
Towards Virtualization-Agnostic Latency for Time-Sensitive
Applications

Haoran Li

Washington University in St. Louis

Saint Louis, Missouri, USA

lihaoran@wustl.edu

Meng Xu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

mengxu@cis.upenn.edu

Chong Li

Washington University in St. Louis

Saint Louis, Missouri, USA

chong.li@wustl.edu

Chenyang Lu

Washington University in St. Louis

Saint Louis, Missouri, USA

lu@wustl.edu

Christopher Gill

Washington University in St. Louis

Saint Louis, Missouri, USA

cdgill@wustl.edu

Linh Phan

University of Pennsylvania

Philadelphia, Pennsylvania, USA

linhphan@cis.upenn.edu

Insup Lee

University of Pennsylvania

Philadelphia, Pennsylvania, USA

lee@cis.upenn.edu

Oleg Sokolsky

University of Pennsylvania

Philadelphia, Pennsylvania, USA

sokolsky@cis.upenn.edu

ABSTRACT
As time-sensitive applications are deployed spanning multiple edge

clouds, delivering consistent and scalable latency performance

across different virtualized hosts becomes increasingly challeng-

ing. In contrast to traditional real-time systems requiring deadline

guarantees for all jobs, the latency service-level objectives of cloud

applications are usually defined in terms of tail latency, i.e., the
latency of a certain percentage of the jobs should be below a given

threshold. This means that neither dedicating entire physical CPU

cores, nor combining virtualization with deadline-based techniques

such as compositional real-time scheduling, can meet the needs of

these applications in a resource-efficient manner.

To address this limitation, and to simplify the management

of edge clouds for latency-sensitive applications, we introduce

virtualization-agnostic latency (VAL) as an essential property to

maintain consistent tail latency assurances across different virtual-

ized hosts. VAL requires that an application experience similar la-

tency distributions on a shared host as on a dedicated one. Towards

achieving VAL in edge clouds, this paper presents a virtualization-
agnostic scheduling (VAS) framework for time-sensitive applications

sharing CPUs with other applications. We show both theoretically

and experimentally that VAS can effectively deliver VAL on shared

hosts. For periodic and sporadic tasks, we establish theoretical guar-

antees that VAS can achieve the same task schedule on a shared

CPU as on a full CPU dedicated to time-sensitive services. Moreover,

this can be achieved by allocating the minimal CPU bandwidth to

time-sensitive services, thereby avoiding wasting CPU resources.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7–9, 2021, NANTES, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00

https://doi.org/10.1145/3453417.3453420

VAS has been implemented on Xen 4.10.0. In case studies running

time-sensitive workloads on Redis and Spark streaming services,

we show that in practice the task schedule on a shared CPU can

closely approximate the one on a full CPU.

CCS CONCEPTS
•Computer systems organization→Real-time system archi-
tecture; Real-time operating systems.

KEYWORDS
Real-Time Scheduling, Virtualization, Deferrable Server

ACM Reference Format:
Haoran Li, Meng Xu, Chong Li, Chenyang Lu, Christopher Gill, Linh Phan,

Insup Lee, and Oleg Sokolsky. 2021. Towards Virtualization-Agnostic La-

tency for Time-Sensitive Applications. In 29th International Conference on
Real-Time Networks and Systems (RTNS’2021), April 7–9, 2021, NANTES,
France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3453417.

3453420

1 INTRODUCTION
With the emergence of edge computing as a new distributed com-

puting paradigm, time-sensitive applications are deployed in edge
clouds [33] located close to the sources of data [19]. Workloads

within edge clouds typically comprise a mix of time-sensitive ser-

vices and non-real-time applications [15]. Unlike traditional real-

time applications with deadline constraints, the service level objec-

tives (SLOs) [43] of time-sensitive cloud applications are usually

defined in terms of tail latency, i.e., the latency of a certain percent-

age of the jobs should be below a given threshold [11, 12, 17, 30].

For example, a common SLO of Amazon DynamoDB was that 99.9%

requests should be completed within 300ms [12]; a Google BigTable

benchmark was targeted at 99.9th percentile latency [11].

In contrast to centralized cloud infrastructure, edge cloud op-

erators face the additional challenge of managing numerous edge

https://doi.org/10.1145/3453417.3453420
https://doi.org/10.1145/3453417.3453420
https://doi.org/10.1145/3453417.3453420

RTNS’2021, April 7–9, 2021, NANTES, France Li and Xu, et al.

clouds distributed in different locations. This challenge is com-

pounded by the need to meet the SLOs of time-sensitive applica-

tions deployed on different edge clouds. Traditionally, significant

effort is required to test, tune, and configure an edge service for

each edge cloud. This is a labor-intensive process that cannot scale

effectively for a large number of edge sites. It is thus necessary to

provide a simple and effective system management solution for

time-sensitive workloads on edge clouds
1
.

Current cloud infrastructure typically meets applications’ SLOs

by dedicating physical CPUs (PCPUs) to time-sensitive services, i.e.,

allowing time-sensitive services to monopolize full CPUs. For exam-

ple, Heracles [29] isolates cores to achieve a specific latency SLO.

VMware also supports time-sensitive applications by dedicating

PCPUs [39], as does RedHat in the real-time KVM project [16]. For

time-sensitive cloud services like Redis, it has been suggested [28]

to set the CPU affinity and use a dedicated core to maximize perfor-

mance. While effective in meeting applications’ SLOs, dedicating

PCPUs to VCPUs can incur resource overprovisioning, which is

undesirable for resource-constrained edge platforms.

In contrast to the full CPU approach, the real-time systems com-

munity has developed compositional scheduling frameworks and

real-time virtualization technologies that allow VMs to share a

PCPU, thereby achieving real-time performance on partial CPUs
[1, 2, 20, 22, 26, 40, 42]. However, existing compositional sched-

uling approaches are geared toward meeting deadlines for hard

real-time systems. Treating tail latency thresholds as hard deadlines

would lead to resource overprovisioning. Furthermore, allocating

CPU resources based on existing compositional scheduling anal-

yses [3, 7, 9, 14, 27, 34–36] may lead to low resource utilization

due to pessimism in providing real-time deadline guarantees in a

hierarchical manner.

To simplify management and resource sharing in edge clouds,

we introduce virtualization-agnostic latency (VAL) as a desirable
property to maintain consistent latency across different edge clouds.

VAL requires that an application experiences similar latency distri-

butions on a shared host as on a dedicated one. With VAL the same

time-sensitive application can be deployed on multiple edge clouds

with similar latency distributions. Thus, VAL greatly reduces the

effort needed for performance tuning to deliver desired tail latency

at any percentile of the latency distribution
2
.

To achieve VAL in a resource-efficient manner, we propose

virtualization-agnostic scheduling (VAS) to deliver VAL for a time-

sensitive application on a shared CPU, while allowing general-

purpose applications to reclaim unused CPU cycles in a virtualized

host.
3

Specifically, the contributions of this work are four-fold:

1
An edge cloud may employ different infrastructure technologies including virtual-

ization, containers, or serverless computing. This work focuses on virtualized hosts,

although the scheduling approaches may be extended to container-based platforms.

2
We note that maintaining consistent latency distributions is a sufficient but not

necessary condition to achieve specific tail latency. A contribution of this work is

to demonstrate that VAL provides a practical and convenient abstraction to deliver

desired tail latency on virtualized hosts.

3
As a first step towards virtualization-agnostic latency, we focus on CPU scheduling

in this paper. To develop a fully virtualization-agnostic system solution, future work

is needed to manage performance interference caused by other shared resources such

as cache, memory, and I/O subsystems.

• We propose virtualization-agnostic latency (VAL) as a desir-
able property to maintain similar latency distributions for a

time-sensitive application on different edge clouds.

• We introduce virtualization-agnostic scheduling (VAS), a prac-
tical CPU scheduling framework for time-sensitive appli-

cations on shared virtualized hosts. Tailored for resource-

constrained edge devices, VAS employs a simple but effective

scheduling approach to achieve VAL on shared CPUs.

• For periodic and sporadic tasks, we establish theoretical guar-
antees that time-sensitive tasks within a partial CPU can

achieve the same task schedules as those on a full CPU, and

thereby achieve the same latency distribution. Moreover, we

also prove that the minimal CPU bandwidth can be achieved

while maintaining VAL.

