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Abstract—The paper presents a model for multi-mode real-
time applications and develops new techniques for the composi-
tional analysis of systems that contain multiple such applications.
An algorithm for constructing an interface for a single mult i-
mode application is presented. Then, a method for computing
an interface of a composite application is presented, whichuses
only the interfaces of constituent applications. A case study of an
adaptive streaming system demonstrates that multi-mode analysis
offers more precise results compared to a unimodal worst-case
analysis.

I. I NTRODUCTION

The increasing scale and complexity of real-time embedded
systems have prompted the need for advanced analysis tech-
niques that facilitate component-based design. In this design
paradigm, a large complex system is first decomposed into
smaller and simpler components – which are developed inde-
pendently – before recomposing them into a complete system
using interfaces that abstract away their internal complexities.

To achieve component-based design, interface abstraction
and interface composition must adhere to the principle of
compositionality, i.e., properties that have been established
at the component level hold at the system level. Besides
functional and behavioral aspects, real-time embedded systems
are concerned with time-constrained resource demands. This
necessitates timing analysis frameworks that are composi-
tional, i.e., system-level schedulability analysis should be done
by combining component interfaces that abstract component-
level timing requirements.

Compositional analysis has therefore been a topic of great
interest within the real-time and embedded systems commu-
nity. Numerous frameworks have been proposed (e.g., [6],
[7], [14], [15]) and continuously extended. These frameworks
typically assume a static system execution semantics, where
a fixed set of tasks/event streams are always active and
demanding a fixed amount of resource. They too abstract
away event communication between components in the sys-
tem, replacing it with resource demand placed on the sys-
tem by event streams. Such an abstraction is adequate for
systems that have stable resource-use patterns. In practice,
however, systems are often required to operate in multiple
modesthat exhibit vastly different resource demands. Modal
behaviors are exhibited by a wide spectrum of embedded
systems, ranging from safety-critical aircraft control systems
to adaptive streaming servers and smart devices. A networked
streaming server, for example, often needs to process several
applications concurrently, including audio, video and graphics
processing, as well as system-related tasks. These applications
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are becoming network-aware and adaptive. They may adapt
themselves (e.g., select a different encoding algorithm) during
runtime depending on the network connection. They may also
synchronize with one another, intentionally or inadvertently
due to the network conditions.

In such a system, each mode may be characterized by a
different set of tasks, different data arrival rates, and a different
scheduling policy. Mode switches may be both time-triggered
and event-triggered, for instance, due to a time-triggered
interrupt or a buffer in the system exceeding a certain fill-level.
An incoming event from another component may also trigger
a mode switch in the receiving component. Such mode-
dependent behavior and mode-switching communication need
to be taken into consideration. While internal event triggered
may be encapsulated in the resource demand, mode-switching
behavior in response to incoming external events needs to be
exposed on the component interface.

Our contributions: In this paper, we propose a framework
for the compositional analysis of real-time systems which
execute multiple multi-mode applications concurrently under
a hierarchical scheduling policy on a single processing re-
source. We present here a multi-mode automaton model
(MMA) for modeling such multi-mode applications and an
interface-based technique for analyzing them compositionally.
Our MMA model refines the previously proposed timed-
and event-triggered automata (TET) model described in [10].
While TET is designed for complete system architecture with
both processing loads and resource availability, the MMA is
concerned only with the application loads and its execution
semantics. The service function, that is, resource availability
characterization, is calculated during the analysis. Thismakes
the MMA model more declarative than TET and suitable for
open systems. Further, the TET model assumes all the task
parameters are reset when the system moves to a new mode;
the MMA, however, takes into account that some tasks are
unaffected by a mode change. As a result, MMA analysis
is more precise. Most importantly, we extend the analysis
framework in [10] with new techniques for the compositional
analysis of hierarchical multi-mode systems.

Our key contributions are summarized as follows:

• We describe the MMA model for multi-mode applica-
tions, which refines the previously proposed model in [10]
to better represent the application semantics without a
specification of resource supply. Compared to [10], the
MMA model also employs a more realistic mode change
protocol where tasks that are not affected by the mode
switch need not be reset when switching to a new
mode. We characterize two general ways for handling



pending event streams during a mode change, and present
the composition semantics of MMA in the context of
hierarchical scheduling.

• We propose an interface representation for MMA that
hides the application-level tasks and scheduling details
while exposing timing guards and external events required
for synchronization with other component interfaces.
Each multi-mode interface is a state machine, where each
state is augmented with a service function that represents
the resource requirement of a corresponding mode in the
application.

• We develop a method for computing the interfaces of
MMA that is capable of accurately capturing the effects
of mode changes on the resource requirements during
transitional periods. Our method also considers buffer
conditions and timing guards in deriving the service
requirement of a mode. Unlike most previous techniques
where pending events in the buffer during a mode change
must be finished in the immediate destination mode
(hence, no cascading pending events), our technique is
designed for the general case. We discuss, however, cases
in which such a restriction should be imposed for certain
modes in an MMA.

• We illustrate the utility of our model and compositional
analysis using a case study of an adaptive streaming
system, and compare the obtained results against that of
the unimodal compositional analysis.

Related work: Several compositional analysis techniques have
been proposed for unimodal systems (see e.g., [1], [6], [15],
[16], [18]). These techniques support multiple levels of hierar-
chy and well-known scheduling policies for real-time systems
such as FP (Fixed Priority) and EDF (Earliest Deadline First).
They can be broadly divided into two categories: (a) classical
periodic and sporadic task models and (b) stream-based task
models. In the former, resources are often modeled as periodic,
bounded delay, and explicit deadline periodic [6], [15], [16].
Resource interfaces in the latter are presented using service
functions, which capture the minimum resource requirements
in any interval of a given length [4], [18]. Both approaches
abstract away communication between components, allowing
analysis to be achieved based on the calculation of resource
model interfaces using demand and supply bound functions. A
formalism for describing multi-modal components, however,
will be useful in system development only if accompanied
by a host of analysis techniques that can compute component
interfaces as well as detect incompatibilities in communication
and resource use of components in a composite system.
Hence, these previous techniques become insufficient with the
addition of mode-switching behaviors.

Several techniques have been proposed to extend models
and timing analysis techniques from the real-time systems
literature to accommodate multi-mode behaviors. For exam-
ple, the framework presented in [3] allows certain tasks to
intentionally change their execution periods, which is a type
of mode change. Differentmode change protocolshave been
studied in [8], [13], [17] and have been classified in [12].
Techniques developed in these papers ensure that no deadlines

are violated in each of the modes or during the transition
intervals in a single multi-mode component. Our mode change
protocol is similar to the one proposed in [17], but is more
general as we do not require that buffered events be executed
before the mode switch take place and can remain in the
buffer through several subsequent mode switches. It is worth
noting that these studies of mode switching protocols do not
consider the compositional analysis of systems with multiple
multi-mode components that are hierarchically scheduled.

