message size, and leverage tra�c classes that can pri-
oritize packets based on the size of the �ow they belong to,
which makes scheduling decisions and policy enforcement
easier. A CPU scheduler cannot know in advance for how
long each request will occupy the CPU and there is no upper
limit on execution time, which makes the implementation of
SRPT-like policies, or generally policies that prioritize short
requests hard to implement at the microsecond scale.

The unifying factor between congestion control schemes,
such as Homa [63] and CPU schedulers, such as Shinjuku,
that deal with heavy-tail �ow and request distributions, re-
spectively, is that they both temporarily multiplex the shared
resource. This paper takes a di�erent approach to CPU sched-
uling for heavy-tailed service time distributions by taking
advantage of parallelism and the abundance of cores on a
modern multicore server through application-aware [48]
spatial isolation of CPU resources.

First, we observe that a kernel bypass scheduler can, with
a little help from programmers, identify the type of incoming
requests. For many cloud applications, the messaging pro-
tocol exposes the required mechanisms to declare request
types: Memcached request types are part of the protocol’s
header [59]; Redis uses a serialization protocol specifying
commands [78]; Protobuf de�nes Message Types [34]; Next,
we observe that requests of the same type often have similar
processing types, so, given the ability to identify types, we
can track past processing times for each type to predict fu-
ture processing times. Finally, we carefully leave cores idle
to prevent short requests from queuing behind inde�nitely
longer ones.

Inspired by prior research in networking [2], our approach
goes against the grain for OS schedulers, which commonly
prioritize work-conservation. We show that by making a mi-
nor sacri�ce in the maximum achievable throughput, we can
increase the achievable throughput under an aggressive la-
tency SLO and as a result increase the overall CPU utilization
of the datacenter.
To implement this approach, we need to tackle two chal-

lenges: (1) predict how long each request type will occupy

1

SOSP ’21, October 26–28, 2021, Koblenz, Germany Paper #344

a CPU and (2) e�ciently partition CPU resources among
types while retaining the ability to handle bursts of arrivals
and minimizing CPU waste. To this end, we introduce Per-
séphone, a new application aware, kernel-bypass scheduler.
Perséphone lets applications de�ne request �lters and uses
these �lters to dynamically pro�le the workload. Using these
pro�les, Perséphone implements a new scheduling policy,
Dynamic, Application-aware Reserved Cores (DARC) that uses
work conservation for short requests only and is not work
conserving for long requests. DARC prioritizes short requests
at a small cost in throughput – 5% in our experiments – and
is best suited for applications that value microsecond re-
quests. For other applications, existing kernel-bypass sched-
uler work well, though we believe there is a large set of
datacenter workloads that can bene�t from DARC.

We prototype Perséphone using DPDK and compare it to
two state-of-the-art kernel-bypass schedulers: Shinjuku [44]
and Shenango [68]. Using a diverse set of workloads, we
show that Perséphone with DARC can drastically improve
requests tail latency and sustain up to 2.3x and 1.3xmore load
than Shenango and Shinjuku, respectively, at a target SLO.
In addition, these improvements come at a lower cost to long
requests than Shinjuku’s preemption technique, highlighting
the challenges of traditional OS scheduling techniques at
microsecond scale.

2 The case for idling
For workloads with wide service time distribution, long re-
quests can block short requests even when queues are short
because long requests can easily occupy all workers for a
long time. We refer to this e�ect as dispersion-based head-
of-line blocking. To better understand how dispersion-based
blocking a�ects short requests, we look beyond request la-
tency and study slowdown: the ratio of total time spent at
the server over the time spent doing pure application pro-
cessing [39].
Slowdown better re�ects the impact of long requests on

short requests. For heavy-tailed workloads, short requests
experience a slowdown proportional to the length of the tail.
More concretely, consider the following workload, similar
to Zygos’ “bimodal-2” [70], a mix of 99.5% short requests
running for 0.5µs and 0.5% long requests executing in 500µs.
A short request blocked behind a long one can experience a
slowdown of up to 1001, while a long request blocked behind
a short request will see a slowdown of 1.001. As a result, a
few short requests blocked by long requests will drive the
slowdown distribution and increase tail latency.

Using this workload, we simulate four scheduling policies,
including DARC, listed in Table 1. Decentralized �rst come,
�rst served (d-FCFS) models Receive Side Scaling, widely
used in the datacenter today [26, 56] and by the seminal
IX operating system [14]. With d-FCFS, each worker has a
local queue and receives an even share of all incoming tra�c.
Centralized �rst come, �rst served (c-FCFS) uses a single queue

Table 1. Unlike most existing kernel-bypass OS schedulers, DARC
is not work conserving. It extracts request types from incoming
requests, estimates how long a request will occupy a CPU before
scheduling it and reserves workers for short requests to minimize
dispersion-based head-of-line blocking.

Policy
Exploit
typed
queues

Non
Work conserving

Non
preemptive Example System

d-FCFS 7 3 3
IX [14]
Arrakis [69]

c-FCFS 7 7 3
ZygOS [70]
Shenango [68]

TS 3 7 7 Shinjuku [44]

DARC 3 3 3 Perséphone

to receive all requests and send them to idle workers. c-FCFS
is usually used at the application level — for example, web
servers (e.g., NGINX) often use a single dispatch thread —
and captures recent research on kernel-bypass systems [68,
70], which simulate c-FCFS with per-worker queues and
work stealing. Time Sharing (TS) is used in the Shinjuku
system [44], with multiple queues for di�erent request types
and interrupts at the microsecond scale using Dune [13].
We simulate TS with a 5µs preemption frequency and 1µs
overhead per preemption, matching Shinjuku’s reported ⇡
2000 cycles overhead on a 2GHz machine.
Figure 1 shows our simulation results assuming an ideal

system with no network overheads. We use 16 workers, sim-
ulate 1 second of requests distributed under Poisson, and
report the observed slowdown for the 99.9th percentile of
each type of requests — so as to capture the impact of the
0.5% long requests on the tail — at varying utilizations, up
to a maximum of 5.3 million requests per second (Mrps).

d-FCFS performs poorly; it o�ers an uncontrolled form of
non work conservation where workers sit idle while requests
wait in other queues. Additionally, d-FCFS has no sense of
request types: workers might process a long request ahead of
a short one if it arrived �rst. c-FCFS performs better because
it is work conserving but short requests will block when all
workers are busy processing long requests. To meet a target
SLO of 10x slowdown for each type of requests, c-FCFS must
run the server at 2.1 Mrps, 40% of the peak load. Shinjuku’s
TS policy fares better than c-FCFS and d-FCFS, being both
work conserving and able to preempt long requests: it main-
tains slowdown bellow 10 up to 3.7 Mrps, 70% of the peak
load. However, this simulation accounts for an optimistic
1µs preemption overhead and overlooks the practicality of
supporting preemption at the microsecond scale (c.f., Sec. 6).
The DARC approach: Our key insight is that prioritizing
short requests is critical to protect their service time, an
observation the networking community has already made
when designing datacenter congestion control schemes [2,

2

When Idling is Ideal SOSP ’21, October 26–28, 2021, Koblenz, Germany

Figure 1. Simulated achievable throughput as a function of 99.9th percentile slowdown for the policies listed in Table 1 on a 16 cores
system and a workload composed of 99.5% short requests (0.5µs) and 0.5% long requests (500µs). For a target SLO of 10 times the average
service time for each request type, c-FCFS and TS can only handle 2.1 and 3.7 Millions requests per second (Mrps), respectively. DARC can
sustain 5.1 Mrps for the same objective. The Y axis represents the total achievable throughput for the entire workload.

3, 63]. However, using tra�c classes and bounded bu�ers
is challenging for CPU scheduling since schedulers do not
know how long a request may occupy a CPU and preemp-
tion is una�ordable at single-digit microsecond scales. We
observe that leaving certain cores idle for readily handling
potential future (bursts of) short requests is highly bene�cial
at microsecond scale. For a request that takes 1 µs or less,
even preempting as frequently as every 5µs introduces a 6x
slowdown. Instead, given an understanding of each request’s
potential processing time, a request type aware, not work
conserving policy can reduce slowdown for short requests
by estimating their CPU demand and dedicating workers to
them. These workers will be idle when short requests do not
arrive, but when they do, these requests are guaranteed to
not be blocked behind long requests.