• We have implemented VAS on Xen 4.10.0. Experimental re-

sults show that even on a real platform with scheduling and

context switching overheads, the task schedule in a partial

CPU can closely approximate that in a full CPU in case stud-

ies running time-sensitive applications on Redis and Spark

Streaming services.

2 BACKGROUND
We now give an overview of the Xen hypervisor [6] as a representa-

tive real-time scheduling approach for virtualized hosts. While VAS

is implemented and evaluated in the Xen hypervisor, the schedul-

ing and resource provisioning approach can also be generalized to

other virtualization platforms.

A Xen-based virtualized system includes an administration VM

(Domain 0) and several guest domains. Domain 0 is used by system

operators to manage the hypervisor as well as other VMs. Each

guest VMhas its operating system, and each VMhas tasks scheduled

by the guest OS on the Virtual CPUs (VCPUs) of the VM. The Xen

scheduler schedules all VCPUs of all domains on physical cores.

Xen introduced a real-time scheduler, called the Real-Time De-
ferrable Server (RTDS) scheduler [40], in Xen 4.5.0. RTDS provides

guaranteed CPU capacity to guest VMs on symmetric multiprocess-

ing (SMP) machines. Each VCPU is implemented as a deferrable
server in the RTDS scheduler. A VCPU is represented asVi = (Bi , Pi),
where Pi is the period and Bi is the budget, indicating that the

VCPU is guaranteed to run for Bi time units in every interval Pi .
The deferrable server mechanism defines how a VCPU’s budget is

managed: a VCPU’s budget decreases when the VCPU is running on

a core; a VCPU is suspended till the end of the current period when

its budget has been exhausted; a VCPU’s budget is replenished to

Bi at the start of every period Pi , and a VCPU’s remaining budget

is discarded at the end of the current period.

The deferrable server model has two key properties for real-time

systems: (1) it guarantees that a VCPU always gets its configured

CPU resource (i.e., Bi time per Pi interval) when the system is

schedulable; and (2) it prevents a VCPU from running for more

time than the budget in each period, thereby providing isolation

between VCPUs sharing PCPUs. The deferrable server approach

may cause additional delays for tasks running on it [25, 26]: if

the budget is exhausted before the end of the period, no further

service is provided until the next period. Thus, the pending task will

wait for budget replenishment at the beginning of the next period,

Towards Virtualization-Agnostic Latency for Time-Sensitive Applications RTNS’2021, April 7–9, 2021, NANTES, France

0 4 8 12 16
t

t

Task
B

ud
ge

t

0

3

4 8 12 16

Deferrable
Server (3,4)

(4,8)

Budget Replenishment Penalty

Figure 1: Budget Replenishment Penalty

referred to as a budget replenishment penalty. For example, Fig. 1

shows a periodic task, whose period is 8 and worst-case execution

time is 4, running in a deferrable server with a period of 4 and a

budget of 3: At time 3, because the deferrable server has exhausted

its budget, the pending job is delayed until time 4; the response

time is 5, which suffers from a budget replenishment penalty of 1

time unit.

While RTDS is an effective real-time scheduler for meeting dead-

lines in VMs sharing CPUs, it is not designed to achieve expected tail

latency objectives required by time-sensitive applications. Further-

more, it cannot provide consistent latency distributions in different

edge clouds.

3 SCHEDULING APPROACH
3.1 Task Model
An edge server is a multi-tenant system comprising time-sensitive

tasks and general-purpose tasks. A time-sensitive task has an SLO in

terms of expected tail latency. We assume that a time-sensitive task

maintains the same execution time when deployed in different edge

clouds. In practice, an edge cloud operator can maintain consistent

execution times in different edge clouds by adopting machines from

the same vendor according to uniform specifications. While the

edge servers share the same hardware profile, they run different

mixes of time-sensitive and general-purpose tasks, whichmaymake

it challenging to meet the tail latency requirements in different edge

clouds. For example, while a manufacturer may deploy edge clouds

using the same hardware platform in different factories, the same

time-sensitive task may be co-located with a different set of general-

purpose applications locally.

A general-purpose task has no latency requirements, but may

have throughput requirements and demand a certain share of CPU

in a multi-tenant system. To improve resource efficiency, we allow

a VCPU hosting time-sensitive tasks to share a PCPU with VCPUs

hosting general-purpose tasks.

VAS aims to provide (1) virtualization-agnostic latency (VAL) for
time-sensitive tasks and (2) resource isolation for time-sensitive and

general-purpose tasks. VAL requires that an application experiences

similar latency distributions on a shared host as on a dedicated one.

With VAL the same time-sensitive application can be deployed

on different edge clouds with similar latency distribution, thereby

greatly reducing the effort needed for performance tuning on in-

dividual edge cloud to deliver desired tail latency. In addition, as

edge clouds are multi-tenant systems, we need to provide resource

isolation between VMs running time-sensitive or general-purpose

tasks, so that an aggressive or faulty VM will not cause starvation

in other VMs on the same server.

3.2 Scheduling Framework
VAS provides a practical scheduling framework to provide VAL and

resource isolation for VMs sharing virtualized hosts. A VM has

one or more VCPUs. A VCPU may be time-sensitive if it runs time-

sensitive tasks, or general-purpose if it runs general-purpose tasks.
A virtualized system employs two-level scheduling. The hypervisor

schedules VCPUs on PCPUs, and the VM scheduler schedules tasks

on VCPUs.

VMScheduler. Each time-sensitive VM runs a partitioned sched-

uler in which each VCPU is scheduled by the same stable and

work-conserving scheduling policy on that VCPU. A stable sched-

uling policy forms the same schedule for the same input. A work-

conserving policy never lets the VCPU idle when there are pending

tasks on the VCPU. Note that we do not require the partitioned

scheduler to be work-conserving on the multicore VM. Instead, be-

cause each VCPU is scheduled independently in partitioned sched-

uling, we only require the scheduling policy on the VCPU to be

work-conserving locally. For example, common scheduling policies

such as EDF, RM, and FIFO are work-conserving.

Hypervisor Scheduler. The hypervisor employs partitioned

fixed-priority scheduling, i.e., a set of VCPUs is pinned to and

scheduled on a PCPU based on a preemptive fixed-priority policy.

A VCPU is scheduled as a deferrable server with a resource interface
(B, P ,R), where the budget B > 0, the period P ≥ B, and R is the

priority. Accordingly, the VCPU will be scheduled to run for B time

units every P time units, at priorityR. The deferrable server provides
a mechanism to meet the latency requirement of time-sensitive

VCPUs and provide resource isolation for both time-sensitive and

general-purpose VCPUs.

Only one time-sensitive VCPU can be allocated on a PCPU and

runs at the highest priority on the PCPU, which can be shared

with multiple general-purpose VCPUs. Therefore, a host with m
cores may host up to m time-sensitive VCPUs. Though restricting

the number of time-sensitive VCPUs on a host, this solution is

suitable for edge servers on which workloads are dominated by

general-purpose services
4
. While restrictive, this scheduling ap-

proach provides a practical and efficient way to achieve VAL for

time-sensitive tasks. A contribution of this work is to establish both

theoretically and experimentally that VAS can achieve its design

goals (as is detailed in Sections 4 and 6).

4 THEORETICAL PROPERTIES
Our first design goal is to achieve virtualization-agnostic latency

for all the tasks within a time-sensitive VM. In this section we will

prove that, theoretically, VAS leads to the same task schedule on a

partial CPU as on a full CPU. While it is not the only way to achieve

virtualization-agnostic latency, this theoretical property further

enhances the predictability of time-sensitive services deployed on

partial CPUs.

4
A similar but simpler system model was adopted for predicting latency distributions

of aperiodic services on virtualized platforms, which assumed a single time-sensitive

service on each PCPU [24]. VAS allows multiple time-sensitive services to share the

time-sensitive VCPU on each PCPU.

RTNS’2021, April 7–9, 2021, NANTES, France Li and Xu, et al.