Finally, we recently proposed amulti-modeextension to
the RTC framework [11], which is different when compared
to the MMA model that we shall be presenting in this paper.
The arrival and service automata in [11] aim at modeling
(independently) complex arrival patterns of event streams
and resource availability patterns following a relatively
simple processing semantics. Here, the MMA allows for
a richer processing semantics, with different tasks and
scheduling policies explicitly captured and adapted to the
dynamic characteristics of the application. The MMA model
studied in this paper resembles the TET model proposed
in [10] except that MMA has no knowledge of resource
supply. In fact, the method proposed here computes such
a suitable resource supply that was already given to TET.
To the best of our knowledge, our paper is the first attempt
to consider the compositional analysis of multi-mode systems.

Organization of the paper: In the next section, we revisit
the compositional analysis of unimodal systems. Section III
formulates the MMA model and its composition semantics.
We present our interface representation and generation tech-
nique in Section IV, followed by the interface composition
in Section V. We then describe the case study in Section VI
before concluding the paper.

II. COMPOSITIONAL ANALYSIS OF UNIMODAL SYSTEMS

This section revisits the interface computation of a unimodal
component developed in [4], [9], [18], and extends the results
for the compositional analysis of unimodal systems that consist
of multiple unimodal components that share the same resource
under a hierarchical scheduling policy.

A. System description and basic models

A unimodal system consists of a finite set of tasks running
on a single processing element, each of which processes an
input event stream and produces an output event stream. Each
task has an input buffer (to store the input stream) and an
output buffer (to store the output stream) that are unshared
with other tasks. All tasks process their input events in a FIFO
manner. As soon as a task completes its processing of an event,
it will remove the event from its input buffer and write the
results (as an output event) to its output buffer.

Figure 1 depicts the unimodal model of a system with three
tasksT1,T2 and T3 that share the same resource under EDF,
whereBi (B′

i) denotes the input (output) buffer ofTi .
In a unimodal system, all tasks are always active and their

attributes stay constant throughout the system execution.Each
taskT is characterized by

T =
(
idT ,BT ,B′

T ,ET ,DT ,πT , α̃T ,αT
)



Fig. 1. A unimodal system architecture, modeled by a single mode.

with idT being the task identifier,BT the associated input
buffer, B′

T the associated output buffer,ET the execution
demand,DT the relative deadline,πT the priority if FP
is used (andπT = 0 otherwise), andα̃T the event-based
arrival function of the input event stream ofT, respectively.
Here, α̃T = (α̃u

T , α̃l
T) where α̃u

T(∆) and α̃l
T(∆) give the

maximum and minimum number of events that can arrive
from the associated input stream in any interval of length
∆ for all ∆ ≥ 0. Further,αT = ET α̃T is the workload-based
arrival function of the input stream (i.e., in terms of number
of execution units). Thebacklog (fill-level) of a buffer at
time t refers to thenumber of execution units required to
process the eventsin the buffer at timet. We assume that
a granularity of time has been chosen, and events arrive at
discrete point in time. Further, the unit of resource supply
is an execution time unit. As we are mainly concerned with
αu

T , we shall referαT to αu
T wherever a single function applies.

Scheduling Policies. Given a set of active workloads and
a number of execution units provided by a resource within
a time interval, a scheduling policy computes the number of
execution units allocated to each workload during the interval.
Scheduling decisions are often made at discrete points in time,
either for the next time unit or until a new event arrives. Each
workload denotes the execution requirement of a task, a finite
set of tasks or a system component. Denote byW the set of all
workloads. We describe below a general notion of scheduling
policy, which is required to define the precise semantics
of hierarchical scheduling. Note that this definition captures
both work-conserving and non-work-conserving scheduling
policies. However, the analysis techniques we present next
assume work-conserving scheduling policies.

Definition 1 (Scheduling Policy). A scheduling policy is a
function SC : (W ×N) → (W → N) which takes as inputs a
finite set of workloads W⊆W , a non-negative integer k∈ N

denoting the number of resource units available during a time
duration before a new event arrives, and returns as results the
number of resource units provided to each workload in W in
this duration. In other words,SC(W,k) is a function g:W→N

where g(w) gives the number of execution units allocated to
each w∈W, such that

∑
w∈W g(w) ≤ k.

Greedy processing.SupposeT is the only task in the system.
Denoteb(t) as the backlog (i.e., number of execution units
required) of the input bufferBT at time t. Supposek is the
number of execution units available in an interval[t,∆) before
a new event arrives. Then, the number of execution units that
are provided toBT during this interval is min

{
k,b(t)

}
.

Example 1. (Fixed Priority (FP)) Consider a set of tasks
T1,T2, . . . ,Tn that are scheduled under FP, where Ti has higher
priority than Tj if i < j. Denote bi(t) as the backlog of
BTi at time t. Suppose k is the number of resource units
available in an interval [t,t + ∆) during which there are
no new events. Since the resource is first allocated to T1

then to T2 and so on, one can verify that the number of
resource unit hi allocated to Ti is h1

def
= min

{
k,b1(t)

}
and

hi
def
= min

{
k− (h1 + · · ·+hi−1),bi(t)

}
for all 2≤ i ≤ n. Thus,

FP(W,k)
def
= g where g(Ti) = hi .

B. Hierarchical scheduling of unimodal systems

In a hierarchical scheduling framework, the system is par-
titioned into a tree of components that are scheduled in a
hierarchical manner as illustrated in Figure 2. Each internal
node of the tree represents acomposite component, whose
children are its sub-components. Each leaf represents an
elementary component, which is a finite set of tasks in the
system. Each component has its own scheduling policy under
which its sub-components are scheduled, which may differ
from its parent’s scheduling policy.

Resource

     Component C1     Component  C2

T1, T2, T3, T4 : Tasks

     Component C

FPEDF

T2T1 T3 T4

FP

Fig. 2. Hierarchical scheduling of a system component.

C. Compositional analysis of unimodal systems
Consider an elementary componentC = 〈τ,SC〉 consisting

of a set of tasksτ that is scheduled under a scheduling policy
SC. DenoteF as the set of all functionsf : N → N. The
interface ofC is a minimumservice functionβ in F for which
τ is schedulable and none of the input buffers overflows. Recall
that a service functionβ(∆) specifies the number of execution
units available in any interval of length∆ ≥ 0.

SupposeSC is EDF. In order for the tasks to be schedulable,
the service functionβT allocated to each taskT in τ must be at
least equal to the demand bound function ofT, which is given
by dbfT(∆) = αT(∆−DT) for all ∆ ≥ 0. Recall thatdbfT(∆)
specifies the maximum possible execution units required byT
over any interval of length∆.