As seen in Figure 1, DARC canmeet the 10x slowdown SLO
target for both type of requests at 5.1 Mrps. This represents
2.5x and 1.4x more sustainable throughput than c-FCFS and
Shinjuku’s preemption policy. At this load, short requests
experience 9.87µs p99.9th tail latency, 3 and 1 orders of mag-
nitude smaller than c-FCFS and TS with 7738µs and 161µs,
respectively. To achieve this, DARC asks programmers for a
request �lter to identify types, estimates their CPU demand,
and reserves 1 worker for short requests at a small penalty
of 5% achievable throughput. Counter-intuitively, although
DARC wastes cycles idling, it reduces the overall number of
machines needed to serve a workload because servers can run
at much higher utilization while retaining good tail latencies
for short and long requests.

3 DARC Scheduling

The objective of DARC is to improve tail latency for single-
digit microsecond requests in cloud workloads without pre-
emption. Like recent networking techniques that co-design

the network protocol and switches priority queue manage-
ment [2, 3, 63] to favor small messages, we protect short
requests at backend servers by extracting their type, un-
derstanding their CPU demand, and dedicating enough re-
sources to satisfy their demand.

In this section, we describe the challenges associated with
implementing these techniques as a CPU scheduling policy,
then present the DARC scheduling model, how to compute
reservations and when to update them. Table 2 describes the
notation used throughout this section.

Challenges. Protecting short requests in a dynamic way
through priority queues and non work conservation is di�-
cult because we need to (1) predict how long each request
type will occupy a CPU and (2) partition CPU resources
among types while retaining the ability to handle bursts of
arrivals and minimizing CPU waste.

The �rst challenge stems from the granularity of operation
DARC is targeting, microsecond scales, and from the need
to react to changes in workload. We tackle this challenge
with a combination of low-overheads workload pro�ling
and queuing delay monitoring, using the former to build a
�ngerprint of requests’ CPU demand and the latter as a signal
that this �ngerprint might have signi�cantly changed. This
section describes the technique and Sec. 4 its implementation.
The second challenge can be detailed in two parts: burst-

tolerance and CPU waste. First, though reducing the number
of cores available to a given request type forbids it from
negatively impacting other types, it also reduces its ability
to absorb bursts of arrivals [53]. We solve this tension by
enabling cycles stealing from shorter types to longer ones,
a mechanism in which short requests can execute on cores
otherwise reserved for longer types — but not the opposite.
The rationale for stealing is that shorter requests compara-
tively cause less slowdown to long requests. Note that cycle

3

SOSP ’21, October 26–28, 2021, Koblenz, Germany Paper #344

Table 2. Notation used to de�ne DARC

Symbol Description

N Number of request types
S Average service time
� A request type
� .S Type’s average service time
� .R Type’s occurrence
� Service time similarity factor for two types

stealing is a similar concept to work stealing [68, 70] but is
di�erent in practice, as performed from the DARC dispatcher
rather than from application workers (so it does not require
expensive cross-worker coordination).

Second, and similarly tomessage types and priority queues
in network devices, the number of request types can be dif-
ferent than the number of CPU cores on the machine, so
very likely the demand for each request type will be frac-
tional — i.e., a request type could require 2.5 workers on
average. As a result, we need to determine a strategy for
sharing — or not — CPU cores between certain request types.
Sharing cores leads to a tension: regrouping types onto the
same cores risks dispersion-based blocking, but always giv-
ing entire cores to types with fractional demand can lead to
over-provisioning and starving other types. We handle this
tension with two mechanisms: grouping types together and
providing spillway cores. Grouping lets all request types �t
onto a limited number of cores and reduces the number of
fractional ties while retaining the ability to separate types
based on processing time. Spillway cores allows DARC to
always service types with little average CPU demand (typi-
cally much less than an entire core) as well as undeclared,
unknown requests.

Scheduling model. DARC presents a single queue ab-
straction to application workers: it iterates over typed queues
sorted by average service time and dequeues them in a �rst
come, �rst served fashion. Requests of a given type can be
scheduled not only on their reserved cores but also steal
cycles from cores allocated to longer types — a concept used
in Cycle Stealing with Central Queue (CSCQ), a job dispatch-
ing policy for compute clusters [40]. For each request type
registered in the system, if there is a pending request in that
type’s queue, DARC greedily searches the list of reserved
workers for an idle worker. If none is found, DARC searches
for a stealable worker. If a free worker is found, the head
of the typed queue is dispatched to this worker. When a
worker completes a request, it signals completion to the
DARC dispatcher.

DARC reservation mechanism. The number of work-
ers to dedicate to a given request type is based on the average
CPU demand of the type at peak load. We compute this de-
mand using the workload’s composition, normalizing the

Algorithm 1Worker reservation algorithm
procedure R������(Types, �)

// First group together similar request types
groups = group_types(Types, �).sort()
// Then attribute workers
S ÕN

j=0 S j ⇤ R j
n_reserved = 0
for g 2 groups do

g.S =
Õ
� .S ⇤ � .R 8 � 2 g

d = � .S
S

P round(d)
if P == 0 then P 1
for i 0; i <P; i++ do

g.reserved[i] next_free_worker()
n_reserved++;

// Set stealable workers
n_stealable num_workers - n_reserved;
for i 0; i < n_stealable; i++ do

g.stealable[i] next_free_worker()

contribution of each request type’s average service time to
the entire workload’s average service time. The contribution
of a given request type is its average service time multiplied
by its occurrence ratio as a percentage of the entire workload.
Speci�cally, given a set of N request types {�i ; i = 0 . . .N },
the average CPU time demand �i of �i with service time Si
and occurrence ratio Ri is:

0 Si ⇤ RiÕN
j S j ⇤ R j

, 1 (1)

Given a system withW workers, this means that we should
attribute �i ⇤W workers to �i .
Because CPU demand can be fractional and given the

non-preemptive requirement we set for the system, we need
a strategy to attribute fractions of CPUs to request types.
For each such “fractional tie”, we have to make a choice:
either ceil fractions and always grant entire cores or floor
fractions and consolidate fractional CPU demands on shared
cores. The former risks over-provisioning certain types, at
the cost of others, while the latter risks creating dispersion-
based blocking by mixing long and short requests onto the
same core(s).
Our approach combines the two: �rst we decrease the

number of “fractional ties” by grouping request types of
similar processing times, computing a CPU demand for the
entire group, and second we round this demand. As a result,
for N groups, if fi is the fractional demand of group i , the av-
erage CPU waste for DARC across all N groups is

ÕN
i 1 � fi

if fi � 0.5, else it is 0. In practice, during bursts, because we
selectively enable work conservation through work stealing
for shorter requests, CPU waste is smaller.
Algorithm 1 describes the reservation process. First, we

identify similar types whose average service time falls within
4

When Idling is Ideal SOSP ’21, October 26–28, 2021, Koblenz, Germany

a factor � of each other. Next, we compute the demand for
each group and accordingly attribute workers to meet it,
rounding fractional demands in the process. We always as-
sign at least one worker to a group. DARC grouping strat-
egy can still result in earlier groups — of shorter requests
— consuming all CPU cores. For example, a group of long
requests with a CPU demand smaller than 0.5 will not �nd
any free CPU core. To provide service to these groups, we
set aside “spillway” cores. If there are no more free work-
ers, next_free_worker() returns a spillway core. In our
experiments (Sec. 5), we use a single spillway core.

Finally, we selectively enablework conservation for shorter
requests and let each group steal from workers not yet re-
served, i.e., workers that are to be dedicated to longer request
types. This lets DARC better tolerate bursts of shorter re-
quests with little impact on the overall tail latency of the
workload.

As we process groups in order of ascending service time,
we favor shorter requests, and it is possible for our algorithm
to under-provision long requests — but never deny them
service thanks to spillway cores. Operators can tune the �
grouping factor to adjust non work conservation to their
desired SLOs. Grouping lets DARC handle workloads where
the number of distinct types is higher than the number of
workers.

Pro�ling the workload and updating reservations.
At runtime, the DARC dispatcher uses pro�ling windows
to maintain two pieces of information about each request
type: a moving average of service time and an occurrence
ratio. These are the Si and Ri of equation 1. The dispatcher
gathers them when application workers signal work com-
pletions. The dispatcher uses queuing delay and variation
in CPU demand as performance signals. If the former goes
beyond a target slowdown SLO and the latter deviates sig-
ni�cantly from the current demand, the dispatcher proceeds
to update reservations and transition to the next windows.
During the �rst windows, at startup, the system starts us-
ing c-FCFS, gathers samples, then transitions to DARC. This
technique lets DARC cope with changing workloads where
a type’s pro�le change (e�ectively, misclassi�cation). During
a pro�ling windows, unknown or unexpected requests can
use the spillway core(s) to execute. We discuss the sensibility
of this mechanism in Sec. 4.3.3.

