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Abstract

This paper presents vC2M, a holistic multi-resource allocation frame-
work for real-time multicore virtualization. vC?M integrates shared
cache allocation with memory bandwidth regulation to mitigate in-
terferences among concurrent tasks, thus providing better timing
isolation among tasks and VMs. It reduces the abstraction overhead
through task and VCPU release synchronization and through VCPU
execution regulation, and it further introduces novel resource alloca-
tion algorithms that consider CPU, cache, and memory bandwidth
altogether to optimize resources. Evaluations on our prototype show
that vC?M can be implemented with minimal overhead, and that it
substantially improves schedulability over existing solutions.

1 Introduction

Arguably the de-facto standard for cloud computing, virtualization
has recently gained substantial traction in real-time embedded sys-
tems, due to the rapid increase in complexity and the prevalence
of powerful multicore processors [12]. In the automotive domain,
for instance, virtualization provides a natural means to consolidate
features onto fewer processors, thus enabling a seamless integration
of closely related functionalities while reducing size, weight, and
power. However, virtualization also introduces a new challenge: how
to provide timing guarantees for tasks and virtual machines (VMs).
Compositional analysis provides a step towards addressing this
challenge [9, 13]. In this approach, tasks within a VM are scheduled
by the OS on one or more virtual processors (VCPUs), which in
turn are scheduled as conventional periodic tasks on the physical
cores by the hypervisor. To achieve timing guarantees, compositional
analysis first abstracts each VM into an interface, which describes
the minimum resources needed to ensure that all tasks within the
VM are schedulable. The VMs’ interfaces are then transformed into
a set of (abstract) explicit-deadline periodic tasks whose periods
and worst-case execution times (WCETs) represent the periods and
budgets of the VCPUs, such that if the VCPUs are schedulable then
all VMs (and thus the entire system) will also be schedulable.
Despite substantial results on compositional analysis, prior work
has two important limitations: First, it ignores the potential interfer-
ences among tasks on different cores that concurrently access shared
resources, such as the shared cache and memory bus. Such interfer-
ences introduce extra latency to tasks’ execution times, which is not
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considered by existing analysis; hence, tasks may be unschedulable
even if the analysis proves otherwise. Second, existing work suffers
from high abstraction overhead — that is, the bandwidth of a VCPU
(defined as the ratio of its CPU budget to its period) can be substan-
tially larger than the total utilization of the tasks scheduled on it.
For example, consider a taskset with a single task (10, 1) with pe-
riod/deadline of 10ms, WCET of 1ms, and utilization of 1/10 = 0.1,
the minimum VCPU’s budget computed by existing work [13] is
5.5, which is 55 the utilization of the taskset itself!

In this paper, we present vC2M, a holistic solution towards timing
guarantees in multicore virtualization systems. vC?M addresses the
above challenges using two key insights: First, it integrates cache
partitioning and memory bandwidth regulation in the hypervisor
to provide better isolation among concurrent tasks. By dividing
the shared cache into multiple non-overlapped partitions, and by
assigning disjoint sets of partitions to different cores, we eliminate
the cache interferences among concurrent tasks since they can no
longer access the same cache set. Further, by regulating the amount
of memory bandwidth that tasks from each core can access, each
task is guaranteed to receive the allocated memory bandwidth (BW).

Second, by mapping each task to a separate VCPU and by syn-
chronizing their releases, vC2M completely removes the abstraction
overhead. This approach works in most practical systems, where
the number of tasks in each VM does not exceed the supported
maximum number of VCPUs per VM. (For example, the Micrium
II RTOS supports 256 tasks, whereas a Xen-based VM can have up
to 512 VCPUs.) However, in rare cases where this condition does
not hold, we additionally present a solution for harmonic tasks that
removes the abstraction overhead by regulating the VCPU execution,
which can be supported by existing hypervisors (e.g., Xen).

Based on these capabilities, vC?M further provides an efficient
resource allocation algorithm that—given a set of VMs with real-
time tasks on a multicore platform—computes a set of VCPUs for
each VM, an assignment of tasks to VCPUs and an assignment of
VCPUs to cores, and the amounts of cache and BW resources for
each core, so as to guarantee schedulability and maximize utilization.