Further, the input bufferBT does not overflow iffαT(∆)−
βT(∆) ≤ size(BT) for all ∆ ≥ 0. Thus, the minimum service
function required by a taskT alone is defined by: for all∆≥ 0:

βuni
T (∆) = max

{
αT(∆−DT), α(∆)− size(BT)

}
(1)

where size(B) denotes the capacity of bufferB. Hence, the

interface ofC is the service functionβuni
edf(C)

def
=

∑
T∈τ βuni

T .
Now supposeSC is FP. We assume without loss of gener-

ality (w.o.l.g.) thatτ = {T1, . . . ,Tn} whereπTi < πTj if i < j.
In other words, the total resource will be first allocated toT1

and its remaining resource will be given toT2, and so on.
Combined with Eq. 1, we imply that the minimum service



function required byTi under FP iŝβuni
Tn

def
= βuni

Tn
, and∀1≤ i < n,

∀∆ ≥ 0 : β̂uni
Ti

(∆)
def
= max

{
Serv

(
β̂uni

Ti+1
,αTi

)
(∆), βuni

Ti
(∆)

}

where Serv(β′,α) denotes the smallest service functionβ ∈
F required by a task with arrival functionαT such that the
remaining service function after processing the task is at least
β′, which is given by [4]:Serv(β′,αT) = β′(∆−λ)+αT(∆−λ)
whereλ = sup

{
ε | β′(∆− ε) = β′(∆)

}
. Thus, the interface of

C is the service functionβuni
fp (C)

def
= β̂uni

T1
.

Next, consider a componentC comprisingm components
C1, . . . ,Cm that are scheduled usingSC. Let βi be the interface
of Ci for all 1≤ i ≤m. Again, we assume w.o.l.g. that whenSC

is FP,Ci has higher priority thanCj if i < j. The interface of
C is the minimum service functionβuni

sc (C) for which allCi are
schedulable. It is given by

∑m
i=1 βi if SC is EDF and bŷβuni

C1
if

SC is FP, withβ̂uni
Cm

= βm andβ̂uni
Ci

= Serv(β̂uni
Ci+1

,βi)∀1≤ i < m.

III. M ULTI -MODE AUTOMATA (MMA )

Multi-mode systems execute at multiple modes of operation,
each of which performs a unique functionality. The set of
tasks that are active, their attributes, as well as the scheduling
policy during the system execution vary with respect to the
mode at which the system is currently in. Changes from one
mode to another can be triggered by a timing guard and/or
an event. Such systems can be modeled by a multi-mode
automaton, orMMA in short. A complex multi-mode system
can be composed of a collection of multi-mode systems that
share the same resource under a hierarchical scheduling policy,
which are modeled as anMMA each.

M2 M3

[10, 30]
[1, 15]

b
b

a

B2 ≤ 15  ∧  B3  ≤ 2

B2 ≥ 5 

M1

[3, 20]

[1, 25]

c

time guard
external event

buffer guard

M1  = 〈{T1 , T2 , T3},  FP 〉

M2  = 〈{T1 , T2 , T4},  FP 〉 

M3  = 〈{T2 , T3 , T4},  EDF〉 ′

′

′

d

Fig. 3. An example of a multi-mode automata.

An MMA is a finite automaton whose states represent
operating modes and transitions represent mode changes. Each
mode (state) of anMMA specifies (i) a set of tasks (and their
corresponding attributes) that are active in the mode, and (ii) a
scheduling policy used to schedule the tasks. Each transition of
anMMA can be triggered by an external event (e.g., interrupt),
a condition on the fill-levels of the buffers associated withthe
tasks, or a timing constraint. DenoteINT as the set of intervals
[a,b] with 0≤ a≤ b anda,b∈ N.

Definition 2 (MMA ). An MMA is a tuple A =
(M,Min, Inv,Φ,Σ,R,T ) where

• T =
{

T1, . . . ,Tm
}

a finite set of tasks of the application.
• M is a finite set of modes. Each mode M∈M has the

form 〈τ,SC〉 with τ ⊆ T denoting the set of active tasks
and SC the scheduling policy at M. We say BT is active
in M iff T is active in M.

• Min ∈M is the initial mode ofA.
• Φ is a set of constraints on the fill-levels of the buffers

in B, whereB =
⋃

T∈T BT .

• Inv : M → INT is an invariant function that assigns
to each mode inM an interval [Il , Iu], where Il is the
minimum amount of time that the system must stay in
the mode and Iu is the maximum amount of time that the
system may stay in the mode. We require that Il ≥ 1.

• Σ is a set of signals that trigger the mode changes.
• R⊆M×Σ×Φ× INT×M is a transition relation. Each

transition in R is of the form(M,a,ϕ, I ,M′) where M and
M′ are the origin and destination modes, a is an external
signal that triggers the transition,ϕ is a guard on the
fill-levels of the input buffers, and I∈ INT is the interval
(relative to the instant the system enters M) during which
the transition can be enabled.

All modes are urgent and when multiple transitions are en-
abled concurrently, theMMA non-deterministically selects one.

Fig. 3 depicts an example ofMMA . Here, Ti and T ′
i

correspond to the same task of the application, thereby
associated with the same input/output buffer. Their timing
attributes, however, are different. Initially, the systemis in
modeM1, whereT1,T2,T3 are active and scheduled under FP.
When the system detects – after it has been inM1 for at least
3 and no more than 20 time units – that a new taskT4 arrives
and the arrival function ofT1 is changed, and if the fill-level
of the input bufferB2 of T2 is more than 5, then it will move
to modeM2. At M2, the system deactivate the least important
taskT3 andT4 is executed together withT ′

1 andT2.

Mode change protocols. Whenever a transition is enabled,
the system moves instantaneously to the new mode, and the
new parameters will be in effect for all new incoming events
immediately. Unchanged tasks (appearing in both modes) are
not affected by the mode change, and no new events from an
old task (appearing only in the old mode) arrives in the new
mode. New input events of the new tasks (only appear in the
new mode) and changed tasks (whose parameters are modified)
may arrive immediately.1 Pending events in the input buffer of
an old or a changed task may be handled differently depending
on the application, which can be generalized into two cases:
(i) Both the physical pending events and their timing require-

ments (i.e., execution demand and deadline) associated
with the old mode are preserved in the new mode.

(ii) Only the physical pending events are preserved in the
new mode; their timing requirements follow the modified
parameters of the associated task in the new mode.

Note that the execution demanded by an event depends on
the current mode of the system when the event arrives at the
system in case (i), and on the mode at which it is processed in
case (ii). For the rest of the paper, we assume the former case;
however, results for the latter can be established in a similar
(and simpler) fashion. We assume also that all tasks follow
the priorities specified in the new mode regardless of which
event it is processing. Lastly, when the system is in a mode,
only active tasks in the mode are being executed.2

1Note that most common protocols require a delay before the system moves
to the new mode. This can be done by adding an intermediate mode with a
time invariant equal to the delay and old tasks having zero arrival functions.

2Pending events of an old task can be processed in the new mode by
adding the task into the active task set of the new mode and assigning its
arrival function to be a zero function.



A. Composition of multi-mode automata

Systems that consist of multiple applications running con-
currently can be reasoned by means of composition ofMMA .
There are two types of compositions: with and without re-
source sharing. In this paper, we shall focus on the composi-
tion of independentMMA that execute on the same resource
under some scheduling policy.