4 Perséphone

We implement DARCwithin a kernel-bypass scheduler called
Perséphone. Though DARC requires no special hardware
or major application modi�cations, Perséphone must meet
the following requirements to support microsecond kernel-
bypass applications: (1) the networking stack must be able
to e�ciently sort requests by type in the data path, (2) the

scheduler must be able to quickly make per-request sched-
uling decisions, and (3) pro�ling workloads and updating
DARC reservation must present low overheads.
Perséphone meets the �rst requirement with an API for

capturing request types, request �lters. Using request �lters,
programmers provide a way for the system to classify re-
quests based on types as they enter the system. Perséphone
meets the remaining two requirements with a carefully ar-
chitected networking stack, pro�ler, and scheduler packaged
in a user-level library with the application.

4.1 System Model

Perséphone is designed for datacenter services that must
handle large volumes of tra�c at microsecond latencies. Ex-
amples include key-value stores, fast inference engines [50],
web search engines and RESTful micro-services. We assume
the application uses kernel-bypass for low latency I/O (e.g.,
with DPDK [25] or RDMA [74]) and performs all application
and network processing through Perséphone.

4.2 Request �lters

Perséphone relies on user-de�ned functions, i.e., “request
�lters” to classify application-level payloads. A request �l-
ter accepts a pointer to an application payload (Layer 4 and
above) and returns a request type. If the �lter cannot rec-
ognize a request, Perséphone categorizes it as UNKNOWN and
places it in a low priority queue. Though most of our target
application use optimized protocols such as Redis’ RESP [78]
that allow a �lter to look-up for a header �eld to parse the
request type, we opted for generality and allowing users
to write arbitrarily complex �lters. There is, of course, a
performance trade-o�: a non-optimized request �lter will
impact the dispatcher’s performance because request �lters
are “bumps-in-the-wire” on the dispatching critical path.
We leave it to users to quantify this trade o� based on the
performance they wish to obtain from the dispatcher (i.e.,
how many requests per second should it be able to sustain).
While a complete study of �lter performance is out of scope
for this paper, we found that for standard protocols where
the request type’s position is known in the header, our dis-
patcher can process up to 7 millions packets per second
on our testbed, a number competitive with existing kernel-
bypass schedulers.

4.3 Perséphone Architecture

Perséphone consists of three components, shown in Fig-
ure 2: one or many net workers dequeueing packets from
the network card, a dispatcher applying request �lters and
performing DARC scheduling, and application workers per-
forming application processing (e.g., fetching the value from
the key-value store). These components operate as an event-
driven pipeline and process packets as follows. 1 On the
ingress path, the net worker takes packets from the network
card and pushes them to the dispatcher, which 2 classi�es

5

SOSP ’21, October 26–28, 2021, Koblenz, Germany Paper #344

&filter()

Net worker Dispatcher

1

Typed queues

52

3

4

NIC

App workers

6

7

Figure 2. Perséphone architecture. After the net worker processes
incoming packets, the dispatcher classi�es requests using a user-
de�ned �lter. Requests wait in typed queues for DARC to push
them to workers. (c.f., Sec. 4.3 for pipeline details.)

incoming requests using a user-de�ned request �lter and
3 stores them in typed queues, i.e., bu�ers specialized for
a single request type. 4 The dispatcher, running DARC,
selects a request from a typed queue and pushes it to a free
application worker. 5 The worker processes the request,
formats a response bu�er, and 6 pushes a pointer to that
bu�er to the NIC. In addition, 7 the application worker
noti�es the dispatcher that it has processed the request.

4.3.1 Networking Both the net worker and application
workers receive a network context at initialization. This con-
text gives them unique access to receive and transmit queues
in the NIC. Perséphone registers a statically allocated mem-
ory pool with the NIC for contexts to quickly allocate new
bu�ers when receiving packets. This memory pool is backed
by a multi-producer, single-consumer ring so workers can re-
lease bu�ers after transmission. Both the net and application
workers use a thread local bu�er cache to decrease interac-
tions with the main memory pool. For requests contained in
a single application-level bu�er, we perform zero-copy and
pass along to workers a pointer to the network bu�er. To
issue a response on the transmit path, the worker reuses the
ingress network bu�er to host the egress packet, reducing
the number of distinct network bu�ers in use (with the goal
of allowing all bu�ers to �t in the Last Level Cache space
used by DDIO [24] — usually 10% of the LLC).

4.3.2 ComponentCommunication The dispatcher uses
single-producer, single-consumer circular bu�ers to share
requests and commands with application workers in a lock-
less interaction pattern. We use a lightweight RPC design
inspired by Barrel�sh [12], where both sender and receiver
synchronize their send/read heads using a shared variable.
To reduce cache coherence tra�c between cores, the sender
synchronizes with the receiver — to update the read head
and avoid over�ows — only when its local state shows the
bu�er to be full. In our prototype, operations on that channel
take 88 cycles on average.

4.3.3 Dispatcher The dispatcher maintains three main
data structures: a list of RequestType objects, which con-
tains type information such as the type ID and instrumenta-
tion data; typed request queues; and a list of free workers.
In addition, the dispatcher holds a pointer to a user-de�ned
request �lter. The list of free workers is updated whenever a
request is dispatched and each time application workers no-
tify the dispatcher about work completion; this is done using
a speci�c control message on the memory channel shared
between dispatcher and each worker. Finally, the dispatcher
maintains pro�ling windows, during which it computes a
moving average of service times by request type and incre-
ment a counter for each type seen so far. DARC uses these
pro�ling windows to compute resource allocation (Sec. 3)
and adjust to changes in the workload’s composition. In our
prototype, reservation updates execute in about 11200 cycles
at the median and updating the pro�le of a request takes
68 cycles at the median. To control the sensibility of the
update mechanism in face of bursty arrivals, we set a lower
bound on the number of samples required to transition —
50000 in our experiments — and the minimum deviation in
CPU demand from the current allocation — 10% in our ex-
periments. As a measure of �ow control, when the system
is under pressure and workers cannot process requests as
fast as they arrive, the dispatcher drops requests from typed
queues are full. This allows to shed load only for overloaded
types without impacting the rest of the workload.

4.3.4 Application Workers Upon receiving a pointer to-
ward a request, application workers dereference it to access
the payload. As an optimization, they can access the request
type directly from the RequestType object rather than du-
plicating work to identify needed application logic (e.g., to
di�erentiate between a SET or GET request). Once they �n-
ish processing the request, they reuse the payload bu�er to
format a response and push it to the NIC hardware queue
using their local network context. Finally, they signal work
completion to the dispatcher.

5 Evaluation
We built a prototype of Perséphone, in about 2600 lines of
C++ code1, to evaluate DARC scheduling against policies
provided by Shenango [68] and Shinjuku [44]:
• For a workload with 100x dispersion between short and
long requests, Perséphone can sustain 2.35x and 1.3x more
throughput compared to Shenango and Shinjuku, respec-
tively (Sec. 5.4.1)

• For a workload with 1000x dispersion, Perséphone can
sustain 1.4x more throughput than Shenango and reduce
slowdown by up to 2x over Shinjuku (Sec. 5.4.1)

• For a workload modeled on the TPC-C benchmark, Per-
séphone reduces slowdown by up to 4.6x over Shenango
and up to 3.1x over Shinjuku. (Sec. 5.4.3)

1We will release our code after publication
6

When Idling is Ideal SOSP ’21, October 26–28, 2021, Koblenz, Germany

Table 3. Workloads exhibiting 100x and 1000x dispersion.

Workload Short Long
Runtime (µs) Ratio Runtime (µs) Ratio

High Bimodal 1 50% 100 50%
Extreme Bimodal 0.5 99.5% 500 0.5%

Table 4. The TPC-C benchmark models operations of an online
store. Payment and NewOrder transactions are most frequent.