 Host

PCPU

Time-sensitive VM

VCPU (B, P, R)

Fixed Priority Scheduler

OS Scheduler X

Disrupt VMGeneral-purpose VM(s)

VCPU (B’, P’, R’)

OS Scheduler Y

Host

PCPU

Time-sensitive VM

Full CPU

Fixed Priority Scheduler

OS Scheduler X

Full VCPU VM Partial VCPU VM
Time-sensitive

Task
General

Task

Figure 2: System Model

The intuition originates from a well-known property of fixed-

priority scheduling: the highest-priority task’s schedule is not af-

fected by lower-priority tasks (assuming there is no other resource

sharing dependency). We formalize this property in the case of VAS

in Theorem 4.1. However, in a hierarchical scheduling scenario, sim-

ply assigning the highest priority to the time-sensitive VM (VCPU)

is not sufficient to maintain the same task schedule within the

VM, because the budget enforcement mechanism may alter the

schedule of the task when a server is suspended. The key theo-

retical contribution, therefore, is to establish the conditions under

which the budget enforcement will not be activated for a deferrable

server (if the time-sensitive application conforms to its workload

specification). Further, we derive the minimal VCPU bandwidth

and server configuration that avoids budget enforcement (Theo-

rem 4.2): hence, we can achieve virtualization-agnostic latency with

an optimal configuration in terms of resource consumption.

4.1 System Model
We now formalize the system model as a basis for our theoretical

analysis. Recall that VAS employs a partitioned scheduler in the

hypervisor on which VCPUs are partitioned among the underlying

PCPUs. Because each PCPU is scheduled independently, henceforth,

we focus on a single PCPU that is running a single time-sensitive

VCPU and a set of general-purpose VCPUs.

A free offset periodic (or sporadic) task system Γ is defined as

Γ = {τi = (Ai ,Ci ,Ti)|i = 1..N }, where the worst case execution
time (WCET) Ci > 0, the period of a task (or minimal inter-arrival
time for a sporadic task) Ti > Ci ,Ti ∈ N

+
, , and the offset satisfies

0 ≤ Ai < Ti . The utilization, U , of task system Γ, is U =
∑
i
Ci
Ti .

The hyperperiod of the task system is LCM{Ti }, the least-common-

multiple of the period of all the tasks. A VCPU is a deferrable server

whose resource interface is (B, P ,R). The bandwidthW of a VCPU

is W = B
P . On a PCPU the task system of interest resides in a

time-sensitive VCPU, while other VCPUs on the same PCPU are

denoted as general-purpose VCPUs (Fig. 2). The time-sensitive task

system is scheduled hierarchically by a scheduler X on the VCPU;

and the VCPU (deferrable server) is scheduled by a preemptive

Fixed Priority (FP) scheduler in the hypervisor, on the PCPU. A

full CPU VCPU is a time-sensitive VCPU whose bandwidthW = 1.

Hence, it monopolizes the single PCPU of the host (Full VCPU VM

in Fig. 2). A partial CPU VCPU is a time-sensitive VCPU whose

bandwidthW < 1. Thus, it can share the PCPU with VCPUs from

other general-purpose VMs (Partial VCPU VM in Fig. 2).

For simplicity of presentation, in the rest of the paper, we will

refer to full CPU VCPU as “full VCPU", and to partial CPU VCPU as

“partial VCPU". Let the task system of interest be Γ, whose U < 1.

Γ is scheduled in either a full VCPU or a partial VCPU. We denote

G(Γ, t) as the scheduled job of a task system Γ at time t .
For the same task system Γ and same stable and work-conserving

scheduler X , we want to answer two questions:

(1) Is it possible to make the schedule,G ′(Γ, t), in a partial VCPU,
the same as the schedule, G(Γ, t), in a full VCPU for all time

t , by setting the resource interface of the partial VCPU?

(2) If so, what is the optimal resource interface setting, in terms

of achieving the minimal bandwidthW ?

4.2 Theorems and Proofs
Theorem 4.1. The schedule of Γ in a partial VCPU, G ′(Γ, t), can

be identical to the schedule G(Γ, t) in a full VCPU, as long as (1)
the VCPU of the partial VCPU has the highest priority among other
VCPUs and (2) the budget of the VCPU is never exhausted within any
period of the VCPU.

From Theorem 4.1, if enough budget is provided for each pe-

riod of a partial VCPU with highest priority, we can ensure that Γ
achieves the same schedule as it would on a full VCPU. Then, The-

orem 4.2 indicates an optimal resource interface can be achieved:

Theorem 4.2. To make the same schedule G(Γ, t) in a full CPU,
the minimal bandwidth of a partial VCPU should not be less than the
utilization of Γ, i.e.,W ≥ U . Specifically, if the period of the partial
VCPU is the hyperperiod of Γ, i.e., P = LCM{Ti }, thenW = U . Thus,
the resource interface of the partial CPU is (P ×U , P ,Hiдhest);

Proof of Theorem 4.1. We prove Theorem 4.1 by contradiction:

We assume that we can find the earliest time t0 where the partial
CPU’s schedule differs from that of a full one, even though the

partial CPU has highest priority and the budget is never exhausted

within a period. That is, ∃t0 ≥ 0, where,{
G(Γ, t) = G ′(Γ, t) t ≤ t0

G(Γ, t0+) , G
′(Γ, t0+).

(1)

For time t0, there are four possible cases (Fig. 3):

(1) G(Γ, t0+) has no job scheduled; G ′(Γ, t0+) has a job.
(2) G(Γ, t0+) and G

′(Γ, t0+) have different jobs scheduled.
(3) G(Γ, t0+) has a job scheduled; G

′(Γ, t0+) has no job; and t0+
falls in a deferrable server’s period.

(4) G(Γ, t0+) has a job scheduled; G
′(Γ, t0+) has no job; and t0+

is at the end of one period of a deferrable server.

Case (1) implies that a new job is released at t0. However, the
full VCPU does not schedule this pending job, which contradicts

the “work-conserving" assumption. For case (2), the schedulers in

the full and partial VCPU should have the same scheduling state

(and pending queue), but they make different decisions, which

contradicts the “stable" assumption. Because scheduler X is a work-

conserving scheduler, it can refuse to schedule a job for G ′(Γ, t0+),
only if the VCPU budget is exhausted. Thus, Case (3) contradicts

the “budget never exhausted within a period" assumption. For case

(4), even if the budget is exhausted at the end of the previous period

(t0−), the budget will replenish at the start of a new VCPU period,

Towards Virtualization-Agnostic Latency for Time-Sensitive Applications RTNS’2021, April 7–9, 2021, NANTES, France

t

t

t0

(3)

P

t

t

t0

(4)

t

t
t0

(1)

t

t
t0

(2)

G(Γ, t)

G’(Γ, t)

G(Γ, t)

G’(Γ, t)

G(Γ, t)

G’(Γ, t)

G(Γ, t)

G’(Γ, t)

Figure 3: Proof of Theorem 4.1

thus also creating a contradiction. We find a contradiction for each

case, thus proving Theorem 4.1. □
Before proving Theorem 4.2, we introduce some auxiliary func-

tions and lemmas. Let the budget demand function , D(t), of task
system Γ, be

D(t) =
N∑
i=1

⌈
t −Ai
Ti

⌉
Ci t ≥ 0. (2)

The budget demand function D(t) denotes the total execution
time that all jobs released before t request from the task system Γ
(where a job of τi would requestCi execution time units as soon as

it is released). D(t) is a stepwise function.
We define Y ⊂ R to indicate where D(t) is continuous:

Y = R \ {t = kTi +Ai |∀k ∈ N, i = 1, 2..N }. (3)

Let the continuous budget supply function, S(t), be
S(t) = 0 t ≤ 0

d
dt S(t) = 0 S(t) = D(t), t ∈ Y
d
dt S(t) = 1 S(t) < D(t), t ∈ Y

lim

x→t
S(x) = S(t) ∀t ∈ R.

(4)

The budget supply function S(t) denotes the total execution
time provided by a full VCPU before time t . The third equation
in (4) indicates that when there are pending (unfinished) jobs, the

VCPU is active and providing service to the jobs in the queue. The

second equation in (4) indicates that when there are no pending

jobs and hence the queue is empty, the VCPU is idle. Hence, S(t)
reflects the budget supply behavior of a work-conserving scheduler.