B. Mode composition

Let M1 = 〈τ1,SC1〉 be a mode of anMMA A1 and M2 =
〈τ2,SC2〉 be a mode of anMMA A2. SupposeA1 andA2 share
the same resource under a scheduling policySC3. Consider
any time interval[t, t + ∆) during whichA1 is in M1, A2 is
in M2, and no new event arrives at both automata. Suppose
during [t,t + ∆), the processor hask resource units available
to executeA1 and A2. By Definition 1, the number of
resource units allocated toτ1 andτ2 arek1 = SC3(τ,k)(τ1) and
k2 = SC3(τ,k)(τ2), respectively, withτ = τ1∪ τ2. As a result,
the number of resource units allocated to each taskT ∈ τ is:
g(T) = SC1(τ1,k1)(T) if T ∈ τ1, and g(T) = SC2(τ2,k2)(T)

otherwise. DefineSC(τ,k) def
= g. The composition ofM1 and

M2 underSC3, denoted byM1‖SC3M2, is a modeM = 〈τ,SC〉.

Definition 3. Let A1 = (M1,Min1, Inv1,Φ1,Σ1,R1,T1) and
A2 = (M2,Min2, Inv2,Φ2,Σ2,R2,T2) be twoMMA. The asyn-
chronous composition ofA1 and A2 under SC, denoted by
A1‖SCA2, is a tupleA = (M,Min, Inv,Φ,Σ,R,T ) where:

• M is the set of modes, defined byM =
{

M1‖SCM2 |
M1 ∈M1 ∧ M2 ∈M2

}
.

• Min = Min1 ‖SCMin2 is the initial mode ofA.
• Inv is the invariant, where Inv(M1‖SCM2) =

[1,min(U,U ′)], with Inv(M1) = [L,U ], Inv(M2) = [L′,U ′].
• Φ is the set of constraints on the fill-levels of the buffers

BT where T∈ T .
• Σ = Σ1∪Σ2 is the set of external triggering signals.
• R⊆ M× Σ × Φ × INT×M is the transition relation,

defined as follows. For each(M1,a1,ϕ1, [L,U ],M′
1) in R1

and each(M2,a2,ϕ2, [L′,U ′],M′
2) in R2:

(i) (M1‖SCM′
1,a1,ϕ1 ∧ ϕ2, I ,M2‖SCM′

2) is a transition
in R if a1 = a2, M1 6= M2 and M′

1 6= M′
2 where I=

[min(L,L′),min(U,U ′)].
(ii) (M1‖SCM′

1,a1,ϕ1, [1,min(U,U ′)],M2‖SCM′
1) is a

transition in R if a1 6= a2, M1 6= M2 and M′
1 = M′

2.
(iii) (M1‖SCM′

1,a2,ϕ2, [1,min(U,U ′)],M1‖SCM′
2) is a

transition in R if a1 6= a2, M1 = M2 and M′
1 6= M′

2.
• T = T1∪T2 is the set of tasks in the system.

Note that in case (ii), it is possible thatA1 entersM1 at time
t andA2 entersM2 at timet +L. BecauseA1 has already spent
L time units inM1, it can move toM′

1 immediately or after at
least 1 time unit. IfA1 moves immediately toM′

1, then both
A1 andA2 move to a new mode at timet +L, which can be
captured by case (i). By similar arguments, we obtain the time
intervals associated with the transitions in cases (i) and (iii).

The synchronous composition ofMMA can be defined simi-
larly; however, only synchronized transitions are allowed(i.e.,
case (i)) and each composed mode (transition) is associated
with an intervalI = I1∩ I2, whereI1 and I2 are the intervals
associated with the two component modes (transitions).

IV. COMPOSITIONAL ANALYSIS OF MMA

Similar to the unimodal case, the compositional analysis
of multi-mode systems begins with the system being parti-
tioned into a finite set of components that are hierarchically
scheduled. The only difference here is that each elementary
component in the hierarchy is now a multi-mode system,
modeled as anMMA . Hence, we first compute an interface
that captures the resource requirements for eachMMA , and
subsequently generate the interface of a composite component
from the computed interfaces of its children.

A. MMA’s interface representation

The resource requirement of a multi-mode componentC
can be captured by amulti-mode resource interface, which
is a finite state machine where each state is augmented with
a minimum service function that is demanded byC. The
different service functions associated with different states of
the interface represent the different resource requirements of
C when it is at different (set of) modes. Each transition
in the interface signifies a “service change request” by the
component, which is triggered by a signal or a time invariant.
Multi-mode resource interfaces share the same set of external
triggering signals as that of their components. In other words,
they expose communication between components, and hence
allowing detection of incompatibilities in communicationand
resource use of components in a composite system during
interface composition. On the other hand, internal events (in
the form of buffer constraints) that exist in a component but
are unobservable to other components are abstracted away
and replaced with the service functions of the interface.
This enables information hiding, at the same time limits the
interface’s complexity.

Definition 4 (Multi-mode Resource Interface). A resource
interface of a multi-mode componentC is a finite state machine
A = (S,sin,β,Σ,R) where

• S is a finite set of states, each of which characterizes the
resource requirement of one or more modes inC.

• sin ∈ S is the initial state.
• β : S→F is a service mapping, which specifies for each

state s∈ S a minimum service functionβ(s) that must be
guaranteed at s forC to be schedulable.

• Σ is a set of external signals.
• R⊆S×Σ× INT×S is a set of transitions. Each transition

tr = (s,a, [L,U ],s′) in R represents a change in the
resource requirement of the component (i.e., fromβ(s) to
β(s′)), which is triggered by a signal a and a time interval
[L,U ] during which the transition can be enabled.

All transitions in R are instantaneous and all states in S are
urgent.

As an example, Fig. 4(b-c) shows an adaptive stream
processing system that consists of an audio application and
a video application (besides others), which change modes
according to the network condition (i.e., upon presence of
one of the external eventsunloaded, loaded, andcongested).
The multi-mode resource interface for the system is given
in Fig. 5. In the figure, the service functionβs where
s∈ {PCM15,ADM7.5,PLC7.5,PCM7.5} gives the minimum
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resource that must be provided to the applications when
they are in the corresponding modes. For instance,βPCM15

is the minimum service function that must be guaranteed
when the audio application encodes data using PCM algorithm
and the video application sends data at 15 fps (frames per
second). As illustrated in the figure, buffer constraints inthe
applications have been hidden while information necessaryfor
synchronizing with other components (i.e., timing and network
condition) are being exposed on the interface.

Before presenting the method for computing such an inter-
face, we introduce concepts and technical results needed for
the computation. In what follows,[LM,UM] denotesInv(M).
B. Properties of pending events during mode changes

In an MMA , when the system moves from one mode to
another, there may be pending events in the buffers. We
characterize below two intertwined terms that capture these
events: the former specifies their execution demand over time,
and the latter specifies their backlog.

Definition 5 (Carried-in demand bound function). The
carried-in demand bound function of a buffer B at mode M,
denoted bycidfM,B, specifies for each∆ ≥ 0 the maximum
number of execution units demanded by the pending events in
B (when the system enters M) whose deadlines are within∆
time units from the instant the system enters M.