Transaction name Runtime (µs) Ratio Dispersion
Payment 5.7 44% 1x

OrderStatus 6 4% 1.05x
NewOrder 20 44% 3.3x
Delivery 88 4% 15.4x
StockLevel 100 4% 17.5xx

• For a RocksDB application, DARC can sustain 2.3x and
1.3x higher throughput than Shenango and Shinjuku, re-
spectively (Sec. 5.4.4)

5.1 Experimental Setup

Workloads. We model workloads exhibiting di�erent ser-
vice time dispersion after examples found in academic and
industry references. Often such workloads exhibit n-modal
distributions with either an equal amount of short and long
requests (e.g., workload A in the YCSB benchmark [20]) or
a majority of short requests with a small amount of very
long requests (e.g. Facebook’s USR workload [7]). Dispersion
between shorter and longer requests is commonly found to
be two orders of magnitude or more [5, 18, 61]. We evaluate
High Bimodal and Extreme Bimodal (Table 3), two workloads
that exhibit large service time dispersion, and TPC-C (Ta-
ble 4), which models requests in the eponymous benchmark-
ing suite [77], a standardized OLTP model for e-commerce.
Finally, we evaluate DARC using RocksDB, an in-memory
database used at Facebook [31].
With High Bimodal long requests represent 50% of the

workload but “only” exhibit 100x dispersion. With Extreme
Bimodal, long requests are much slower — 1000x slower
— but very infrequent (0.5% of the mix). We pro�le TPC-C
transactions with an in-memory database and run it as a syn-
thetic workload. Our goal with this TPC-C is to evaluate how
Perséphone performs with an n-modal request distribution.
The workload consists of �ve request types with moderate
service time dispersion — at most 17.5x between infrequent
StockLevel requests and frequent Payment requests. We as-
sume that requests are not dependent on each other. Finally,
the RocksDB workload is made of 50% GETs and 50% SCANs
requests, executing for 1.5µs and 635µs, respectively, and
exhibiting a 420x dispersion factor. This workload strikes a
balance between High Bimodal and Extreme Bimodal.
Performance metrics.We present two performance views:
(i) the slowdown at the tail taken across all requests in the
experiment, and (ii) the typed tail latency, i.e, a selected
percentile over only the type’s response times’ distribution.
These views help us to understand the various trade-o�s
o�ered by the systems and policies under evaluation. For

both metrics, we use the 99.9th percentile and plot them as
a function of the total load on the system.
Client. The client is a C++ open loop load generator that
models the behavior of bursty production tra�c. It generates
requests under a Poisson process centered at the workloads’
average service time. Each experiment runs for 20 seconds
and we discard the �rst 10% of samples to remove warm-
up e�ects. We ran our experiments for several minutes and
found the results similar. To interact with the server, we use
a simple protocol where TPC-C transactions ID, RocksDB
query ID, and synthetic workload requests types are located
in the requests’ header. We accordingly register request �l-
ters on the server to map these IDs to request types. Request
�lters add a one-time ⇡ 100 nanoseconds overhead to each
request.
Systems. In addition to Perséphone, we compare two state-
of-the-art systems: Shenango and Shinjuku. Shenango’s IOK-
ernel uses RSS hashes to steer packets to application cores,
which perform work stealing to balance load and avoid
dispersion-based blocking, in a fashion similar to ZygOS [70].
We also compare to a version of Shenango with work steal-
ing disabled, to evaluate d-FCFS. We choose Shenango over
ZygOS due to its more recent implementation and its support
for UDP. Shinjuku implements microsecond-scale, user-level
preemption by exploiting Dune’s virtualization [13] at up to
5µs frequency. Leveraging this ability to preempt, Shinjuku
implements a single queue policy, where preempted requests
are enqueued at the tail of the queue, and a multi-queue
policy with a queue per request type and where preempted
requests are enqueued at the head of their respective queue.
The multi-queue policy selects the next queue to dequeue
using a variant of Borrowed Virtual Time [28]. Across ex-
periments, DARC updates reservations whenever a request
experiences queuing delays of ten times its average pro�led
service time. Lastly, all systems use UDP networking.
Testbed. We use 7 Cloudlab [29] c6420 nodes (6 clients, 1
server), each equipped with a 16-core (32-thread) Intel Xeon
Gold 6142 CPU running at 2.60GHz, 376GB of RAM, and
an Intel X710 10 Gigabit NIC. The average network round
trip time between machines is 10µs. We disabled TurboBoost
and set isolcpu. Shinjuku and Perséphone run on Ubuntu
16.04 with Linux kernel version 4.4.0. Shenango runs on
Ubuntu 18.04 with Linux kernel version 5.0. Shinjuku uses
one hyperthread for the net worker and another for the dis-
patcher, collocated on the same physical core. Shenango runs
its IOKernel on a single core, and Perséphone runs both its
net worker and dispatcher on the same hardware thread. All
systems use 14 worker threads running on dedicated physi-
cal cores. For Shenango, we provision all cores at startup and
disable dynamic core allocation since we want to evaluate
performance for a single application and Shenango other-
wise re-assign cores to multiple applications running on the
same machine.

7

SOSP ’21, October 26–28, 2021, Koblenz, Germany Paper #344

Figure 3. Evaluating DARC onHigh Bimodal (50.0:1.0 – 50.0:100.0)
within Perséphone. The �rst column is p99.9 overall slowdown,
the second and third p99.9 latency for short and long requests,
respectively. For all columns, the X axis is the total load on the
system. DARC improves slowdown over c-FCFS by up to 15.7x, at
a cost of up to 4.2x increased latency for long requests.

5.2 DARC versus existing policies

To validate that DARC improves performance of short re-
quests compared to c-FCFS and d-FCFS, we run these policies
on High Bimodal in Perséphone. Figure 3 presents our re-
sults. c-FCFS improves the tail latency of short requests over
d-FCFS by eliminating local hotspots at workers, a result
consistent with previous work [70]. However, because c-
FCFS does not protect the service time distribution of short
requests, they experience dispersion-based blocking from
long requests. With c-FCFS, short requests experience 309µs
p99.9 latency at 260kRPS, driving slowdown for the entire
workload to 283x. In contrast, DARC reserves 1 core for short
requests and schedules them �rst, reducing slowdown upon
c-FCFS by a factor of 15.72 and can sustain 2.3x higher
throughput for a SLO of 20µs for short requests. This comes
at the cost of up to a 4.2x increase in tail latency for long
requests. The average CPU waste occasioned by reserving
the core is 0.86 core. Because slowdown is driven by short
requests and the two graphs are very similar, we omit short
requests in the next sections and focus on overall slowdown
and tail latency for long requests.

5.3 How much non work-conservation is useful?

We empirically validate DARC’s reservation mechanism
(Sec. 3) by manually con�guring the number of workers
dedicated to short requests from 0 to 14. We call this version
“DARC-static”. It schedules short requests �rst and let them
execute on all the cores. When the number of reserved work-
ers is 0, DARC-static is equivalent to a simple Fixed Priority
policy. Figure 4 presents the overall slowdown experienced
by High Bimodal (a) and Extreme Bimodal (b) at 95% load.
We observe that for the former, the best slowdown — a 4.4x
improvement — is achieved with 1 core, and for the latter
with 2 cores — a 1.5x improvement. Those settings validate
DARC’s selection, as described in Sec. 5.2 and Sec. 5.4.
2The network contributes 10µs to response time. At 260kRPS, short requests
experience 309µs end-to-end latency with c-FCFS and 18µs with DARC.
This means that server-side slowdown is 37x better with DARC.

Figure 4. Gradually adjusting the degree of work conservation
(“ DARC-static”) with High Bimodal and Extreme Bimodal at 95%
load. Reserving 1 (a) and 2 (b) cores decreases slowdown by 4.4x
and 1.5x, respectively.

For comparison, we draw the slowdown line o�ered by c-
FCFS on Perséphone. Reserving too many workers results in
long requests being starved. Simple Fixed Priority scheduling
results in dispersion-based blocking for short requests.