In summary, we make the following contributions:

e vC2M, a framework for CPU, cache and memory bandwidth
resource allocation for multicore virtualization systems;
e a concrete design of vC2M and a low-overhead prototype
implementation on top of Xen;
e novel approaches to removing the abstraction overhead; and
o efficient and effective multi-resource allocation algorithms.
Evaluations using PARSEC benchmarks on our prototype show
that vC2M can be implemented with minimal overhead, and that
it can effectively reduce the interferences among tasks and VMs.
Further, vC?M substantially outperforms existing solutions in terms
of schedulability performance, while being highly efficient.

2 Related work

Compositional analysis provides a natural way for computing the
VCPU parameters and for analyzing schedulability in a virtualization



system [9-11, 13]. However, prior work focuses primarily on CPU
resource and ignores the interferences via the shared cache and
memory bandwidth resources. vC>M provides a first step towards
bridging this gap by considering multiple resource types.

The abstraction overhead in compositional analysis is a known
issue and has been addressed in existing work, e.g., using resource-
efficient interface representations [4] or bandwidth-optimal interface
composition methods [3]. Our work offers an entirely different ap-
proach catered to virtualization environments that is both simple and
effective; by directly mapping each task to a VCPU and synchro-
nizing their releases, or by regulating the VCPU execution, we can
completely remove the abstraction overhead at the VM level.

Memory bandwidth regulation has been extensively studied in
the non-virtualization setting (see, e.g., [6, 18, 19]). Our bandwidth
regulation is similar in concept to MemGuard [18] (which cannot
be directly applied to the virtualization setting) but difters in several
aspects: First, it is a built-in feature of the hypervisor instead of a
loadable module (which is not always supported by a hypervisor
such as Xen). Second, it works directly with the low-level hard-
ware, which is more efficient than relying on Linux’s perf tool.
Finally, our approach keeps the cores idle when they exceed their
bandwidth allocation (rather than keeping them busy as MemGuard
does), which is more energy efficient. Note also that, unlike ours,
none of the existing work in this line considers the shared cache.

Prior work has also developed cache management techniques
for virtualization systems to improve real-time performance (see
e.g.,[5,7,8, 16]). vC?M leverages the existing vCAT system [16] for
the shared cache allocation, but it also integrates cache management
with BW regulation, which these techniques do not support.

3 Approach and design

System architecture. The system consists of multiple VMs running
on a multicore platform with a shared cache and a shared memory
bus. Tasks within each VM are scheduled on a set of VCPUs by
the VM’s OS, and the VCPUs are scheduled on the cores by the
hypervisor. We assume both the hypervisor and OS use the parti-
tioned Earliest Deadline First (EDF) scheduling algorithm, which
are supported by open-source hypervisors (e.g., Xen) and real-time
0S (e.g., LITMUSET [2]). Our goal is to develop resource allocation
techniques to provide schedulability for the system.

3.1 Approach

Our approach is based on three key insights. First, vC2M mitigates
the potential interferences among concurrently running tasks by
implementing shared cache partitioning and BW regulation in the
virtualization setting. Specifically, it divides the shared cache into
multiple equal partitions and allocates a disjoint subset of partitions
to each core to ensure shared cache isolation. vC?M incorporates
this with a new BW regulation mechanism that enforces a given
bandwidth budget to a core to provide bandwidth isolation among
cores; this is done by ensuring that the number of memory requests
from a core at run-time does not exceed the core’s allocated budget.

Second, vC2M extends existing compositional analysis to con-
sider not only CPU but also cache and BW resources. For this, it
introduces two novel solutions to removing the abstraction overhead
in the analysis: The first directly maps each task to a separate VCPU
and synchronizes their releases, thus effectively flattening the sched-
uling hierarchy. This strategy assumes that the number of tasks per

VM is no more than the supported maximum number of VCPUs per
VM, which applies to most practical systems. The second removes
the abstraction overhead by regulating the VCPU execution, such
that its execution pattern repeats in each period; this strategy relaxes
the above assumption and thus applies to all general systems.

Finally, vC2M provides heuristic resource allocation algorithms
that leverage the overhead-free analysis and consider the interde-
pence between a task’s WCET and its allocated cache and BW, so as
to effectively assign tasks to VCPUs, VCPUs to cores, and resources
to cores. We next discuss a concrete system design for vC2M.!