Definition 6 (Carried-in backlog). The carried-in backlog of
a buffer B at mode M, denoted bybinM,B, gives the maximum
backlog of B when the system enters M.

Fig. 6 gives an example of the carried-in demand bound
function and backlog. In the figure, an up (down) arrow
denotes the point at which an event arrives (must be finished).

 e1 e2 e3

2 5 10 (=D)

Mode M
binM,B

cidfM,B

∆
0 2 5

mode change
time

Fig. 6. Carried-in demand bound function and backlog.

Observe that the latest instant at which these pending events
must be completed is the smallestD such thatcidfM,B(∆) =

cidfM,B(D) for all ∆ ≥D. We callD the “deadline” ofcidfM,B.
Since the maximum backlog ofB when the system enters
M is the total execution demands of the pending events, the
following corollary holds.

Corollary IV.1. The carried-in backlog of B at M is given by
binM,B = cidfM,B(D), where D is the deadline ofcidfM,B.

Further, due to these pending (old) events, the execution
demand required by the (old and new) events in the buffer
during the initial period after the system enters the new mode
is often larger than the usual execution demand required at a
later time interval. We call this theinitial demand, which is
defined for absolute time intervals that begin at the instantthe
system enters the new mode.

Definition 7 (Initial demand bound function (IDBF)). The
initial demand bound function of a buffer B at mode M,
denoted byidbfM,B, specifies for each∆ ≥ 0 the maximum
number of execution units demanded by the events in B in the
interval [0,∆] relative to the instant the system enters M.

One can easily verify that the overall demand bound func-
tion of a bufferB at a modeM, which gives the maximum
execution demand of the events inB in any interval of length
∆ when the system is atM, is at most max{idbfM,B, dbfM,B}.
Here, for all∆ ≥ 0, dbfM,B(∆) = αT(∆−DT) if B is active at
M, anddbfM,B(∆) = 0 otherwise. This implies Lemma IV.2.
For convenience, we denoteTM,B as the active task associated
with B in modeM, andTM,B = /0 if B is not active inM.

Lemma IV.2. The minimum service function required by the
events in B to ensure (i) B does not overflow and (ii) all the
events in B meet their deadlines while the system is at M is:

βM,B
def
= max

{
binM,B + α− size(B), idbfM,B,dbfM,B

}
, where

α = αTM,B if B is active in M andα(∆) = 0∀∆ ≥ 0 otherwise.

Proof: Supposeβ is the service function given toB at M.
The backlog ofB when the system is inM is at most

bufM,B
def
= max

0≤∆≤UM

{
binM,B + α(∆)−β(∆)

}

Hence, the bufferB does not overflow iffbufM,B ≤ size(B),
which is equivalent toβ(∆) ≥ binM,B + α(∆)− size(B) for all
∆≥0. Further, the events inB are schedulable when the system
is atM only if β is at least equal to the overall demand bound
function of B at M. Hence, the minimum service function
demanded by the events inB when the system is atM is
max

{
binM,B + αM,B− size(B), idbfM,B,dbfM,B

}
.

Computing initial demand bound function. The IDBF of a
buffer B at a modeM can be computed with respect to (w.r.t.)
an execution path that leads toM. Supposep is a path from
the initial modeMin to M. If M ≡ Min or B is inactive in
all preceding modes ofM in p, then cidfM,B(∆) = 0 for all

∆ ≥ 0 and idbfM,B = dbfM,B. Otherwise, letρ = M1
[L1,U1]
−−−−→

M2
[L2,U2]
−−−−→ ·· ·Mk

[Lk,Uk]
−−−−→ Mk+1 ≡ M be the longest sub-path of

p along which the task associated withB does not change its
parameters, i.e., (i)k = 1 andTM1,B = /0, or (ii) TMi ,B 6= /0 and
is unchanged for all 1≤ i ≤ k; further,ρ = p or TM0,B 6= TM1,B,
whereM0 is the immediate ancestor ofM1 in p.As illustrated in Fig. 7,[Li ,Ui ] is the interval (relative to
the instant the system entersMi) during which the system can
move fromMi to Mi+1, i.e., [Li ,Ui ] = Inv(Mi)∩ [L′

i ,U
′
i ] where
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Fig. 7. The service function of a path that leads toM.

[L′
i ,U

′
i ] is the interval associated with the transition fromMi to

Mi+1 in theMMA . Let Lp =
∑k

i=1Li andUp =
∑k

i=1Ui . Then,
Lp and Up are the minimum and maximum total amount of
time the system can spend atM1, . . . ,Mk before moving toM.
The pathρ is called the “unchanged-arrival preceding path”
of B at M w.r.t. p, denoted bypα

M,B.

Definition 8. The overall service functionβp
B(∆) given to B

w.r.t. a path p that ends with M specifies the minimum number
of execution units allocated to B in the interval of length∆
immediately before the system enters M.

Lemma IV.3. Supposeβi is the service function allocated to
B at mode Mi for all 1≤ i ≤ k. Then, for all∆ ∈ [0,Up],

βp
B(∆) = min

{ k∑

i=1

βi(xi) | ∆ =

k∑

i=1

xi ∧ (Li ≤ xi ≤Ui

∨
(
x1 = · · · = xi−1 = 0 ∧ xi < Li)

)}
.

Proof: Consider an interval of length∆ immediately
before the system entersM (see Fig. 7). Letxi be the number
of time units the system spends atMi . The total number of
execution units given toB is then

∑k
i=1 βi(xi). Now let M j be

the mode at which the interval begins. Then, the system spends
zero time units at all modes beforeM j , and fromLi to Ui time
units at each modeMi afterM j . Thus,x1 = . . . = x j−1 = 0 and
Li ≤ xi ≤Ui for all i > j. Hence the lemma.

Lemma IV.4. Suppose t is the instant the system enters M by
taking p. The maximum number of execution units demanded
by the pending events in B when the system enters M1 that
need to be fulfilled in interval[t −x, t + ∆], with x≤Up, is

cidf
p
M,B[x,∆] = cidfM1,B(Up + ∆)− cidfM1,B

(
(Lp−x)+

)
.

Fig. 8 demonstrates the results stated by Lemma IV.4.
Proof: Denote t ′ as the instant at which the system

enters M1 (see Fig. 8). Sincet − t ′ ≤ Up, the maximum
number of execution units demanded by the initial pending
events inB that need to be fulfilled in the interval[t ′,t + ∆]
is cidfM1,B(Up + ∆). Further, sincet − x− t ′ ≥ Lp − x, the
minimum number of execution units that must have been
fulfilled in the interval [t ′, t − x] is cidfM1,B((Lp − x)+). This
implies the lemma.
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Fig. 8. Carried-in demand bound function w.r.t. a path.