The fourth equation denotes the continuity of S(t) 5.
Fig. 4a shows the demand and supply values vs. time, i.e., D(t)

and S(t), of a typical periodic task system Γ1 = {τi = (Ai ,Ci ,Ti)|i =
0, 1, 2, 3}, where the parameters (inms) of four tasks are (150, 40,
250), (100, 200, 500), (50, 100, 1000), and (0, 200, 2000), respectively.

Lemma 4.3. For the same task system with any work-conserving
scheduler X , S(t) is unique.

Proof.D(t) is determined by task system Γ.D(t) is a non-decreasing
stepwise function, so S(t) can be determined by D(t) uniquely. Ac-
cording to the definition of S(t) in Eq. 4, S(t) reflects a generic

5
To clarify, D(t) and S (t) are different from the well-known demand bound function,
dbf (t) [8] and supply bound function, sbf (t) [35], respectively. While demand bound

function and supply bound function are typically used for schedulability analysis, we

introduce D(t) and S (t) to find the resource interface that avoids budget exhaustion

for deferrable server.

work-conserving scheduler’s behavior, so any work-conserving

scheduler should have the same S(t). □

Lemma 4.4. If P = LCM{Ti |i = 1, 2..N }, then S(t) satisfies:

S(t + P) − S(t) = PU , t ≥ max

i
{Ai }, (5)

S(t + P) − S(t) ≤ PU , t < max

i
{Ai }. (6)

Proof. Let scheduler X be an EDF scheduler, considering task

system Γ with implicit deadlines. Then, using Theorem 1 in [23],

∃t0 = max{Ai } ≥ 0, where the schedule repeats itself after t0, with
a hyperperiod P = LCM{Ti }.

In each hyperperiod, the schedule is the same. So S(t0+(n+1)P) =
S(t0 + nP) +M , where M is a constant value. For time [0, t0), the
accumulated budget supply is S(t0). By definition, the utilization,

U , is

U = lim

n→∞
U (n) = lim

n→∞

S(t0) + nM

t0 + nP
=

M

P
⇒ M = PU .

Using Lemma 4.3, if S(t + P) − S(t) = PU is true for the EDF

scheduler, the theorem holds for any work-conserving scheduler.

Inequality (6) holds because not all tasks start releasing jobs before

maxi {Ai }. Since the load of the system is less, the budget supply

in a hyperperiod is less. □
Proof of Theorem 4.2. The first part of Theorem 4.2 is trivial and

can be proved by contradiction: ifW < U holds, the partial CPU is

overloaded due to a lack of resources and hence cannot achieve the

same schedule as a full one.

The second part of Theorem 4.2 is P = LCM{Ti } ⇒ W =

U , which we prove as follows: From Lemma 4.4, we have P =
LCM{Ti } ⇒ S(t + P) − S(t) ≤ PU . Using Theorem 4.1, a sufficient

condition to achieve the same schedule is to keep the budget supply

of any period of a partial CPU not less than the budget supply of

the corresponding interval in a full CPU, i.e., B ≥ S(t + P) − S(t).
So, if B = PU , we can guarantee G(Γ, t) = G ′(Γ, t). Thus, we can
achieve the minimal bandwidth which equals the task utilization,

W = B
P = U . The proof for sporadic tasks shares a similar proce-

dure, with equations (2) and (5) being changed to inequalities. □
Theorem 4.2 explicitly indicates how we can configure a partial

CPU to both maintain the scheduling of a full CPU and achieve

minimal VCPU bandwidth:

Given a taskset Γ = {τi = (Ai ,Ci ,Ti)|i = 1, ..N },
1. Compute the hyperperiod LCM{Ti };

2. Compute the utilizationU =
∑
i
Ci
Ti ;

3. For the partial VCPU with a resource interface (B, P ,R),

let P ← LCM{Ti }, B ← PU , R ← Hiдhest . □

Theorems 4.1 and 4.2 can be explained from the another point

of view. Theorem 4.1 indicates that, given a certain periodic task

system within a time-sensitive partial VCPU, we can always avoid

budget exhaustion in any period and hence achieve VAL. All we

need to do is allocate enough bandwidth for the VCPU. The minimal

bandwidth is a function of the period of the VCPU, i.e.,W (P) =
maxt {S(t + P) − S(t)}. Theorem 4.2 states thatW (P) achieves its
minimum when P = LCM{Ti }, i.e.,W = minP {W (P)} = U . For

example, computingW (P) for task system Γ1, we illustrateW (P) in
Fig. 4b. Any point on this figure refers to a certain resource interface

configuration. Using Theorem 4.1, if the point sits on or above the

RTNS’2021, April 7–9, 2021, NANTES, France Li and Xu, et al.

0 2000 4000 6000
Time t(ms)

0

1000

2000

3000

4000

5000

Va
lu
e
(m

s)

D(t)
S(t)

(a) D(t) and S(t)

0 1000 2000 3000 4000 5000 6000
Period t(ms)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ba
nd

wi
dt
h
Re

qu
ire

d W(P)

(b) W(P)

Figure 4: Important Curves Related to Γ1

solid line, we can keep the virtualization-agnostic property. Using

Theorem 4.2, if P = 2000ms , which equals the hyperperiod of Γ1,
we can achieve the minimum ofW (P),W = U = 76%.

A potential limitation of the resource interface configuration

for the time-sensitive VCPU is that the general-purpose VCPUs

sharing the PCPU may be deprived of CPU time for an extended

period of time when the hyperperiod or utilization of time-sensitive

tasks is large. Hence, VAS assumes the general-purpose tasks to be

tolerant of delays. In addition, time-sensitive tasks with harmonic

periods help avoid a large hyperperiod.

5 SYSTEM IMPLEMENTATION
We have implemented VAS in the Xen hypervisor (4.10.0) on a

multi-core host. In the hypervisor, VAS employs a partitioned fixed-

priority scheduling policy, and a VCPU needs to be scheduled as

a deferrable server. The existing RTDS scheduler in Xen already

schedules a VCPU as a deferrable server, but employs a global

EDF scheduling policy. Hence we implemented a new partitioned

fixed-priority (FP) scheduler in the RTDS scheduler, which was

similar to the original partitioned fixed-priority scheduler imple-

mented in RT-Xen [40]. Specifically, we extended struct rt_vcpu
by adding the field uint32_t prio, and modified the function

compare_vcpu_priority() to compare the prio values rather

than their absolute deadlines. To support partitioned scheduling,

we set a VCPU’s PCPU-affinity via the VM configuration file to

bind the VCPU to a PCPU at run time. Finally, we modified libxl
and libxc to support an “-r" option for the command “xl sched-rtds"
so that any VCPU’s priority is configurable via Domain 0.

To configure the resource interface of a time-sensitive VCPU in a

real system, we need to take into account several system issues that

are not modeled in the theoretical results. First, VAS and the VM

schedulers incur scheduling and context switching overhead at both

the hypervisor and the VM levels. Moreover, interrupt handlers

and other kernel services in the VMs may consume additional

CPU time. Although those tasks may be modeled as sporadic tasks

and thus can be handled by our theoretical analysis, this solution

may force us to choose a very large period for the VCPU, because

the minimal inter-arrival time of those tasks could be large. We

therefore take a pragmatic approach to handle the additional system

activities and overhead through moderate overprovisioning. In our

experiments with Linux-based VMs, we found that adding 5% more

 Host

Time-Sensitive VM

Xen FP Scheduler

Clients VM

Partial CPU

PCPU 1

GP VM

Partial CPU

ProducerProducerProducerClients

Partial VCPUPartial VCPUFull CPU

Partial VCPUPartial VCPUPCPU 8-15

Server

Figure 5: VAS System Architecture for a Synthetic Applica-
tion

CPU bandwidth to the theoretical bound was sufficient to deliver

virtualization-agnostic latency
6
.

6 EVALUATION
In this section, we present three different sets of experiments for

testing the VAS system: (1) synthetic taskset experiments, (2) a

case study on Redis, and (3) a case study on Spark Streaming. The

synthetic taskset experiments examined how VAS performs in peri-

odic/sporadic task systems with different work conserving sched-

ulers. The two case studies were designed to assess the effectiveness

of our approach for real-world applications.