5.4 Comparison with Shinjuku and Shenango

Figures 5a and 5b show the performance experienced byHigh
Bimodal and Extreme Bimodal in all three systems. Figure 6
presents TPC-C performance, and Figure 7 RocksDB perfor-
mance. Shenango implements d-FCFS and c-FCFS. Shinjuku
uses its multi-queue policy for High Bimodal, TPC-C, and
RocksDB; and its single queue policy for Extreme Bimodal
(per the Shinjuku paper [44]). We invested signi�cant e�orts
in tuning Shinjuku for short requests performance and pre-
empting as frequently as possible. We could only sustain
75% for High Bimodal (5µs interrupts) and RocksDB (15µs
interrupts), and 55% load for Extreme Bimodal (5µs inter-
rupts), after which the system starts dropping packets and
eventually crashes (despite sustaining close to 4.5 millions
1µs RPS without preemption on our testbed). We found that
reducing the frequency of preemption helped sustain higher
loads at the expense of shorter requests. TPC-C is most fa-
vorable to Shinjuku because the services times are higher
and dispersion smaller. Shinjuku can handle 85% of this load
when preempting every 10µs.

5.4.1 High Bimodal Shinjuku improves the tail latency of
short requests over Shenango’s c-FCFS by preempting long
requests. However, Shinjuku aggressively preempts every
5µs to maintain good latency for short requests and adds a

8

When Idling is Ideal SOSP ’21, October 26–28, 2021, Koblenz, Germany

(a) High Bimodal For a 20x slowdown target, DARC can sustain 2.35x and 1.3x more tra�c than Shenango and Shinjuku, respectively.

(b) Extreme Bimodal For a 50x slowdown target, DARC can sustain 1.4 more load than Shenango. DARC also reduces slowdown by up to 2x
over Shinjuku. Note the di�erent Y axis for slowdown and long requests tail latency.

Figure 5

Figure 6. TPC-C with Shenango, Shinjuku and Perséphone. The �rst column is the p99.9 slowdown across all transactions. Each subsequent
column is the p99.9 latency for a given transaction. Transactions are presented in ascending average service time. Note the di�erent Y axis
for slowdown and latency. At 85% load, Perséphone o�ers 9.2x, 7x, and 3.6x improved p99.9 latency to Payment (b), OrderStatus (c) and
NewOrder (d) transactions, compared to Shenango’s c-FCFS, reducing overall slowdown by up to 4.6x (a). For a slowdown target of 10x,
Perséphone can sustain 1.2x and 1.05x more throughput than Shenango and Shinjuku, respectively.

constant overhead — at least 20% in this experiment — to
preempted requests. As a result, it can sustain only 75% of
the load before dropping requests. In comparison, DARC
reserves 1 core for short requests and can sustain 2.35x and
1.3x more load than Shenango and Shinjuku, respectively,
for a target slowdown of 20x. At 75% load, DARC reduces
slowdown by 10.2x and 1.75x over Shenango and Shin-
juku, respectively. Perhaps more importantly, compared to
Shinjuku’s preemption system DARC consistently provides
better tail latency for long requests. We also observe that Per-
séphone’s centralized scheduling o�ers better performance
for long requests than Shenango compared to c-FCFS on Per-
séphone because Perséphone does not have to approximate
centralization with work stealing.

5.4.2 ExtremeBimodal Weobserve similar trends for this
workload. For a target 50x slowdown, both Shinjuku and Per-
séphone can sustain 1.4xhigher throughput than Shenango.
However, past 55% load, the overheads of aggressively pre-
empting every 5µs is too expensive and Shinjuku starts drop-
ping packets. For long requests, preemption overheads are
always at least 24% (620µs for 500µs requests). In contrast,
Perséphone reserves 2 cores to maintain good tail latency
for short requests and can sustain 1.25x more load while
reducing slowdown up to 2x over Shinjuku. All the while,
Perséphone provides tail latency for long requests competi-
tive with Shenango. For this workload the CPU waste occa-
sioned by DARC is, on average, 0.67 core.

9

SOSP ’21, October 26–28, 2021, Koblenz, Germany Paper #344

Figure 7. RocksDB slowdown with 50% GETs (1.5µs), 50% SCANs
(635µs). For a 20x slowdown target, DARC can sustain 2.3x and 1.3x
higher throughput than Shenango and Shinjuku, respectively.

5.4.3 TPC-C For this workload, DARC groups Payment
and OrderStatus transactions (groupA), lets NewOrder trans-
actions run in their own group (B), and groups Delivery
and StockLevel transactions (group C). DARC attributes
workers 1 and 2 to group A, 3 � 8 to group B, and 9 � 14 to
group C. Group A can steal fromworkers 3�14, group B from
workers 9�14, and group C cannot steal. There is no average
CPU waste with this allocation because groups A and B are
slightly under-provisioned and can steal from C. Figure 6
presents our �ndings. DARC strongly favors shorter transac-
tions from groups A and B. Compared to Shenango’s c-FCFS,
DARC provides up to 9.2x, 7x and 3.6x better tail latency
to Payment, OrderStatus and NewOrder transactions, re-
spectively. These transactions represent 92% of the workload,
resulting in up to 4.6x slowdown reduction at the cost of
5% throughput from the longer StockLevel transactions. Be-
cause DARC excludes the longer Delivery and StockLevel
transactions from 8 out of 14 workers, those transactions
su�er higher tail latency compared to Shenango’s c-FCFS.
Interestingly, however, due to DARC’s priority-based sched-
uling, Delivery transactions experience tail latency com-
petitive with c-FCFS at high load. In addition, though ben-
e�ting Payment and OrderStatus requests, Shinjuku’s of-
fers performance similar to c-FCFS for the moderately slow
NewOrder requests, because it preempts them halfway to pro-
tect the shorter requests. Likewise, Delivery and StockLevel
requests su�er from repetitive preemption. In contrast, DARC
is able to maintain good tail latency for NewOrder requests,
o�ers a better trade-o� for Delivery and Stocklevel at
high load (not show in the graph for the latter), and reduces
slowdown up to 3.1x compared to Shinjuku.
Given a 10x overall slowdown target, Perséphone can

sustain 1.2x and 1.05xhigher throughput than Shenango
and Shinjuku, respectively.

5.4.4 RocksDB We use Perséphone to build a service run-
ning RocksDB and create a Shenango runtime running a
similar RocksDB service. Shinjuku already implements a
RocksDB service. The database is backed by a �le pinned
in memory. We use the same workload as Shinjuku’s: 50%
GET requests and 50% SCAN requests over 5000 keys. On

our testbed, GETs execute in 1.5µs and SCANs in 635µs. Con-
sistently, with previous experiments, we were able to sustain
only about 75% of the theoretical peak load with Shinjuku
using a 15µs preemption timer and its multi-queue policy.
We omit d-FCFS because it o�ers poor performances. DARC
reserves 1 core for GET requests, idling 0.96 core on average.
Figure 7 presents slowdown for this experiment: for a 20x
slowdown QoS objective, DARC can sustain 2.3x and
1.3x higher throughput than Shenango and Shinjuku,
respectively.

5.4.5 Handling workload changes In this section, we
demonstrate Perséphone capacity to react to sudden changes
in workload composition. For comparison with a baseline,
we include c-FCFS performance. The experiment study three
phase changes: (1) fast requests suddenly become slow and
vice-versa (2) the ratio of each type change and (3) the work-
load becomes only fast requests. Across this experiment, we
keep the server at 80% utilization. Each phase lasts for 5
seconds. Figure 8 presents the results. Green boxes describe
phases. The �rst row is the 99.9th percentile latency and the
second row the number of cores guaranteed to each type
(not including stealable cores).

At �rst, B requests can run on all 14 cores — 1 dedicated
core and 13 stealable cores — and A requests are allowed to
run on 13 cores. Latency is slightly higher for B requests at
the beginning of the experiment because the system starts
in c-FCFS before proceeding to the �rst reservation. In the
second phase, we inverse the service time of A and B to
evaluate how DARC can handle miss-classi�cation. During
the transition, which takes about 500ms, “B-fast” requests
observe increased latency — up to 50µs— as “B-slow” requests
that are still in the system occupy the 13 stealable cores of A
and “A-slow” requests are allowed to run on all cores before
the reservation update. The graph shows latency increase
before the transition because these B requests were already
in the system and the X axis is the sending time.

During the second transition, we change the ratio of each
type: A requests now make up 99.5% of the mix. As a result,
their CPU demand increase and DARC reserves them 2 cores.
For this new composition, 80% utilization on the server re-
sults in increased throughput, and latency becomes slightly
higher for both types of requests as all queues grow larger.
Finally, we change the workload to be only made of A

requests. Despite A requests being able to run on all 14 cores,
pending B requests can be serviced on the spillway core.