3.2 Design

Cache and memory bandwidth allocation. Our shared cache allo-
cation approach can be done by simply leveraging vCAT [16], an
existing cache allocation system based on Intel’s Cache Allocation
Technology. For the BW regulation, we rely on hardware perfor-
mance counters (PCs) to monitor the number of last-level cache
misses, which can be treated as the number of memory requests [18],
from each core in each regulation period (a small configurable in-
terval, e.g., Ims). Whenever a core exceeds a configured number of
memory requests (i.e., its bandwidth budget), we throttle the core
by notifying the hypervisor to leave the core idle for the rest of the
regulation period. When a new period begins, we un-throttle the core
by triggering the hypervisor to execute a VCPU on the core. With
this mechanism, each core is guaranteed to receive its configured
budget in each period, and it never is allowed to use more BW than is
allocated. Fig. 1 shows a high-level architecture of our BW regulator.
It has two core components:
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Figure 1: Memory bandwidth regulation in vC>M.

Setup. This component sets up the system upon initialization,
including (i) configuring an unused PC on each core to monitor the
number of memory requests from the core, and preseting the PC
value so that it will overflow when the core runs out of its bandwidth
budget; (ii) configuring each core’s Local Advanced Programmable
Interrupt Controller (LAPIC) to deliver the PC overflow interrupt to
the core when its PC overflows; (iii) creating a periodic timer to pe-
riodically replenish each core’s bandwidth budget; and (iv) clearing
the overflow status register that indicates which PCs overflow.

Regulation. Once the regulator has been initialized and enabled,
the PCs will begin counting the number of memory requests from
the cores. When a core’s PC overflows, the LAPIC delivers the PC
overflow interrupt to the BW enforcer handler running on the core
(Steps (D and @ in Fig. 1). Upon receiving the interrupt, the BW en-
forcer handler invokes the hypervisor’s scheduler to de-schedule its
currently running VCPU (Step @). (The hypervisor’s scheduler has
been modified to be aware of the throttled cores, to avoid scheduling
a VCPU on them.) In addition, the bandwidth replenishment handler

!'Our design targets x86 platforms; however, our approach is general and can be imple-
mented on other platforms, e.g., on ARM hardware, where similar features exist.



(BW refiller) periodically replenishes the budget for each core and
invokes the scheduler on each throttled core to schedule a VCPU
onto the core at the beginning of each regulation period (Step @).

Synchronization of task and VCPU releases. Using compositional
analysis, the CPU budget and period of a VCPU can be computed
based on the worst-case demands of its tasks. When the releases of
a task and of its VCPU are not synchronized, the task has a larger
worst-case demand as it needs to wait longer to be scheduled. For
instance, if the task is released when its VCPU has just completed,
it has to wait until the VCPU’s budget is replenished and the VCPU
is scheduled again. Consequently, the VCPU’s bandwidth can be
substantially larger than the total utilization of its tasks.

vC2M eliminates the above overhead by providing a mechanism
for synchronizing the releases of a task and its VCPU, and by map-
ping each task to a separate VCPU. Our insight is that, if a task is
scheduled alone on a VCPU and its release time is synchronized
with its VCPU’s, then by assigning the budget and period of the
VCPU to be that of the task, respectively, the task is guaranteed to
be schedulable if the VCPU is schedulable.

Our release synchronization works by adjusting the VCPU’s re-
lease time to be in sync with the task’s. As the VM’s and the hyper-
visor’s clock may not be synchronized, instead of simply passing
the task’s release time to the hypervisor’s scheduler directly, we use
the offset between the task’s initialization and its first release for our
synchronization. When a task is initialized at vty in VM time, (¢ in
wall time), the VM’s scheduler calculates the delay to the task’s first
release, L = vty — viy, and then issues a customized hypercall to pass
L to the hypervisor. When the hypercall is executed at xz in hypervi-
sor time (7, in wall time), the hypervisor’s scheduler computes a new
release time for the VCPU, xt, = xty + L, and modifies the VCPU’s
first release time from x| to xt;. (Due to the hypercall delay, which
is #), — 19, the VCPU will be released slightly after the task; as this
delay is negligible, we ignore it in the analysis.)