We conducted experiments on a machine with one Intel E5-

2683v4 16-core CPU and 64 GB memory. We disabled hyper thread-

ing and power saving features and fixed the CPU frequency at 2.1

GHz to reduce unpredictability, as in [21, 40, 41]. We used Xen

4.10.0 with our VAS implementation as the hypervisor scheduler.

We used Linux 4.4.19 for all VMs. We configured Domain 0 with

one full CPU pinned to one dedicated core, i.e., PCPU 0. We used

Redis version 4.0.9, Kafka version 2.0.0, and Spark version 2.3.1.

We mainly concerned with whether a task set within a partial

VCPU VM in the VAS system can achieve VAL, i.e., the same latency

distributions as those in a full VCPU. We plotted cumulative distri-

bution functions (CDF) to illustrate the difference between the two

distributions, and used the Wasserstein Distance [37] to quantify

differences between two distributions.

6.1 Synthetic Server Evaluation
System Architecture. The synthetic task system we used for eval-

uation is comprised of one server and several clients. Clients dis-

patch jobs periodically by sending requests to the server within

the time-sensitive VM. The server queues incoming jobs, sched-

ules them according to a work-conserving scheduling policy, and

provides services to jobs. This architecture pertains to many cloud

applications, such as Redis, Spark and FTP services. We used three

VMs for this experiment, as Fig. 5 shows: (1) a 1-VCPU general-

purpose VM (GP VM), with the VCPU pinned to PCPU 1. (2) a

1-VCPU time-sensitive VM for running the synthetic server, which

shares PCPU 1 with the GP VM in a partial CPU configuration. and

(3) an 8-VCPU VM for running clients, with each VCPU pinned to a

6
While the amount of overprovisioning is heuristically derived, the same margin

is used in Linux [10]. As future work it will be interesting to leverage earlier re-

search on characterizing virtualization overhead [2] to configure the overprovisioning

systematically.

Towards Virtualization-Agnostic Latency for Time-Sensitive Applications RTNS’2021, April 7–9, 2021, NANTES, France

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(a) Full CPU (FIFO)

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(b) Partial CPU (FIFO)

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(c) Full CPU (FP/RM)

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(d) Partial CPU (FP/RM)

Figure 6: Periodic Tasks: Schedule Comparison

0 100 200 300 400 500 600
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU

(a) FIFO

0 100 200 300 400 500 600
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU

(b) FP/RM

Figure 7: Periodic Tasks: Empirical CDF Comparison

distinct PCPU (from PCPU 8 to PCPU 15). In the VM for the clients,

to make the clients as independent as possible, we assigned clients

to VCPUs in a round-robin fashion. The VM for the clients does

not share PCPU 8-15 with the other VMs.

For the partial CPU VM configuration, we configured the re-

source interface of the VCPU in the time-sensitive VM based on

Theorem 4.2. The GP VM, which was created to share the PCPU

with the time-sensitive VM, ran a purely CPU intensive workload

to consume CPU cycles when possible. For the full CPU VM con-

figuration, we did not run the GP VM: setting the VCPU in the

time-sensitive VM to have full bandwidth, we let the time-sensitive

VM occupy PCPU 1 exclusively.

Wemeasured the response time of each job for different combina-

tions of settings: periodic / sporadic tasks, harmonic / non-harmonic

tasks, and FIFO / FP schedulers. We then also tested our system

extensively by using randomly generated test cases.

Periodic Tasks.We used a harmonic periodic task setting with a

free offset, Γ1 (defined in section 4), whose hyperperiod is 2000 ms.

According to Theorem 4.2, the minimal VCPU bandwidth equals

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(a) Full CPU (FIFO)

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(b) Partial CPU (FIFO)

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(c) Full CPU (FP/RM)

0 1 2 3 4 5 6 7
t/(s)

CLI0

CLI1

CLI2

CLI3

Overall

(d) Partial CPU (FP/RM)

Figure 8: Sporadic Tasks: Schedule Comparison

0 100 200 300 400 500 600
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU

(a) FIFO

0 100 200 300 400 500 600
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU

(b) FP/RM

Figure 9: Sporadic Tasks: Empirical CDF Comparison

the utilization (76%) of the taskset: the interface (B, P) of the partial
CPU is (1520 ms, 2000 ms).

We ran the experiment for 100 seconds for both the full and the

partial CPU setting on both the FIFO and FP scheduler. For the

FP scheduler, we used a rate monotonic priority assignment. We

show the first 6 seconds in Fig. 6, and make three observations:

(1) The schedules of the partial CPU approximate the schedules of

the full CPU well, in either a FIFO job scheduler (Fig. 6a and 6b)

or a FP scheduler (Fig. 6c and 6d). (2) Each schedule repeats itself

every hyperperiod. (3) The server’s “active states" are identical

between the two work-conserving schedulers (“Overall" traces of

Fig. 6b and 6d), which supports the claim in Lemma 4.3: any work-

conserving scheduler can yield the same S(t).
Fig. 7 shows the latency distribution of two different VCPU set-

tings in either the FIFO or FP scheduler. We observe that (1) The

“stepwise" feature of the CDFs indicates the hyperperiodicity of the

system. (2) In either Fig. 7a or 7b, the partial CPU VM can appro-

priately achieve VAL: the CDF curves can hardly be differentiated

RTNS’2021, April 7–9, 2021, NANTES, France Li and Xu, et al.

0 10 20 30 40 50
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU

(a) FIFO

0 10 20 30 40 50
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU

(b) FP/RM

Figure 10: Non-Harmonic Periodic Tasks, Empirical CDF

visually, so we used Wasserstein distance to distinguish them, as

report later under Practical Overprovisioning.
Sporadic Tasks. We modified task system Γ1 for the sporadic test,
with the minimal job arrival interval of each sporadic task being

the same as the period of the corresponding periodic task. Each

job arrival interval is generated from a random variable with a

uniform distribution over [P , 2P]. The random inter-arrival times

are generated offline, and thus we can use the same “input" for

different runs and make comparisons among them. From the first

6 seconds of the schedule shown in Fig. 8, we observe that: (1)

The schedules of the partial CPU approximate the schedules of the

full CPU well. (2) Because of the randomized inter-arrival times,

each schedule no longer repeats itself. (3) The servers follow the

same activity patterns for two different work-conserving schedulers

(FIFO and FP).

In Fig. 9, we again observe overlapping CDF curves: thus, we

can appropriately achieve VAL in a sporadic setting as well as in a

periodic one.

Non-Harmonic Periodic Tasks. We also tested non-harmonic

period settings: Γ2 = {τi = (Ai ,Ci ,Ti)|i = 0, 1, 2, 3}, where the

parameters (inms) of four tasks are (15, 4, 20), (10, 6, 30), (5, 10, 50),
and (0, 7, 70), respectively. The hyperperiod is 2100ms , which is

much larger than each task’s period. From the overlapping curves

shown in Fig. 10, we can conclude that our system is also effective

for a non-harmonic setting. A non-harmonic task system can poten-

tially incur a large hyperperiod (with a proportionally large budget),

especially for co-prime intervals. As a result, it may prevent a low-

priority VCPU from running for a relatively long time. Hence, VAS

is more suitable when time-sensitive VMs with harmonic tasks or

when general-purpose tasks are tolerant of delays.

Practical Overprovisioning. Using a FP scheduler with RM pri-

ority assignment for synthetic server, we tested the periodic task

system Γ1 with different VCPU bandwidth configurations. The task

set utilization was 76%. We repeated the periodic task experiment

for 100 seconds each run, under three bandwidth settings: 71%

(overload), 76% (theoretical minimum), and 81% (overprovisioned).