Lemma IV.5. Let ϕ be the buffer guard associated with the
transition from Mk to M, and Bϕ be the largest fill-level of B

that satisfiesϕ. Let T≡ TM1,B and λ = (DT −∆)+. Then, for
all ∆ ≥ 0,

cidf
p
M,B(∆)= min

n

Bϕ, sup
0≤x≤Up

˘

αT(x−λ) + cidf
p
M,B[x,∆] − βp

B(x)
¯

o

Proof: Let t be the instant at which the system enters
M. Consider the interval that startsx time units beforet (x≤
Up), and ends∆ time units aftert. SinceBϕ is the maximum
backlog ofB when the system entersM, cidf

p
M,B(∆)≤Bϕ. The

carried-in execution demand ofB in [t,t + ∆] includes

(i) the execution demand of the events ofB that arrive in
[t − x,t] whose deadlines are beforet + ∆, denoted by
dbfT [t −x,t + ∆]; and

(ii) the carried-in demand in[t−x,t +∆] of the old events that
arrive before the system entersM1, given bycidf

p
M,B[x,∆]

(Lemma IV.4);
(iii) except for those in (i) and (ii) that have been finished in

[t −x,t].

Since the parameters of the taskT associated withB remains
unchanged inM1 to Mk, the events that arrive atB in [t−x,t]
follow the same arrival functionαT . There are two cases:

• ∆ ≥ DT : All the events arriving in[t−x,t] have deadlines
beforet + ∆, i.e., they all contribute todbfT [t −x,t + ∆].
Thus,dbfT [t −x,t + ∆] = αT(x).

• ∆ < DT : Only the events arriving beforet + ∆ − DT

contribute todbfT [t − x,t + ∆], i.e., dbfT [t − x,t + ∆] =
αT(x−DT + ∆).

In other words,dbfT [t−x,t +∆] = αT(x−λ) whereλ = (DT −
∆)+. Moreover, at leastβp

B(x) execution units are allocated to
B in [t −x,t]. From all the above, we imply the lemma.

Recall thatdbfM,B(x) denotes the maximum execution de-
mand of the events that arrive atB in any time interval of
lengthx when the system is atMi . It is given bydbfM,B(x) =
αT(x−DT) if the taskT associated withB is active inM, and
dbfM,B(x) = 0 otherwise. Lemma IV.6 states the relationship
between the initial and carried-in demand bound functions.

Lemma IV.6. If TM,B 6= TM1,B, thenidbf
p
M,B(∆) = cidf

p
M,B(∆)+

dbfM,B(∆). Otherwise,

idbf
p
M,B(∆) = min

{
cidf

p
M,B(∆)+dbfM,B(∆),

sup
0≤x≤Up

{
dbfM1,B(x+ ∆)+ cidf

p
M,B[x,∆]−βp(x)

}}
.

The proof of Lemma IV.6 can be established using similar
arguments to that of Lemma IV.5. Observe that our compu-
tation above considers the complete unchanged-arrival path,
starting fromM1. The results can be tighten by taking the
minimum of the computed values for all paths starting from
Mi where 1≤ i ≤ k.

C. Computing service function of a mode w.r.t. a path

Let M = 〈τ,SC〉 be a mode of theMMA , reachable through a

path p. Let ρ = M1
[L1,U1]
−−−−→ M2

[L2,U2]
−−−−→ ·· ·Mk

[Lk,Uk]
−−−−→ Mk+1 ≡ M

be the unchanged-arrival preceding path ofB at M w.r.t. p,
i.e., ρ = pα

M,B. Based on Lemma IV.5 and IV.6, we compute
the carried-in demand bound functioncidf

p
M,B and the initial

demand bound functionidbf
p
M,B of B at M w.r.t. p. Apply

cidf
p
M,B to Corollary IV.1, we imply the carried-in backlog of

B at M, i.e., bin
p
M,B = cidf

p
M,B(D) whereD is the deadlineof



cidf
p
M,B. From idbf

p
M,B and bin

p
M,B, we then derive minimum

service functionβp
M,B that is required byB at M (without

considering other tasks) using Lemma IV.2.

Requirements of the active tasks atM. In order for the
events in the buffers to meet their deadlines, we require that
TM,B is active for all buffersB such thatβp

M,B(∆) > 0 for some
∆ ≤UM. Otherwise, in the worst case, the system may stay at
M for up to UM units of time; in which case, some event in
B will miss its deadline.
Overall service function required by M. The minimum
service functionβp

M that is required by a modeM assuming
the system enteringM through p can be computed from all
βp

M,Bi
in the same fashion as done in the unimodal case. First,

we assume w.o.l.g. thatτ = {T1, . . . ,Tn} whereTi has higher
priority than Tj if i < j. DenoteBi as the buffer associated
with Ti andαi as the arrival function ofTi at M.

If SC is EDF. Then, the overall service function forM is the
sum of all service function required by all the buffersBi , i.e.,
βp

M
def
=

∑n
i=1 βp

M,Bi
. Now supposeSC is FP. Then, the overall

service function forM is βp
M

def
= β̂p

M,B1
, where β̂p

M,Bn
= βp

M,Bn

and β̂p
M,Bi

= max
{
Serv(β̂p

M,Bi+1
,αi), βp

M,Bi

}
for all 1 ≤ i < n.

One can verify thatβp
M ≥ βuni

M andβp
M,Bi

≥ βuni
Ti

for all 1≤ i ≤ n.
The equality occurs ifp comprises a single modeM (≡ Min).

D. Computing interfaces of multi-mode applications

With the above results, we now proceed to compute the
interfaceINF(C) of an elementary componentC, whereC is a
multi-mode application modeled as anMMA . The computation
for the interface of a composite component made of multiple
sub-components will be outlined in the next section.
Basic ideas: ConsiderC = (M,Min, Inv,Φ,Σ,R,T ). To com-
pute the interfaceINF(C), the idea is to allocate as little
resource as possible to each mode ofC while maintaining
schedulability of the active tasks as well as no buffer overflows
condition when the system is at the mode. This resource needs
to be sufficient to take care of the initial carried-in execution
demand of pending events when the system enters a mode,
as considered in the preceding sections. To achieve this, we
construct a reachable tree ofC by exploringC, starting from
the initial mode as the root of the tree. At each reachable
modeM in the tree along a pathp, we compute the service
function βp

M,B required by each bufferB at M and the overall
service functionβp

M required byM w.r.t. p. We then addM′

into the set of reachable modes to be explored if there is
a transitiontr = (M,a,ϕ, [L′

,U ′],M′) in C and the carried-in
backlogbin

p
M′,B satisfiesϕ for all buffer B in the system.

During the above exploration, if we reach a modeM′

that has been visited earlier and the newly computed service
function of M′ is less than or equal to its most recently
computed value, we markM′ as “leaf”. Otherwise, we update
the service function ofM to be the maximum between its
recently computed value and the newly computed one, and
explore M′ further. We repeat this process until there is no
more reachable modes to be explored.

We denoteβM and βM,B as the most recently updated
values of the service function required atM by all the
buffers and forB, respectively. When the superscriptp is

involved, they refer to the new values computed w.r.t. a pathp.