Regulation of VCPU execution. The above solution assumes each
VM can have at least as many VCPUSs as it does tasks. When this as-
sumption does not hold (e.g., systems with very large-size tasksets),
vC2M can remove the abstraction overhead for harmonic tasksets by
regulating the resource supply patterns of the VCPUs. (Details and
proofs are available in [15].) Intuitively, by making the execution
pattern of each VCPU in each period the same, we can schedule its
tasks with a VCPU bandwidth identical to the tasks’ total utilization.
vC2M uses a combination of mechanisms to achieve this regulated
execution pattern: (i) using periodic servers to manage the VCPUs’
budgets; (ii)) assigning to the VCPUs harmonic periods and the same
release offset; and (iii) using a deterministic tie-breaking rule (for
EDF) when scheduling VCPUs with the same absolute deadline: first
by the VCPU period where smaller period has higher priority, and
then by the VCPU index where smaller index has higher priority.

3.3 Implementation and empirical evaluation

Prototype. We implemented a prototype of our design to be used
for our experiments. Our prototype extends the Xen hypervisor
(version 4.8.0) with vVCAT features built in and LITMUSET 2015.1
guest OS, which run on an Intel Xeon CPU E5-2618L v3 processor.
The Xen hypervisor has a real-time scheduler called RTDS, which
we modified to incorporate our design. We leveraged the various
hardware components (PC counters, LAPIC controllers, overflow

status register, and overflow control register) for the memory request
monitoring and notification, and implemented two interrupt handlers
for the BW enforcer handler and BW refiller handler.

To synchronize task and VCPU releases, we implemented a cus-
tomized system call in LITMUSXT to compute the release delay in
the kernel space, and a customized hypercall to pass the release delay
L and the VCPU index to Xen’s scheduler. The hypercall invokes the
modified RTDS scheduler to update the VCPU’s next release time.
Run-time overhead. We ran a series of experiments on our proto-
type to measure its run-time overhead, using the approach in [14].

Table 1: Memory bandwidth regulator’s overhead (Lis).

Throttle Memory BW budget replenishment
min | avg | max || min avg max
033 | 0.37 | 1.15 || 8.81 | 52.22 108.65
Table 2: Scheduler’s overhead (us).
24 VCPUs 96 VCPUs
min | avg | max min | avg | max
CPU budget replenish. | 0.29 | 0.74 | 2.95 034 | 1.26 | 3.73
Scheduling 0.13 | 057 | 1.73 0.13 | 0.55 | 2.03
Context switching 0.04 | 0.23 | 32.07 || 0.04 | 0.27 | 24.67

Tables 1 and 2 show the overhead for BW regulation and the
scheduling overhead of the extended RTDS scheduler. We observe
that BW regulation in vC?M introduces only a very small overhead;
in addition, the maximum scheduling-related overhead is minimal,
and it increases slowly as the number of VCPUs increases. This
illustrates that our design is practical for real systems.

Impact of resource isolation on WCET. To explore the impact of
cache and BW isolation that is enabled by vC?M, we further per-
formed a series of experiments using PARSEC benchmarks [1] on
our prototype, and measured their WCETs with and without cache
and BW isolation. The results show that vC2M can effectively miti-
gate the interferences caused by concurrent accesses to the shared
cache and memory bus, and it can reduce a task’s WCET as a result.
Our results also show that a task’s WCET depends on the allocated
cache and BW, but the exact relationship varies across benchmarks.

4 Analysis and resource allocation

The vC?M system presented so far provides mechanisms for shared
resource allocation in virtualization systems. We now present an
analysis and resource allocation algorithms on top of vC?M to ensure
timing guarantees for such systems. We first introduce a new cache-
and memory bandwidth-aware model for tasks and VCPUs.

4.1 Theoretical modeling

The system consists of multiple VMs running on a multicore plat-
form with M identical cores, a shared cache with C equal-size cache
partitions, and a shared memory bus whose bandwidth is divided
into B equal-size partitions (as done in [18]). Each BW partition is a
unit of BW budget allocation (which is set equal to a configurable
number of bytes/second). To accommodate hardware constraints, we
denote by Cpin and Bp;, the minimum numbers of cache and BW
partitions that a core can be allocated, respectively.

Each VM executes a set of independent implicit-deadline periodic
tasks 7; = <pi7 {ei(cvb) | Cinin K¢ < CABpin <b < B}>v where p; is
the period, and e;(c, b) is the WCET when the task executes alone on
a core that is allocated ¢ cache partitions and b BW partitions. (The
WCET values can be obtained, e.g., by measurement on vCZM). We



call ef = ¢;(C,B) the reference WCET of 7;, and 5; = [e¢;(c,b) /e]]
(Cinin < ¢ < C;Bmin < b < B) the slowdown vector of ;. Intuitively,
s; captures how sensitive 7; is to cache and BW resources.