We plotted the CDF curves in Fig. 11. The Wasserstein distances of

each setting were 67.169 ms, 1.3491 ms, and 65.038 µs.
These results support three main observations: (1) The overload

setting (-5% BW) deviates significantly from the full CPU’s CDF

because the system is overloaded. If the system were run indefi-

nitely, the pending jobs would accumulate and the queue would

never be emptied. Even running the system for a finite time (100

0 200 400 600
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU +5%
Partial CPU
Partial CPU -5%

Figure 11: CDF, Different RI

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0

20

40

60

80

100

W
as

se
rs
te
in
 D
ist

an
ce

 (u
s)

Figure 12: Multi-Testcase

seconds), the latency distribution shows a very long tail, with a

max latency up to 1457.2 ms. (2) The overprovisioned setting (+5%

BW) outperforms the others by giving the best approximation, with

a Wasserstein distance of 65.038 µs. (3) The theoretical minimal

bandwidth setting approximates the full CPU well. TheWasserstein

distance to the full CPU distribution was 1.3491 ms. The system

overhead can potentially induce temporary overload of a VCPU

and thus deteriorate the latency performance of the system. Hence,

we suggest a mild VCPU bandwidth overprovision (by 5%) when

adopting our configuration in real-world systems.

Multi-Testcase Evaluation.We generated randomized testcases

for our system. Given a desired utilization: (1) We uniformly picked

a period Pi , in milliseconds, from the harmonic set {10, 20, 40, 80,

160, 320, 640, 1280}. (2) We uniformly generated an offset, Ai , over
[0, Pi]. (3)We also generated a utilization,Ui , for this task, following
a medium bimodal distribution, which distributed uniformly over

[0.0001, 0.5) with probability of 2/3, or [0.5, 0.9] with probability of

1/3 as was done in prior work [40]. We then calculated the WCET,

Ci = PiUi . (4) We repeated steps (1) through (3) to generate more

tasks as long as the total utilization was less than desired, then

trimmed down the last task to fit the desired total utilization (if

necessary), and terminated the procedure.

We generated ten testcases for each of the following utilization

settings: 0.1, 0.3, 0.5, 0.7, and 0.9. We ran each testcase for 100s, for

both partial and full CPU settings. Fig. 12 shows that the Wasser-

stein distances of all testcases are lower than 100 µs, indicating that
the partial CPU configuration approximates the full CPU configura-

tion well for these randomized task sets. We also observed that high

utilization settings tended to yield greater distances: the higher the

desired utilization, the higher the average task numbers, and the

greater the likelihood of long period tasks. Those long period tasks

generated fewer samples with the same duration in a single run.

As a result, we have a higher chance to find a large Wasserstein

distance, since fewer samples can deviate significantly (higher p-

value). Longer period tasks had lower priorities (under RM priority

assignment), and thus were more likely to be preempted by higher

priority tasks. The execution time jitter of short period tasks also

may accumulate, and affect the response time of a long period task.

6.2 Case Study: Redis
Redis is a widely used single-threaded [32] in-memory data storage

server. Redis is typically used within a virtualized host such as AWS

ElastiCache [4]. In the following experiments, we employed Redis

as a real-world time-sensitive server to test our VAS system design.

Towards Virtualization-Agnostic Latency for Time-Sensitive Applications RTNS’2021, April 7–9, 2021, NANTES, France

0.0 0.1 0.2 0.3 0.4
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU
Partial CPU

Figure 13: Single Redis CDF

VM1VM2VM3VM4VM5VM6VM7
Redis VM ID

0

2

4

6

8

10

12

W
as
se
rs
te
in
 D
ist

an
ce
 (u

s)
Figure 14: Multi-Tenant

Single Redis VM. The testbed for this experiment was similar

to the synthetic evaluation architecture shown in Fig. 5, except

the synthetic server was replaced with a Redis server. Clients sent

“HSET" queries (which are used in the Structured Yahoo Streaming

Benchmark [5]) to the Redis server. We leveraged libhiredis to
implement the querying clients. The WCET of the “HSET" query

was 0.12 ms in our system. We used six periodic clients that each

sent one “HSET" query with a random key-value every 1ms. Thus,

the utilization was 72%. We overprovisioned the bandwidth by

5%, which meant the GP VM could consume at least 23% of the

CPU cycles per CPU. We ran the system for 100s. From the CDF

curves in Fig. 13 and the Wasserstein distance of 9.499µs, we can
conclude that the partial CPU configuration in VAS also effectively

approximated the full CPU configuration in the Redis test.

Multi-Redis-Tenant on PCPUs. Our system can be applied to a

multi-core host by using a partitioned approach. On the remaining

15 cores in our host, we created seven single VCPU Redis VMs, with

each VCPU pinned to a PCPU from among PCPUs 1-8. Another

7-VCPU GP VM, running seven CPU-intensive processes, shared

PCPUs 1-8 with the Redis VMs.We used the other eight PCPUs for a

client VM and ran seven groups of client processes, with six clients

in each group. Each client sent a HSET query (WCET = 0.12ms)

to one Redis server instance every 1 ms. The utilization of each

Redis server was 72%. We ran the system for 100s, collecting the

response times corresponding to each Redis VM.We then computed

the Wasserstein distance between the distributions for the full and

partial CPU settings.

As Fig. 14 illustrates, all seven Redis VMs show similar perfor-

mance, with a consistent Wasserstein distance around 10µs. We

can conclude that our design remained effective in a multi-tenant

scenario. This experiment yielded a relatively better result (10µs
distance) than that shown in Fig. 12. This phenomenon is due to

our use of the same execution time and period settings as in the

single Redis evaluation, while varying the period and execution

time in the synthetic experiments.

6.3 Case Study: Spark Streaming
Spark Streaming is a popular streaming and data analytics engine,

often run on virtualized hosts. For example, the Structured Yahoo
Streaming Benchmark [5], an open-source real-time advertisement

campaign application, is deployed on the DataBricks’ platform run-

ning on AWS. In this experiment, we evaluated whether our system

model can be easily extended and adopted for a Spark application.

 Host
Kafka VMSpark VM

Partial VCPU

Xen FP Scheduler

Ad Campaign App
Topic: Output

Topic: Input

Producer VM

Consumer

Partial VCPUPartial VCPUPartial CPU

Partial VCPUPartial VCPUPartial VCPUPCPU 4-7

Partial VCPUPartial VCPUFull CPU

GP VM

Partial VCPUPartial VCPUPartial VCPUPartial CPU

Partial VCPUPartial VCPUPCPU 1-3

ProducerProducerProducerProducer

Partial VCPUPartial VCPUFull CPU

Partial VCPUPartial VCPUPCPU 8-15

Figure 15: Applying VAS to a Spark Streaming Application

Figure 16: Periodic Processing Pattern of Spark

System Architecture.We created four VMs for this experiment,

as Fig. 15 shows: (1) a 4-VCPU VM for Spark, with each VCPU

pinned to a PCPU from among PCPUs 4-7, (2) a 4-VCPU GP VM,

which shares PCPUs 4-7 with the Spark VM, (3) a 3-VCPU VM

for a Kafka message broker, consumer, and Zookeeper, with each

VCPU pinned to a PCPU from PCPU 1-3, and (4) a 8-VCPU VM for

producers, with each VCPU pinned to a PCPU from PCPUs 8-15.

The Spark VM ran an advertisement campaign application. We

modified DataBricks’ Structured Yahoo Streaming Benchmark [5]

under realistic conditions. We set Spark to operate in a local mode

with four workers. Each worker ran on one VCPU in a Spark VM.

We set the shuffle partitions to 4. The Spark scheduler worked in

FIFO mode. We used an 8-VCPU VM for producers, which produced

and published advertisement-events to a Kafka “input" topic, at a

rate of 28,000 events/s. Those events were then consumed by Spark.

Periodic Processing. Spark features micro-batch processing: The

arriving events will not be processed until a periodic micro-batch

ends. As a result, Spark processes the incoming events periodically,

regardless of the events’ arrival pattern. We set the micro-batch

window size to 5 seconds via the writeStream.trigger()method.

Fig. 16 is a run-time screenshot of the Spark Web UI when we ran

Spark with a full CPU setting. We observed periodic behavior: Spark

processed the incoming events every 5 seconds. Effectively, each

VCPU within the Spark VM ran a periodic task with a period of

5 seconds. Moreover, this observation was true for every worker

in Spark, since the Spark Driver triggered the processing of each

worker every 5 seconds. Effectively, each VCPU within Spark VM

ran a periodic task with a period of 5 seconds.