6 Discussion

Networkingmodel. In the current implementation, the net
worker is a layer 2 forwarder and performs simple checks
on Ethernet and IP headers. Application workers handle
layers 4 and above and directly perform TX. This design
intends to maximize our dispatcher’s performance — the
main bottleneck in Perséphone— and make it competitive

10

When Idling is Ideal SOSP ’21, October 26–28, 2021, Koblenz, Germany

Figure 8. p99.9 latency and guaranteed cores for two request types A and B during 4 phases, under c-FCFS and DARC. Top boxes describe
phases (service times and ratios). During transitions, Perséphone’s pro�ler picks on the new service time and ratio for each type and
accordingly adjusts core allocation. Markers for the core allocation row indicate reservation update events.

with existing systems. Shenango and Shinjuku separate roles
in a similar way. There is no fundamental reason, though, for
not having the net worker handle more of the network stack
Using a stateful network stack would preclude o�oading TX
to the workers since shared state between the net worker
and application workers would hinder performance. For TCP,
this problem is partly addressed by TAS [49] and Snap [58].
Interrupts at µs scale. Though desirable in theory because
it enables a better approximation to SRPT, interrupts at the
microsecond scale come with two classes of challenges. The
�rst is about performance. Even with the possibility to in-
terrupt in 1µs, if a 1µs request enters the system to �nd all
cores busy processing longer requests, it would experience
a slowdown of at least 2x. In addition, preemption has to
be aggressively frequent to minimize the impact of worst
case scenarios where a short request enters the system at
the same time a preemption check just occurred. As seen in
our experiments, this aggressivity has a noticeable impact
on performance. The second class of challenges is related to
practicality. One has to carefully re-work existing applica-
tions to ensure preemption cannot happen during critical
sections — memory management, interaction with thread
local storage, etc. — or non re-entrant functions. This rep-
resents considerable e�orts and spurred research in other
designs trade-o� such as semi-cooperative scheduling [17].
DARC in the datacenter ecosystem. Though not a focus
of this paper, DARC can cooperate with an allocator to obtain
and release cores, adapting to load changes and updating
reservations during such events.

7 Related work

Kernel-bypass. Bypassing a general-purpose kernel to
provide application-tailored routines has been revisited regu-
larly over the past �fty years. Some notable examples include
the RC 4000 multi-programming system [36], Hydra [80],
Mach [1], Chorus [72], SPIN [16] and Exokernel [30].

More recently, faster networks and stagnating CPU speeds
have led researchers to look more closely at user-level net-
work stacks [43, 49] to provide high-performance storage

systems [19, 51, 54, 66], access to disaggregated memory [4],
user-level network services [49] such as eRPC [45], and fast
I/O processing (e.g., IX [14] and Chronos [46]). Similarly,
user-level scheduling has been explored with ZygOS [70]
and Shinjuku [44], which focus on improving tail latency by
implementing centralized dispatch policies and user-level
preemption, both of which outperform current decentralized
o�erings, as is well understood by theory [53, 79, 81]. DARC
builds on this recent line of work with a more application-
customized solution, motivated by recent insights when ob-
serving performance gain from sharing application-level
information with the dataplane [22, 48, 57], and “common
case service acceleration”, which can improve tail latency
for important requests [60].

SchedulingPolicies: Recentworks on kernel-bypass and
microsecond-scale applications have revived research in-
terest in scheduling policies, speci�cally for tail-tolerance.
We compare DARC with existing policies proposed for pro-
cess or packet scheduling, and identi�ed the best �t for
each. Table 5 summarizes our �ndings. DARC shares ideas
with Fixed Priority (FP) scheduling without su�ering from
head-of-line blocking and with Cycle Stealing with Central
Queue (CSCQ [40]), but does not impose limits on stealing
for shorter requests. It also shares ideas with Static Partition-
ing (SP) without being as work conservation avoidant, thus
being able to absorb bursts. DARC targets applications with
high service time dispersion similarly to Processor Shar-
ing policies, implemented as the Completely Fair Sched-
uler [62], Borrowed Virtual Time [28], and Multi-Level Feed-
back Queue [6] in commodity operating systems and variants
of these on datacenter operating systems [44]. Processor shar-
ing policies, despite being application agnostic, are expen-
sive or impossible to implement in many environment, e.g.,
the public cloud. DARC is, to our best knowledge, the �rst
application-aware and non-preemptive policy that classi�es
requests to improve RPC tail latency and can be implemented
on a kernel-bypassed system serving microsecond-scale re-
quests. We note that existing work has speci�cally made use
of non work conservation to reduce resource contention in

11

SOSP ’21, October 26–28, 2021, Koblenz, Germany Paper #344

Table 5. Summary of di�erent scheduling policies as comparison points to DARC

Policy App
Aware

Non
preemptive

Non
Work Conserving

Prevent
HOL Ideal Workload Comments

d-FCFS 7 3 3 7 Light-tailed Easy to implement
Load Imbalance

c-FCFS 7 3 7 7 Light-tailed Ideal policy for the workload
Processor Sharing

(Linux CFS, BVT [27], MLFQ [6]) 7 7 7 3
Heavy-tailed without

priorities Hard to implement

(De�cit) (Weighted) Round Robin 7 3 7 7
Request �ows with

fairness requirements No latency guarantees

Static Partitioning 3 3 3 7
Di�erent request types
with di�erent SLOs

In�exible with
rapid workload changes

Fixed Priority 3 3 7 7
Request priority indendent

of service time Can lead to priority inversion

Earliest Deadline First 3 3 7 7
Request priority indendent

of service time Requires clock sync

Shortest Job First 3 3 7 7 Custom Can starve long RPCs

SRPT 3 7 7 3 Heavy-tailed Optimal for average latency
Hard to implement

Cycle Stealing with
Central Queue 3 3 3 7

Mix of short and long requests
with the same priority Can absorb short RPCs bursts

DARC 3 3 3 3
Heavy-tailed with

high priority short requests Favor short RPCs over longs

SMT architectures [32, 71, 75], though with a focus on in-
struction throughput rather than tail latency for datacenter
workloads.

In-network end-host scheduling. R2P2 [52] andMetron [47]
propose to integrate core scheduling in the network. Loom [76]
proposes a novel NIC design and OS/NIC abstraction to
express rich hierarchies of network scheduling and tra�c
shaping policies across tenants. Our work is orthogonal since
request �lters can be o�oaded to the network. eRSS [73] scal-
ing groups o�er the possibility to schedule request groups,
which works only on network headers and requires a speci�c
programming model from the NIC. RSS++ [9] addresses RSS
vulnerability to tra�c imbalance but cannot handle variabil-
ity in application-request processing times. Intel recently
introduced Application Device Queues (ADQ) [41], a fea-
ture for applications to reserve NIC hardware queues. ADQ
requires speci�c network interfaces (currently Intel’s Eth-
ernet 800 Series) and does not allow applications to further
partition reserved queues by request type.

Network scheduling for tail latency. Prioritizing pack-
ets to improve tail latency has been extensively studied in the
networking literature [3, 8, 33, 35, 55, 63, 64]. As analyzed
in [65], this line of work uses priority queues in switches
to approximate Shortest Remaining Processing Time (SRPT)
scheduling and avoid head-of-line blocking caused by FIFO
policies. Dedicating more CPU resources to short requests
is similar to prioritizing packets belonging to short �ows,
but whereas network devices schedule at the granularity
of packets — bounded by MTU sizes — and preempt long
�ows by not sending their packets, there is no a�ordable
way to preempt a long request once dispatched at a CPU
core within microseconds. DARC e�ciently partitions CPU

resources among requests by pro�ling their CPU demand
and enabling work-conservation only for short requests, cap-
ping resources allocated to long requests and resulting in a
similar trade o� than Homa [63], pFabric [3], or HULL [2].

Other e�orts to improve tail latency. Haque et al. [38]
exploit DVFS and heterogeneous CPUs to speed up long re-
quests in latency sensitive workloads at the expense of short
requests, with the goal of improving overall tail latency. Our
technique is orthogonal to such optimization, since DARC
de�nes a clear target to con�gure power and core settings
for given request types. Another line of work adapts the
degree of parallelism of long requests and improve overall
tail latency [37, 42], but this comes at the cost of shorter
requests from which more resources are taken away. Robin-
Hood [15] improves tail latency by provisioning more cache
to backends that a�ect such latency. Minos [23] shards data
based on size to reduce GETs variability across shards.