Tasks within a VM are partitioned and scheduled on a set of
VCPUs, which further are partitioned and scheduled on the cores,
both under EDF. Each VCPU j is modeled by V; = (I1;, {©®;(c,b) |
Chin < ¢ < CABpip < b < B}), where IT; is the VCPU’s period
and ©;(c,b) is the VCPU’s execution time budget when it is given
¢ cache partitions and b BW partitions. As for tasks, we call ®}f =
©;(C, B) the reference budget, and Sj = [©(c,b)/®%] (Ciin < ¢ <
C; Bmin < b < B) the slowdown vector of V;. The CPU-bandwidth
of V; is defined as @; /TI;.

Objective. Our goal is to compute (1) the tasks-to-VCPUs mapping
and the corresponding VCPUs’ parameters, and (2) the VCPUs-to-
cores mapping and the numbers of cache and BW partitions for each
core, such that all tasks meet their deadlines. Our solution integrates
a VM-level allocation method for solving (1) and a hypervisor-level
allocation method for solving (2), which we discuss next.
Remarks. With shared cache and BW isolation provided by vC2M,
tasks running concurrently on different cores can no longer interfere
with one another through cache line conflicts and memory bus con-
tention. (Detailed evaluations of the isolation enabled by vC?M are
available in [15].) However, tasks and VCPUs running on the same
core may experience cache-related overhead due to task preemption,
VCPU preemption and completion events. Such intra-core overhead
can be accounted for by inflating the WCETs of tasks with the over-
head caused by task preemptions, and by inflating the (computed)
execution budgets of VCPUs with the overhead caused by VCPU pre-
emptions and completions, using the same technique as in [17]. The
task and VCPU inflations are performed before applying our VM-
level and hypervisor-level allocation methods, respectively. Note
that, due to space constraints, we omit all proofs and pseudo-code.

4.2 VM-level resource allocation

Flattening. To remove the abstraction overhead, our strategy always
maps a task to a dedicated VCPU and synchronizes their releases,
thus effectively flattening the scheduling hierarchy. This strategy pro-
vides not only a tasks-to-VCPUs mapping but also a straightforward
computation of the VCPUSs’ parameters.

THEOREM 1. Any task T; = (pi,{ei(¢,b) | Cmin < ¢ <CABpin <
b < B}) is schedulable on a VCPU V; with period I1; = p; and budget
0;(c,b) = ei(c,b), for all Cpin < ¢ < C and Byin < b < B, if T; is
the only task executing on V; and their releases are synchronized.

Since V; is released whenever 7; is released and 7; executes alone
on V;, 7; is executed iff the VCPU is executed. Hence, the theorem.

This direct mapping method assumes that each VM can have
at least many VCPUs as it does tasks. We next discuss a general
strategy for systems in which this condition may not hold.

Overhead-free analysis for the general case. To remove the ab-
straction overhead, our strategy ensures all VCPUs are well-regulated,
i.e., their execution patterns repeat in each of their periods. Formally,
a well-regulated VCPU V; is executed at time ¢ iff it is executed at
time 7 +k-I1;, where IT; is V;’s period and k € N. As a well-regulated
VCPU provides CPU time to its tasks in a regular fashion, it reduces
tasks’ waiting time and makes them easier to schedule. Further, if
tasks are harmonic (which is common in embedded systems) —i.e.,

for every two tasks 7; and 7, either p; divides p; or p; divides p; —
then we can feasibly schedule a taskset on a well-regulated VCPU
with CPU-bandwidth equal to the taskset’s utilization. Theorem 2
establishes this condition; its proof can be found in [15].

THEOREM 2. A harmonic taskset T = {1y,...,T,}, where T; =
(pi,{ei(c,b) | Cnin < ¢ <K CABpmin <b<B}) forall 1 <i<n,is
guaranteed to be schedulable under EDF on a well-regulated VCPU
with period I1; = min|<;<, p; and execution budget ®(c,b) =1I; -
(Zy <2y, for all oy < ¢ < C and Byin < b <B.