Execution Time. Configuring the Spark VM with full-VCPUs, we

measured the Spark jobs’ elapsed times, which provide a safe estima-

tion of the execution time for each Spark worker. With a total input

rate of 28,000 event/s, a 5-second batch-window, four workers (i.e.,

RTNS’2021, April 7–9, 2021, NANTES, France Li and Xu, et al.

0 1000 2000 3000 4000
Elapsed Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Figure 17: Elapsed Time

0 2 4 6 8 10 12
Response Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Full CPU (run 1)
Full CPU (run 2)
Partial CPU

Figure 18: Spark CDF

four periodic tasks) on four PCPUs, Fig. 17 shows the distribution

of elapsed time. The maximum elapsed time was 3522 ms.

Partial CPU Setting.We used 3522 ms and 5000 ms as the WCET

and period for each Spark task, respectively. The utilization for each

worker on each VCPU was 70.44%. We set 75% bandwidth for each

VCPU in the Spark VM (overprovisioning by 4.56%). Each VCPU

in the GP VM took the remaining 24%. The final resource interface

for each VCPU in Spark VM was (3750 ms, 5000 ms, Highest).

Note that the Spark experiment was more realistic and yet intro-

duced more sources of variation: (1) The advertisement events were

randomly generated for different runs independently. (2) We cannot

control the Spark internal or guarantee it handles tasks exactly the

same in different runs. (3) Compared to the single-threaded Redis

and synthetic server platforms, the Spark platform needs to manage

additional threads (e.g., for Spark Web Service, and Spark Driver).

Hence, the absolute value of the Wasserstein distance was much

larger than in either the synthetic experiments or the Redis case

study, making it hard to tell whether results violate our claims.

Thus, we need two full CPU runs and compare the Wasserstein

distance between them to indicate the impact of those variations,

as a baseline. Then, we made another run in partial CPU setting, to

observer whether the Wasserstein distance between partial and full

CPU runs significantly exceeds the baseline of two full CPU runs.

We made three runs, each for 26 minutes, two with the full CPU

setting, and the other with the partial CPU setting. We compared

two runs with the same full CPU setting, where the Wasserstein

distance was 9.190 ms. Ironically, the partial CPU setting can yield

an even better Wasserstein distance of 8.378 ms. Thus, we can still

maintain that the partial CPUs in VAS system achieve comparable

VAL, as the results in Fig. 18 indicate that the latency distribution

of the partial CPU again closely approximates that of the full CPU.

7 RELATEDWORK
Recent years have witnessed significant research on VCPU sched-

uling and resource allocation for real-time virtualization systems.

A multitude of scheduling approaches have been explored for real-

time VCPU scheduling. The Quest-V separation kernel [26] sched-

ules each process in a sandbox as a deferrable server, and takes

budget replenishment delay into consideration for predictable com-

munications among sandboxes. vMPCP [22] provides a partitioned

hierarchical scheduling framework based on deferrable servers and

a synchronization protocol based on the Resource Kernel [31]. RT-

Xen [40] developed real-time schedulers in the Xen hypervisor

(including the RTDS scheduler adopted in the hypervisor). A pre-

dictable VM scheduling framework has also been developed based

on standard qemu/KVM, and Linux SCHED_DEADLINE sched-

uler [1]. RTVirt [42] introduced cross-layer scheduling by sharing

scheduling metadata between the hypervisor and the OS scheduler

within a VM. These systems leveraged real-time scheduling analysis

to provide guarantees in terms of meeting task deadlines. They are

not designed to meet probabilistic tail latency target or predictable

latency distributions. In contrast, VAS is, to our knowledge, the first

scheduling framework to provide VAL for time-sensitive applica-

tions on partial CPUs. Based on the predictable latency distribution,

it is hence straightforward to achieve tail latency guarantees with

VAS on multiple edge clouds. A limitation of VAS is that it can sup-

port only one time-sensitive VCPU per PCPU (shared with multiple

general-purpose VCPUs), and hence up tom VCPUs on anm-core

processor. VAS is therefore suitable for managing edge clouds each

co-hosting a mix of numerous general-purpose workloads and a

small set of time-sensitive services with stringent tail latency SLO.

Tableau [38] provides a scalable scheduling framework based

on dispatching tables that can be generated on-demand. With low

and predictable scheduling overhead, Tableau helps reduce tail

latency, but it is not designed to achieve tail latency guarantees

or VAL. Tableau is specifically designed for efficient scheduling

of high-density workloads. In contrast, VAS focuses on providing

VAL for a small number of time-sensitive VCPU sharing CPUs with

(potentially larger numbers of) general-purpose VCPUs. Tableau

and VAS therefore complement each other, and it will be interesting

explore approaches to combine their advantages.

While VAS achieves predictable latency distributions for periodic

and sporadic workloads on partial CPUs, it cannot provide the same

guarantee for aperiodic services. The problem of predicting latency

distributions of aperiodic services on virtualized platforms has

been studied theoretically [24]. This work adopted a similar system

model as VAS but assumes a single time-sensitive service on each

PCPU, while VAS can accommodatemultiple time-sensitive services

on a single time-sensitive VCPU for each PCPU. For a time-sensitive

service with Poisson arrivals and scheduled as a deferrable server,

a queueing model is proposed to predict the latency distribution

of the time-sensitive service. The scheduling framework proposed

in [18] extended the SAF model [13] by allowing aperiodic tasks

to run within polling servers. An important research direction is

to extend the VAS framework to support aperiodic time-sensitive

services based on the theoretical models.

8 CONCLUSIONS
We introduce virtualization-agnostic latency (VAL) as a desirable

property for deploying andmanaging time-sensitive applications on

different edge clouds. In a system providing VAL, a time-sensitive

application can maintain similar latency distributions on a par-

tial CPU as on a dedicated CPU, thereby alleviate the significant

effort of testing, tuning, and configuring a time-sensitive service

for targeted tail latency on numerous edge clouds. We present

virtualization-agnostic scheduling (VAS), a simple and effective ap-

proach for achieving VAL on a host shared by time-sensitive and

Towards Virtualization-Agnostic Latency for Time-Sensitive Applications RTNS’2021, April 7–9, 2021, NANTES, France

general workloads. Two case studies involving commonly used time-

sensitive cloud services, Redis and Spark Streaming, demonstrated

the efficacy of VAS in achieving VAL in virtualized environments.

While this work has taken the first step in supporting VAL, there

are several promising directions for future work. First, in addition

to CPU scheduling, VAL will also require scheduling support for

non-CPU resources. Second, it will be interesting extend and lever-

age the analysis in [24] to support aperiodic time-sensitive tasks.

Finally, to generalize the VAS approach to heterogeneous platforms,

VAS can be extended to tailor the resource interfaces based on the

execution times on different platforms and avoid throttling and

preemption of time-sensitive VMs, thereby achieving predictable

latency distribution on heterogeneous platforms.

ACKNOWLEDGMENTS
This research was sponsored, in part, by NSF through grant 1646579

(CPS), by ONR through grant N00014-20-1-2744, and by the Fullgraf

Foundation.

REFERENCES
[1] Luca Abeni, Alessandro Biondi, and Enrico Bini. 2019. Hierarchical scheduling

of real-time tasks over Linux-based virtual machines. Journal of Systems and
Software 149 (2019), 234–249.

[2] Luca Abeni and Dario Faggioli. 2019. An Experimental Analysis of the Xen

and KVM Latencies. In 2019 IEEE 22nd International Symposium on Real-Time
Distributed Computing (ISORC). IEEE, Valencia, Spain, 18–26.

[3] Luis Almeida and Paulo Pedreiras. 2004. Scheduling within temporal partitions:

response-time analysis and server design. In Proceedings of the 4th ACM interna-
tional conference on Embedded software. ACM, Pisa, Italy, 95–103.

[4] Amazon.com Inc. 2018. Amazon ElastiCache for Redis. https://aws.amazon.com/

elasticache/redis/.

[5] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,

Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured stream-

ing: A declarative api for real-time applications in apache spark. In Proceedings
of the 2018 International Conference on Management of Data. ACM, Houston, TX,

USA, 601–613.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of

virtualization. ACM SIGOPS operating systems review 37, 5 (2003), 164–177.