8 Conclusion
This paper proposes Perséphone, a new kernel-bypass OS
scheduler implementing DARC, an application aware, not
work conserving policy. DARC maintains good tail latency
for shorter requests in heavy-tailed workloads that cannot
a�ord the overheads of existing techniques such as work
stealing and preemption. DARC pro�les requests and ded-
icate cores to shorter requests, guaranteeing they will not
be blocked behind long requests. Our prototype of Persé-
phone maintains good tail latency for shorter requests and
can handle higher loads with the same amount of cores than
state-of-the-art kernel-bypass schedulers, overall better uti-
lizing datacenter resources.

12

When Idling is Ideal SOSP ’21, October 26–28, 2021, Koblenz, Germany

References
[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for unix development. 1986.

[2] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda. Less is more: Trading a little band-
width for ultra-low latency in the data center. In 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 12),
pages 253–266, San Jose, CA, April 2012. USENIX Association.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. Pfabric: Minimal near-
optimal datacenter transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page 435âĂŞ446, New
York, NY, USA, 2013. Association for Computing Machinery.

[4] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. Can far memory improve job throughput? In
Proceedings of the Fifteenth European Conference on Computer Systems,
EuroSys ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[5] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gib-
son, Elisabeth Baseman, and Nathan DeBardeleben. On the diversity of
cluster workloads and its impact on research results. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 533–546, Boston,
MA, July 2018. USENIX Association.

[6] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating
Systems: Three Easy Pieces. Arpaci-Dusseau Books, 1.00 edition, August
2018.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference onMeasurement andModeling of Computer Systems,
SIGMETRICS ’12, page 53âĂŞ64, New York, NY, USA, 2012. Association
for Computing Machinery.

[8] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.
Information-agnostic �ow scheduling for commodity data centers. In
12th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15), pages 455–468, Oakland, CA, May 2015. USENIX
Association.

[9] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire, and Dejan
Kostić. Rss++: Load and state-aware receive side scaling. In Proceedings
of the 15th International Conference on Emerging Networking Experi-
ments And Technologies, CoNEXT ’19, page 318âĂŞ333, New York, NY,
USA, 2019. Association for Computing Machinery.

[10] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. Attack of the killer microseconds. Commun. ACM,
60(4):48âĂŞ54, March 2017.

[11] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The
datacenter as a computer: Designing warehouse-scale machines. Syn-
thesis Lectures on Computer Architecture, 13(3):i–189, 2018.

[12] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Har-
ris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The multikernel: A new os architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, page 29âĂŞ44,
New York, NY, USA, 2009. Association for Computing Machinery.

[13] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. Dune: Safe user-level access to privileged
cpu features. In Proceedings of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’12, page 335âĂŞ348,
USA, 2012. USENIX Association.

[14] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion. The ix operating
system: Combining low latency, high throughput, and e�ciency in

a protected dataplane. ACM Trans. Comput. Syst., 34(4):11:1–11:39,
December 2016.

[15] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. Robinhood: Tail latency aware caching – dynamic
reallocation from cache-rich to cache-poor. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 195–
212, Carlsbad, CA, October 2018. USENIX Association.

[16] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility safety and per-
formance in the spin operating system. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP âĂŹ95, page
267âĂŞ283, New York, NY, USA, 1995. Association for Computing
Machinery.

[17] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
Lightweight preemptible functions. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 465–477. USENIX Association, July
2020.

[18] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean Hildebrand, and
Erez Zadok. On the performance variation in modern storage stacks.
In 15th USENIX Conference on File and Storage Technologies (FAST 17),
pages 329–344, Santa Clara, CA, February 2017. USENIX Association.

[19] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable rdma rpc on reli-
able connection with e�cient resource sharing. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,
page 143âĂŞ154, New York, NY, USA, 2010. Association for Computing
Machinery.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: AmazonâĂŹs
highly available key-value store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, page
205âĂŞ220, New York, NY, USA, 2007. Association for Computing
Machinery.

[22] Henri Maxime Demoulin, Nikos Vasilakis, John Sonchack, Isaac Pe-
disich, Vincent Liu, Boon Thau Loo, Linh Thi Xuan Phan, Jonathan M.
Smith, and Irene Zhang. Tmc: Pay-as-you-go distributed communi-
cation. In Proceedings of the 3rd Asia-Paci�c Workshop on Networking
2019, APNet ’19, page 15âĂŞ21, New York, NY, USA, 2019. Association
for Computing Machinery.

[23] Diego Didona and Willy Zwaenepoel. Size-aware sharding for improv-
ing tail latencies in in-memory key-value stores. In Proceedings of the
16th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDIâĂŹ19, page 79âĂŞ93, USA, 2019. USENIX Association.

[24] Intel Data Direct. I/o technology (intel ddio) a primer, 2012.
[25] DPDK. Data plane development kit. h�ps://www.dpdk.org/. Accessed:

2020-10-27.
[26] Drew Gallatin, Net�ix Technology Blog. Serving 100 Gbps from

an Open Connect Appliance. h�ps://netflixtechblog.com/serving-
100-gbps-from-an-open-connect-appliance-cdb51dda3b99. Accessed:
2020-12-04.

[27] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a general-purpose
schedular. In David Kotz and John Wilkes, editors, Proceedings of
the 17th ACM Symposium on Operating System Principles, SOSP 1999,
Kiawah Island Resort, near Charleston, South Carolina, USA, December
12-15, 1999, pages 261–276. ACM, 1999.

[28] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (bvt)
scheduling: Supporting latency-sensitive threads in a general-purpose
scheduler. In Proceedings of the Seventeenth ACM Symposium on Op-
erating Systems Principles, SOSP ’99, page 261âĂŞ276, New York, NY,

13

https://www.dpdk.org/
https://netflixtechblog.com/serving-100-gbps-from-an-open-connect-appliance-cdb51dda3b99
https://netflixtechblog.com/serving-100-gbps-from-an-open-connect-appliance-cdb51dda3b99

SOSP ’21, October 26–28, 2021, Koblenz, Germany Paper #344

USA, 1999. Association for Computing Machinery.
[29] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation
of cloudlab. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 1–14, Renton, WA, July 2019. USENIX Association.

[30] D. R. Engler, M. F. Kaashoek, and J. OâĂŹToole. Exokernel: An oper-
ating system architecture for application-level resource management.
In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, page 251âĂŞ266, New York, NY, USA, 1995. Asso-
ciation for Computing Machinery.

[31] Facebook. Rocksdb. h�ps://rocksdb.org/. Accessed: 2020-11-17.
[32] Alexandra Fedorova, Margo Seltzer, and Michael D Smith. A non-

work-conserving operating system scheduler for smt processors. In
Proceedings of the Workshop on the Interaction between Operating Sys-
tems and Computer Architecture, in conjunction with ISCA, volume 33,
pages 10–17, 2006.

[33] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia
Ratnasamy, and Scott Shenker. Phost: Distributed near-optimal dat-
acenter transport over commodity network fabric. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’15, New York, NY, USA, 2015. Association for
Computing Machinery.

[34] Google. Protocol Bu�ers - Google’s data interchange format. h�ps:
//github.com/protocolbu�ers/protobuf. Accessed: 2020-12-09.

[35] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.
Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues
don’t matter when you can JUMP them! In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), pages 1–14,
Oakland, CA, May 2015. USENIX Association.

[36] Per Brinch Hansen. The nucleus of a multiprogramming system.
Commun. ACM, 13(4):238âĂŞ241, April 1970.

[37] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. Few-to-many: Incremental paral-
lelism for reducing tail latency in interactive services. In Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, page
161âĂŞ175, New York, NY, USA, 2015. Association for Computing
Machinery.

[38] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen, Ricardo
Bianchini, and Kathryn S. McKinley. Exploiting heterogeneity for
tail latency and energy e�ciency. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50
’17, page 625âĂŞ638, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[39] Mor Harchol-Balter. Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[40] Mor Harchol-Balter, Cuihong Li, Takayuki Osogami, Alan Scheller-
Wolf, and Mark S. Squillante. Cycle stealing under immediate dis-
patch task assignment. In Proceedings of the Fifteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’03, page
274âĂŞ285, New York, NY, USA, 2003. Association for Computing
Machinery.

[41] Intel. Adq. h�ps://www.intel.com/content/www/us/en/architecture-
and-technology/ethernet/application-device-queues-technology-
brief.html. Accessed: 2020-11-10.