Based on the above overhead-free analysis, our allocation algo-
rithm maps tasks in a VM onto m VCPUs, where m is the minimum
of the number of tasks and the number of cores, using a clustering-
based heuristics. At the high-level, the algorithm works as follows:
To fully utilize the cache and BW allocated to a VCPU, it first
groups tasks with similar slowdown vectors (i.e., similar sensitivity
to cache and BW resources) into the same cluster using the KMeans
algorithm. It then packs tasks in each cluster onto a VCPU, in de-
creasing order of task’s reference utilization (i.e., ratio of reference
WCET to period), such that the total reference utilization of tasks
on each VCPU is similar to each other; this is to balance the loads
across all VCPUs. Finally, for each VCPU, it computes the VCPU’s
parameters as defined in Theorem 2.

4.3 Hypervisor-level resource allocation

Next, we discuss a heuristics for mapping the computed VCPUs to
cores and for allocating cache and BW partitions to each core, so
that all VCPUs are schedulable. Each VCPU’s budget is first inflated
to account for the intra-core overhead caused by VCPU preemption
and completion events, using the technique in [17].

Our algorithm computes the mapping and resource allocation
assuming a fixed number of m cores. We begin with m = 1 and
increase m until either the algorithm reports success or m > M (in
which case, the system is not schedulable). At the high level, the
algorithm works as follows: To enable the VCPU to effectively
utilize the cache and BW allocated to its core, we first group VCPUs
with similar slowdown vectors into the same cluster. We then repeat
the following three phases, until either the system is schedulable or
a user-defined maximum number of iterations has been reached.

Phase I (Packing): We randomly pick a permutation of the VCPU
clusters and, following the permutation order, pack VCPUs in each
cluster to cores in decreasing order of VCPU’s reference utilization,
such that all cores have similar total reference utilizations.

Phase 2 (Resource allocation): We assign cache and BW re-
sources to cores, with Cp,i, cache partitions and B,;, bandwidth
partitions per core initially. We then check for the schedulability of
each core (i.e., whether its total utilization under the allocated cache
and BW partitions is at most 1). If some cores are unschedulable,
we incrementally add additional cache and BW partitions to each
unschedulable core, until it is schedulable or there is no impact on
its utilization; here, we prioritize the unschedulable core that has
the highest reduction in utilization if being given the additional par-
titions. If the system is schedulable, the algorithm terminates and
outputs the current mapping, along with the numbers of cache and
BW partitions for each core; otherwise, it moves to the next phase.

Phase 3 (Load balancing): We balance the utilizations across
cores by migrating VCPUs from unschedulable cores to schedulable
cores. For each unschedulable core, we keep moving a VCPU to
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Figure 2: Performance for different platforms (uniform taskset utilization distribution).

the schedulable core that will have the smallest utilization after the
migration, until the unschedulable core becomes schedulable.
Since the cores that are previously schedulable may become un-
schedulable after this balancing step, we re-allocate resources to
cores and check whether the system becomes schedulable (Phase
2). We keep performing the load balancing and resource allocation
steps until the system becomes schedulable or there is no benefit
in balancing. In the latter case, the algorithm repeats from Phase 1,
where it performs packing using a new order of the VCPU clusters.

5 Evaluation

To evaluate the performance of vC>M, we conducted a series of
experiments using real-time workloads that were randomly generated
based on PARSEC benchmarks. We considered five solutions:

o Heuristic (flattening): vC*M with the flattening strategy.

o Heuristic (overhead-free CSA): vC?>M with the overhead-free anal-
ysis based on well-regulated VCPUs.

e Heuristic (existing CSA): a variance of vC2M that uses our heuris-
tic allocation algorithms but relies on the existing compositional
analysis [13] for computing the VCPU parameters.

o Evenly-partition (overhead-free CSA): another variance of vCZM
that relies on our overhead-free analysis, but it evenly distributes
cache and BW among cores, and it uses the best-fit bin-packing
technique to pack tasks to VCPUs and VCPUs to cores.

e Baseline (existing CSA): a baseline solution that uses the existing
compositional analysis [13] for computing VCPU parameters, as-
suming that tasks have the worst-case BW and no cache allocated,
and it uses best-fit bin-packing for packing tasks and VCPUs.