[7] Sanjoy Baruah and Nathan Fisher. 2009. Component-based design in multipro-

cessor real-time systems. In 2009 International Conference on Embedded Software
and Systems. IEEE, Washington, DC, USA, 209–214.

[8] Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell. 1990. Algorithms and

complexity concerning the preemptive scheduling of periodic, real-time tasks on

one processor. Real-time systems 2, 4 (1990), 301–324.
[9] Matthias Beckert and Rolf Ernst. 2017. Response time analysis for sporadic server

based budget scheduling in real time virtualization environments. ACM TECS 16,
5s (2017), 161.

[10] Jonathan Corbet. 2008. SCHED_FIFO and realtime throttling. https://lwn.net/

Articles/296419/.

[11] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,

2 (2013), 74–80.

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.

ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[13] José Luis Díaz, Daniel F García, Kanghee Kim, Chang-Gun Lee, L Lo Bello,

José María López, Sang Lyul Min, and Orazio Mirabella. 2002. Stochastic analysis

of periodic real-time systems. In 23rd IEEE Real-Time Systems Symposium, 2002.
RTSS 2002. IEEE, Austin, Texas, USA, 289–300.

[14] Arvind Easwaran, Insik Shin, and Insup Lee. 2009. Optimal virtual cluster-based

multiprocessor scheduling. Real-Time Systems 43, 1 (2009), 25–59.
[15] Song Han, Tao Gong, Mark Nixon, Eric Rotvold, Kam-Yiu Lam, and Krithi Ra-

mamritham. 2018. Rt-dap: A real-time data analytics platform for large-scale

industrial process monitoring and control. In 2018 IEEE International Conference
on Industrial Internet (ICII). IEEE, Bellevue, WA, USA, 59–68.

[16] RedHat Inc. 2018. Enabling RT-KVM For NFV. https://access.redhat.com/.

[17] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-

dictable message latency in the cloud. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. ACM, London, UK, 435–448.

[18] Giordano A Kaczynski, Lucia Lo Bello, and Thomas Nolte. 2007. Deriving exact

stochastic response times of periodic tasks in hybrid priority-driven soft real-

time systems. In 2007 IEEE Conference on Emerging Technologies and Factory
Automation (EFTA 2007). IEEE, Patras, Greece, 101–110.

[19] Robert Kaiser. 2011. Applicability of virtualization to embedded systems. In

Solutions on Embedded Systems. Springer, New York, USA, 215–226.

[20] Robert Kaiser and Dieter Zöbel. 2009. Quantitative analysis and systematic

parametrization of a two-level real-time scheduler. In 2009 IEEE Conference on
Emerging Technologies & Factory Automation. IEEE, Palma de Mallorca, Spain,

1–8.

[21] Hyoseung Kim and Ragunathan Rajkumar. 2016. Real-time cachemanagement for

multi-core virtualization. In 2016 International Conference on Embedded Software
(EMSOFT). IEEE, Pittsburgh, PA, USA, 1–10.

[22] Hyoseung Kim, Shige Wang, and Ragunathan Rajkumar. 2014. vMPCP: A syn-

chronization framework for multi-core virtual machines. In 2014 IEEE Real-Time
Systems Symposium. IEEE, Rome, Italy, 86–95.

[23] Joseph Y-T Leung and ML Merrill. 1980. A note on preemptive scheduling of

periodic, real-time tasks. Information processing letters 11, 3 (1980), 115–118.
[24] Haoran Li, Chenyang Lu, and Chistopher Gill. 2019. Predicting Latency Dis-

tributions of Aperiodic Time-Critical Services. In 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, Hong Kong, China, 30–42.

[25] Haoran Li, Meng Xu, Chong Li, Chenyang Lu, Christopher Gill, Linh Phan, Insup

Lee, and Oleg Sokolsky. 2018. Multi-mode virtualization for soft real-time systems.

In 2018 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, Porto, Portugal, 117–128.

[26] Ye Li, Richard West, Zhuoqun Cheng, and Eric Missimer. 2014. Predictable

communication and migration in the Quest-V separation kernel. In 2014 IEEE
Real-Time Systems Symposium. IEEE, Rome, Italy, 272–283.

[27] Giuseppe Lipari and Enrico Bini. 2003. Resource partitioning among real-time

applications. In 15th Euromicro Conference on Real-Time Systems, 2003. Proceedings.
IEEE, Porto, Portugal, 151–158.

[28] Shokunin Consulting LLC. 2014. Running Redis in Production. http://shokunin.

co/blog/2014/11/11/operational_redis.html.

[29] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. 2015. Heracles: Improving resource efficiency at scale. In

Proceedings of the 42nd Annual International Symposium on Computer Architecture.
ACM, Portland, Oregon, USA, 450–462.

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al. 2013.

Scaling memcache at facebook. In Presented as part of the 10th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 13). USENIX,
Lombard, IL, 385–398.

[31] Shuichi Oikawa and Ragunathan Rajkumar. 1999. Portable RK: A portable re-

source kernel for guaranteed and enforced timing behavior. In Proceedings of
the fifth IEEE real-time technology and applications symposium. IEEE, DC, USA,

111–120.

[32] RedisLab. 2020. Introduction to Redis. https://redis.io/.

[33] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge

computing: Vision and challenges. IEEE IoT Journal 3, 5 (2016), 637–646.
[34] Insik Shin, Arvind Easwaran, and Insup Lee. 2008. Hierarchical scheduling

framework for virtual clustering of multiprocessors. In 2008 Euromicro Conference
on Real-Time Systems. IEEE, Prague, Czech Republic, 181–190.

[35] Insik Shin and Insup Lee. 2003. Periodic resource model for compositional real-

time guarantees. In RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003.
IEEE, Cancun, Mexico, 2–13.

[36] Insik Shin and Insup Lee. 2008. Compositional real-time scheduling framework

with periodic model. ACM TECS’08 7, 3 (2008), 30.
[37] SS Vallender. 1974. Calculation of the Wasserstein distance between probability

distributions. Theory of Probability & Its Applications 18, 4 (1974), 784–786.
[38] Manohar Vanga, Arpan Gujarati, and Björn B Brandenburg. 2018. Tableau: a

high-throughput and predictable vm scheduler for high-density workloads. In

Proceedings of the Thirteenth EuroSys Conference. ACM, NY, USA, 1–16.

[39] VMWare LLC. 2015. Deploying Extremely Latency-Sensitive Applications in

VMware. https://www.vmware.com/techpapers.html.

[40] Sisu Xi, Meng Xu, Chenyang Lu, Linh TX Phan, Christopher Gill, Oleg Sokolsky,

and Insup Lee. 2014. Real-time multi-core virtual machine scheduling in xen. In

2014 International Conference on Embedded Software (EMSOFT). IEEE, New Delhi,

India, 1–10.

[41] Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee. 2017. vcat:

Dynamic cache management using cat virtualization. In 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE, Pittsburgh, PA,
USA, 211–222.

[42] Ming Zhao and Jorge Cabrera. 2018. RTVirt: enabling time-sensitive computing

on virtualized systems through cross-layer CPU scheduling. In Proceedings of the
Thirteenth EuroSys Conference. ACM, Porto, Portugal, 1–13.

[43] Timothy Zhu, Daniel S Berger, and Mor Harchol-Balter. 2016. SNC-Meister:

Admitting more tenants with tail latency SLOs. In Proceedings of the Seventh ACM
Symposium on Cloud Computing. ACM, New York, NY, USA, 374–387.

https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/elasticache/redis/
https://lwn.net/Articles/296419/
https://lwn.net/Articles/296419/
https://access.redhat.com/
http://shokunin.co/blog/2014/11/11/operational_redis.html
http://shokunin.co/blog/2014/11/11/operational_redis.html
https://redis.io/
https://www.vmware.com/techpapers.html

	Abstract
	1 Introduction
	2 Background
	3 Scheduling Approach
	3.1 Task Model
	3.2 Scheduling Framework

	4 Theoretical Properties
	4.1 System Model
	4.2 Theorems and Proofs

	5 System Implementation
	6 Evaluation
	6.1 Synthetic Server Evaluation
	6.2 Case Study: Redis
	6.3 Case Study: Spark Streaming

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