[42] Myeongjae Jeon, Yuxiong He, Hwanju Kim, Sameh Elnikety, Scott
Rixner, and Alan L. Cox. Tpc: Target-driven parallelism combining
prediction and correction to reduce tail latency in interactive services.
SIGPLAN Not., 51(4):129âĂŞ141, March 2016.

[43] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. Mtcp: A highly

scalable user-level tcp stack for multicore systems. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’14, page 489âĂŞ502, USA, 2014. USENIX Association.

[44] Kostis Ka�es, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for msecond-scale tail latency. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation, NSDI’19,
page 345âĂŞ359, USA, 2019. USENIX Association.

[45] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter rpcs
can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019, pages 1–16. USENIX Association, 2019.

[46] Rishi Kapoor, George Porter, Malveeka Tewari, Geo�rey M. Voelker,
and Amin Vahdat. Chronos: Predictable low latency for data center
applications. In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, New York, NY, USA, 2012. Association for Com-
puting Machinery.

[47] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert,
and Gerald Q. Maguire Jr. Metron: NFV service chains at the true speed
of the underlying hardware. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 171–186, Renton,
WA, April 2018. USENIX Association.

[48] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Ander-
son, and Arvind Krishnamurthy. High performance packet processing
with �exnic. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, page 67âĂŞ81, New York, NY, USA, 2016. Asso-
ciation for Computing Machinery.

[49] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. Tas: Tcp acceleration
as an os service. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[50] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly e�cient
gradient boosting decision tree. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages 3146–3154.
Curran Associates, Inc., 2017.

[51] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re�ex: Remote
�ash ⇡ local �ash. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, page 345âĂŞ359, New York, NY, USA,
2017. Association for Computing Machinery.

[52] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2p2: Making rpcs �rst-class datacenter citizens. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 863–880,
Renton, WA, July 2019. USENIX Association.

[53] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.
Tales of the tail: Hardware, os, and application-level sources of tail
latency. In Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, page 1âĂŞ14, New York, NY, USA, 2014. Association for
Computing Machinery.

[54] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. Mica: A holistic approach to fast in-memory key-value storage. In
Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, page 429âĂŞ444, USA, 2014. USENIX
Association.

[55] Yuanwei Lu, Guo Chen, Larry Luo, Kun Tan, Yongqiang Xiong, Xiao-
liangWang, and Enhong Chen. Onemore queue is enough: Minimizing
�ow completion time with explicit priority noti�cation. In IEEE INFO-
COM 2017-IEEE Conference on Computer Communications, pages 1–9.
IEEE, 2017.

14

https://rocksdb.org/
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-technology-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-technology-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-technology-brief.html

When Idling is Ideal SOSP ’21, October 26–28, 2021, Koblenz, Germany

[56] Marek Majkowski, The Cloud�are Blog. How to achieve low latency
with 10Gbps Ethernet. h�ps://blog.cloudflare.com/how-to-achieve-
low-latency/. Accessed: 2020-12-04.

[57] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Network
stack specialization for performance. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, page 175âĂŞ186, New York,
NY, USA, 2014. Association for Computing Machinery.

[58] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, and et al. Snap: A microkernel ap-
proach to host networking. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 399âĂŞ413, New York,
NY, USA, 2019. Association for Computing Machinery.

[59] memcached. Memcached protocol. h�ps://github.com/memcached/
memcached/blob/master/doc/protocol.txt. Accessed: 2021-03-24.

[60] A. Mirhosseini and T. F. Wenisch. The queuing-�rst approach for tail
management of interactive services. IEEE Micro, 39(4):55–64, 2019.

[61] Pulkit A. Misra, María F. Borge, Íñigo Goiri, Alvin R. Lebeck, Willy
Zwaenepoel, and Ricardo Bianchini. Managing tail latency in
datacenter-scale �le systems under production constraints. In Proceed-
ings of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New York,
NY, USA, 2019. Association for Computing Machinery.

[62] Ingo Molnar. [patch] modular scheduler core and completely fair
scheduler. h�ps://lwn.net/Articles/230501/. Accessed: 2020-12-01.

[63] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A receiver-driven low-latency transport protocol using
network priorities. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’18, page
221âĂŞ235, New York, NY, USA, 2018. Association for Computing
Machinery.

[64] Ali Munir, Ghufran Baig, Syed M. Irteza, Ihsan A. Qazi, Alex X. Liu,
and Fahad R. Dogar. Friends, not foes: Synthesizing existing transport
strategies for data center networks. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, page 491âĂŞ502, New York,
NY, USA, 2014. Association for Computing Machinery.

[65] Aisha Mushtaq, Radhika Mittal, James McCauley, Mohammad Al-
izadeh, Sylvia Ratnasamy, and Scott Shenker. Datacenter congestion
control: Identifying what is essential and making it practical. SIG-
COMM Comput. Commun. Rev., 49(3):32âĂŞ38, November 2019.

[66] Mihir Nanavati, Jake Wires, and Andrew War�eld. Decibel: Isolation
and sharing in disaggregated rack-scale storage. In 14th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2017,
Boston, MA, USA, March 27-29, 2017, pages 17–33. USENIX Association,
2017.

[67] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. Scaling memcache at facebook. In Proc. of NSDI, pages
385–398, 2013.

[68] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high cpu e�ciency for
latency-sensitive datacenter workloads. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’19, pages 361–377, Berkeley, CA, USA, 2019. USENIX Associa-
tion.

[69] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14,
page 1âĂŞ16, USA, 2014. USENIX Association.

[70] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked tasks. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, pages 325–341, New York, NY, USA, 2017. ACM.

[71] Emilia Rosti, Evgenia Smirni, Giuseppe Serazzi, and Lawrence W
Dowdy. Analysis of non-work-conserving processor partitioning poli-
cies. InWorkshop on Job Scheduling Strategies for Parallel Processing,
pages 165–181. Springer, 1995.

[72] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel
Gien, Marc Guillemont, Frédéric Herrmann, Claude Kaiser, Sylvain
Langlois, Pierre Léonard, et al. Overview of the chorus distributed
operating system. In Workshop on Micro-Kernels and Other Kernel
Architectures, pages 39–70, 1992.

[73] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle
Olukotun. Elastic rss: Co-scheduling packets and cores using pro-
grammable nics. In Proceedings of the 3rd Asia-Paci�c Workshop on
Networking 2019, APNet ’19, page 71âĂŞ77, New York, NY, USA, 2019.
Association for Computing Machinery.

[74] Tom Shanley. In�niBand network architecture. Addison-Wesley Profes-
sional, 2003.

[75] Evgenia Smirni, Emilia Rosti, Giuseppe Serazzi, Lawrence W Dowdy,
and Kenneth C Sevcik. Performance gains from leaving idle processors
in multiprocessor systems. In ICPP (3), pages 203–210. Citeseer, 1995.

[76] Brent Stephens, Aditya Akella, and Michael Swift. Loom: Flexible
and e�cient NIC packet scheduling. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), pages 33–46,
Boston, MA, February 2019. USENIX Association.

[77] TPC. Tpc-c. h�p://www.tpc.org/tpcc/. Accessed: 2020-10-20.
[78] Wei Dai. Redis Protocol speci�cation. h�ps://redis.io/topics/protocol.

Accessed: 2021-05-05.
[79] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible?

Operations research, 60(5):1249–1257, 2012.
[80] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and

F. Pollack. Hydra: The kernel of a multiprocessor operating system.
Commun. ACM, 17(6):337âĂŞ345, June 1974.

[81] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill:
Attributing the source of tail latency through precise load testing and
statistical inference. In Proceedings of the 43rd International Symposium
on Computer Architecture, ISCA ’16, page 456âĂŞ468. IEEE Press, 2016.

15

https://blog.cloudflare.com/how-to-achieve-low-latency/
https://blog.cloudflare.com/how-to-achieve-low-latency/
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://lwn.net/Articles/230501/
http://www.tpc.org/tpcc/
https://redis.io/topics/protocol

	Abstract
	1 Introduction
	2 The case for idling
	3 DARC Scheduling
	4 Perséphone
	4.1 System Model
	4.2 Request filters
	4.3 Perséphone Architecture

	5 Evaluation
	5.1 Experimental Setup
	5.2 DARC versus existing policies
	5.3 How much non work-conservation is useful?
	5.4 Comparison with Shinjuku and Shenango

	6 Discussion
	7 Related work
	8 Conclusion
	References