The exploration procedure:
a) Initialization: For each modeM and each bufferB

in C, we initialize βM(∆) = 0 andβM,B(∆) = 0 for all ∆ ≥ 0.
We start with the initial modeMin. Since all the buffers are
initially empty, for each input bufferB in C, binMin,B = 0 and
cidfMin,B(∆) = 0 for all ∆ ≥ 0. We include〈Min, p〉 as the first
element in the set of modes to be exploredS, wherep = Min.

b) Computation for each node v= 〈M, p〉 in S: We
first remove v from S. Follow the technique outlined in
Section IV-B and IV-C, we compute (i) the service function
βp

M,B required by each input bufferB at M and (ii) the overall
service functionβp

M for M, both with respect top. If βM ≥ βp
M,

then we markv as a leaf node. Otherwise, we assignβM,B

(resp.βM) to the maximum of its current value andβp
M,B (resp.

βp
M), and proceed to explore the outgoing transitions fromM

as follows.
For each outgoing transitiontr = (M,a,ϕ, [L′,U ′],M′), we

compute, for each input bufferB in C, the carried-in backlog

bin
p′

M′ ,B of B at M′ w.r.t. p′ = p∪(M
[L,U]
−−−→ M′), where[L,U ] =

Inv(M)∩ [L′,U ′]. We add〈M′, p′〉 into S if bin
p′

M′ ,B satisfies
ϕ for all input buffer B in C. In this case, we also compute
cidf

p′

M′,B and idbf
p′

M′ ,B, and then assignbinM′ ,B, cidfM′ ,B and
idbfM′,B to be the maximum between their current values and
the newly computed ones associated withp′. We additionally
mark M′ as areachablemode.

c) Termination condition:The exploration process will
stop when there is no more reachable modes to be explored,
i.e., S = /0. Since the number of pending events in each
buffer is upper bounded by the size of the buffer, the service
function βM′ of M′ is always upper bounded. Further, as
its newly computed value is always larger or equal to the
previously computed one,βM′ will reach a fixed point after
a finite number of steps. In other words, the computation is
always decidable.

The interface of C: RecallC = (M,Min, Inv,Φ,Σ,R,T ). The
interface ofC is the finite automatonINF(C) = (S,Min,β,Σ,R′)
whereS is the reachable modes ofC andβ : S→F . Each state
M in S is associated with the service functionβ(M) equal to
the fixed point value ofβM computed above. Further, there
is a transition(M,a, [L,U ],M′) in R′ iff there is a transition
(M,a, [L′,U ′],M′) in R such that[L,U ] = Inv(M)∩ [L′,U ′].

As the exploration procedure computes the smallest fixed-
point values of service functions that ensure schedulability and
buffer constraints, the correctness of the computed interface
follows directly from the soundness of the results established
in Section IV-B and IV-C.

V. I NTERFACE COMPOSITION

Consider a componentC consisting of n components
C1, . . . ,Cn that share the same resource using a scheduling
policy SC. When SC is FP, we assume w.o.l.g. thatCi has
higher priority thanC j if i < j. Let INF(Ci) be the resource
interface ofCi for all 1≤ i ≤ n. The resource interface ofC is
a composition of allINF(Ci) with respect toSC, given by

INF(C) = INF(Cn) ‖SC INF(Cn−1) ‖SC · · · ‖SC INF(C1)



where ‖SC is defined as follows.
Let A1 = (S1,sin1,β1,Σ1,R1) and A2 =

(S2,sin2,β2,Φ2,Σ2,R2) be two resource interfaces. The
asynchronous composition ofA1 andA2 underSC, denoted
by A1‖SCA2, is a state machineA = (S,sin,β,Σ,R) where:

• S⊆ S1×S2 is the set of states.
• sin =

(
sin1,sin2

)
is the initial state ofA.

• β : S→ F is the service function associated with the
states, defined by: For alls= (s1,s2) ∈ S,

β(s) =

{
β1(s1)+ β2(s2), if SC is EDF

Serv
(
β1(s1),β2(s2)

)
, if SC is FP

• Σ = Σ1∪Σ2 is the set of service change signals.
• R ⊆ S× Σ × INT× S is the transition relation, defined

as follows. For each(s1,a1, [L,U ],s′1) ∈ R1 and each
(s2,a2, [L′,U ′],s′2) ∈ R2:

(i) 〈(s1,s′1),a1, I ,(s2,s′2)〉 is a transition in R if
a1 = a2, s1 6= s2 and s′1 6= s′2 where I =
[min(L,L′),min(U,U ′)].

(ii) 〈(s1,s′1),a1, [1,min(U,U ′)],(s2,s′2)〉 is a transition in
R if a1 6= a2, s1 6= s2 ands′1 = s′2.

(iii) 〈(s1,s′1),a2, [1,min(U,U ′)],(s2,s′2)〉 is a transition in
R if a1 6= a2, s1 = s2 ands′1 6= s′2.

In the case of synchronous composition, only transitions in
(i) are allowed andI = [L,U ]∩ [L′,U ′]. One can verify that
β(s) gives the minimum service that guaranteesβ(s1) and
β(s2). Similarly, the interval associated with a transition indeed
captures the time interval during which the corresponding
transition(s) inA1 andA2 can be enabled.

As an example, consider the componentsC3 andC4 shown
earlier in Fig. 4(b) and 4(c). The interfaceINF(C3) (INF(C4))
has the same structure as that ofC3 (C4), except that each of
its states is associated with a service function and all buffer
guards in the component are abstracted away. Interface of the
composite componentC3‖FP C4 is depicted in Fig. 5, which is
obtained by composingINF(C3) and INF(C4) using our com-
position technique. Observe that by exposing communication
between components on the interfaces, we are able to eliminate
illegal composite states during the interface composition. For
instance, the combination ofADM and 15fps is invalid in
the composite component, which has been ruled out by the
interface composition.

VI. CASE STUDY

In this section, we present a case study of a smart networked
embedded system that supports multiple concurrent adaptive
streaming audio/video applications. We shall show through
our case study how our compositional analysis framework can
be used to model, analyze and optimize such adaptive systems.

Video

Encoder
Camera

Network
Audio

Encoder
  Audio 

Sender

Feedback 

 via RTCP

Receiver

Video/Audio

Decoder

Fig. 9. An adaptive embedded networked system.

Fig. 9 depicts the overall architecture, consisting of two
network-aware end systems sending/receiving data via a net-
work. The sender (e.g., a video phone) captures the live
video/audio, encodes it, and sends it over the network. The

receiver, while receiving the data, provides feedback (regard-
ing delay, packet loss, etc.) to the sender using a real-time
transport control protocol (RTCP). Based on this feedback,
the audio/video application managers adapt the audio and
video sending rates accordingly. Here, we assume the audio
application manager adapts its application to switch between
three compression algorithms that have different bandwidths
– PCM (Pulse Code Modulation) at 64 kb/s, ADM (Adaptive
Delta Modulation) at 48 kb/s, and LPC (Linear Predictive Cod-
ing) at 4.8 kp/s – during run time depending on the network
condition. Similarly, the video application manager adapts the
video application to send at a lower frame rate in case the
network is congested, and at a higher frame rate when the
network is unloaded. The sender additionally runs other real-
time critical system- and network-related tasks, as highlighted
in Fig. 10. We shall focus on evaluating the sending system.
Specifically, we shall estimate the minimum resource that must
be guaranteed for the system to be schedulable. This is done
by computing a resource interface for the system, using our
multi-mode analysis and the unimodal techniques.
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Fig. 10. Hierarchical scheduling of the sender.

As shown in Fig. 10, the sender employs a two-level
hierarchical scheduling. It is partitioned into two components,
C1 (system-related) andC2 (multimedia), which are scheduled
using FP withC1 having higher priority thanC2. Component
C2 further comprisesC3 (audio) andC4 (video) components,
which are scheduled using FP withC3 having higher priority
thanC4. The execution semantics ofC1,C3 andC4 are modeled
by theMMA depicted in Fig. 4 (cf. Section IV-A).

ComponentC1 contains three tasks that are scheduled under
EDF: Tk (kernel task), always executed;Tns (network search
task), initiated when a connection is lost; andTnp (network
protocol task), executed to maintain a connected network.

Next,C3 (Fig. 4(b)) runs an audio encoding task (Ta) and an
audio manager taskTam, whereTam always has higher priority
than Ta. As mentioned above,Ta switches between three
compression schemes, captured by three states ofC3. Since
the encoding time of an PLC task is an order of magnitude
longer than that of PCM and ADM tasks, the audio application
only selects PLC algorithm if the current backlog of the audio
input buffer (bufa) is no more than one third the buffer size
(denoted byB in the figure). Further, as soon as the buffer
is more than half filled and the application has been in PLC
mode for more thanD seconds, it switches back to PCM (i.e.,
the fastest encoding scheme).

Similarly,C4 shown in Fig. 4(c) consists of a video encoding
taskTv and a video manager taskTvm, with Tvm having higher
priority than Tv. Task Tv is assumed to change between two
different sending rates, whereasTvm remains unchanged.

We assume that the camera captures the video at the



sampling rate equal to the playout rate, i.e., 15 fps and 7.5
fps. The deadline ofTv is set equal to its respective period,
i.e., 66 ms (for 15 fps) and 133 ms (for 7.5 fps). Based on the
sampling rate and the execution time ofTv for each of I, P, B
frames [5], we compute the input arrival function (in terms of
cycles) forTv at each of the modes inC4. The audio taskTa

is set to have a constant period and deadline of 20 ms. The
ratio for its execution time at each of the modes PCM, ADM,
and LPC are set to 1:13:110 [2]. All the remaining tasks are
assumed to be periodic, with deadlines equal to periods.

Using unimodal techniques. Due to the adaptive character-
istics of the system, unimodal modeling techniques are no
longer capable of describing the system behavior precisely. We
therefore resorted to approximating its worst-case workloads.
We evaluated two approaches:

(U1) No consideration of the initial backlogs of the buffers
when a mode change occurs.

(U2) Assuming the initial backlog is at most equal to the size
of the buffers (as buffers must not overflow).

The hierarchical scheduling tree remains the same as in the
multi-mode case; nevertheless, each ofC1, C3 andC4 is a set
of tasks instead of anMMA . The timing parameters forTa

(Tv) are chosen to be the worst values in all its modes. For
C1, since eitherTk andTn, or Tk andTns can run at any instant
in time, we substituteTn and Tns with a single task whose
workload equal to the maximum between that ofTn and Tns.
The rest of the tasks take their original (unchanged) values.
It is worth noting that other approximating approaches might
exist; however, we think that a more sophisticated and proven
technique would require much effort which countervails the
modeling convenience of unimodal models.

Analysis Results. The interfaceINF(C2) of the multimedia
componentC2 is shown earlier in Fig. 5 (cf. Section IV-A).
Each state ofINF(C2) corresponds to a valid combination of
the audio and video components, and it is associated with
a service function presenting the service requirements ofC2

in a particular mode. Observe that the effects of internal
triggered mode change events (i.e., buffer guards) in the
original automata (cf. Fig. 4(b)) have been encapsulated in
the computed service functions of the interface. On the other
hand, timing guards are exposed at the interface, which can
be used when synchronizing with other interfaces at a higher
level. The multi-mode interfaceINF(C) for the entire system
can be achieved by further composingINF(C2) with INF(C1).
It has 8 states, corresponding to eight service levels required
by the system depending on the traffic condition. We shall
focus on the three highest service functions.

Fig. 11 shows the service functionβuni
U1 computed using the

unimodal approach (U1) in contrast to the three highest service
functions of INF(C). Note thatβuni

U1 exhibits an unpredictable
behavior where it crosses the service functions ofINF(C) at
multiple points. Clearly, by ignoring mode change effects in
the modeling, the unimodal technique fails to safely bound the
service requirement at any mode of the system.

Now by taking into consideration the initial backlog due to
a mode change, the second approach (U2) improves upon (U1)
in terms of accuracy. As illustrated in Fig. 12, the computed
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Fig. 12. Unimodal (U2) vs. multi-mode service requirements.

service functionβuni
U2 using (U2) falls above all the other

service functions of the multi-mode interface. However, itis
observed thatβuni

U2 is very pessimistic. Its average long-term
rate is 17%, 80%, and 134% higher than that of the three
highest service levels ofINF(C).

The computed multi-mode interface also provides valuable
insights to the system behavior, which can be used for opti-
mizing the system. For instance, the service requirement when
the system uses PCM-15 fps scheme is much higher (twice)
than when it uses PLC-7.5 fps, even though PLC processing
load is more than 100 times that of PCM (Fig. 12). This shows
that when processing load is concerned, it is more effective
to optimize video application instead of audio. Further, for a
fixed video frame rate 7.5 fps, while switching from PCM
to ADM increases only 3% processing load, switching from
ADM to LPC increases 30% processing load. Thus, it is better
to adapt from PCM to ADM than from ADM to LPC.

Finally, the multi-mode interface can easily be adapted
to use in online algorithms such as dynamic frequency and
voltage scaling. One may, for instance, derive a frequency
corresponding to the long-term rate of each service function,
and adapt between different frequencies based on the same
condition as the guard between different states.

VII. C ONCLUDING REMARKS

We have proposed a multi-mode automata model and an
interface-theoretic technique to enable compositional analysis
and correct-by-construction design of multi-mode systems.
Our results extend existing work in two dimensions: from
performance analysisto compositional analysisof multi-mode
systems, and from compositional analysis ofunimodal to
multi-modemodels. The applicability and benefits of our pro-
posed technique have been demonstrated in a smart networked
streaming system.

It would be interesting to investigate abstraction techniques
for refining the multi-mode interface computed from anMMA



or a composition of interfaces. One potential direction would
be to abstract states that share similar service functions,and
transitions that are triggered by a common set of events to
limit the size of an interface without sacrificing accuracy.
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