5.1 Experimental setup

Workload. Each taskset contained a number of implicit-deadline pe-
riodic tasks, whose periods were harmonic and uniformly distributed
in [100, 1100] (as in [9]). The tasks’ utilizations followed one of four
distributions: a uniform distribution within the range [0.1,0.4] and
three bimodal distributions, where the utilizations were distributed
uniformly over either [0.1,0.4] or [0.5,0.9], with respective proba-
bilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9
(heavy). The maximum WCET e["* of a task 7; is the product of its
utilization and its period. The tasks” WCET values were generated
based on the PARSEC benchmarks, as follows:

For each benchmark &, we used our prototype and experimental
machine (c.f. Section 3.3) to profile its execution time (with simlarge
input) when it executes on a dedicated VCPU on a dedicated core,
under each allocation (c,b) of cache and BW, where ¢ =2,...,20
and b = 1,...,20. We obtained k’s slowdown vector s; from the

measured execution time across 25 runs. We next estimated the
benchmark’s maximum WCET ¢’ as the execution time under
the worst-case bandwidth and with the cache disabled, and then
calculated the benchmark’s (maximum) slowdown factor ;™ as the
ratio of its maximum WCET to its measured reference WCET.

To generate the WCET values ¢;(c, b) for a task 7; under each dif-
ferent configuration (c, b) of cache and BW allocation, we randomly
picked a PARSEC benchmark & to be used as the task’s workload.
We first computed the task’s reference WCET, e;‘, as the ratio of its
maximum WCET ¢ to the benchmark’s slowdown factor s;"**.
We then scaled the task’s reference WCET by the slowdown vector of
the benchmark to obtain its WCET values, i.e., ¢;(c,b) = e - s¢(c,b);
this is to preserve the sensitivity of the benchmark to cache and BW
resources. We kept generating a new task for the taskset in this man-
ner until the total reference utilization of the tasks (i.e., the sum of
e’ /p; for all 7;) reached the target reference utilization of the taskset.
Platforms. We considered three platform configurations (based on
the Intel Xeon 2618v3, Intel Xeon D-1528, and Intel Xeon D-1518
processors, respectively): Platform A has 4 cores and 20 cache
partitions; Platform B has 6 cores and 20 cache partitions; and
Platform C has 4 cores and 12 cache partitions. The maximum
number of BW partitions is the same as the maximum number of
cache partitions (i.e., C = B) on each platform. Our analyses were
performed on an Intel Xeon E5-2683 v4 processor, which has 32
cores (with hyper threading enabled) operating at 2.10GHz.

5.2 Schedulability performance

We generated tasksets with reference utilization ranging from 0.1
to 2, with a step of 0.05. For each taskset reference utilization, we
generated 50 independent tasksets (i.e., 1950 tasksets in total), with
tasks’ utilizations uniformly distributed in [0.1,0.4]. We analyzed
the tasksets for Platform A using each of the five solutions described
above. Fig. 2(a) shows the results.

The results show that the fractions of schedulable tasksets under
vC2M-i.e., Heuristic ( (flattening) and Heuristic (overhead-free CSA)
— are substantially higher than that of all other three solutions. The
tasksets’ reference utilization after which tasksets start to become
unschedulable is 0.5 under the baseline solution, while it is at least
1.3 under ours. Thus, by removing the abstraction overhead and
by effectively allocating resources, vC>M increased the system’s
workload by 1.3/0.5 = 2.6 x without sacrificing schedulability.

Further, the overhead-free analysis on well-regulated VCPUs
performs very closely to the flattening approach: only 100 out of
1950 generated tasksets (5%) are schedulable under the latter but not
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Figure 3: Performance for different taskset utilization distributions on Platform A.

under the former. Thus, the general solution is an effective alternative
for systems where direct task-to-VCPU mapping is not possible.
The results of the three methods Heuristic (existing CSA), Evenly-
partition (overhead-free CSA), and Heuristic (overhead-free CSA)
also show that when using only the heuristic resource allocation algo-
rithms or only the overhead-free analysis, the fraction of schedulable
tasksets is substantially smaller than when combining them. This
illustrates that a combination of removing the abstraction overhead
and eftectively allocating resources is critical to schedulability.

5.3 Impact of platforms and task parameters

We investigated the impact of the platform configurations and the
tasks’ parameters on schedulability for all five solutions. For this,
we repeated the above experiment on the remaining two platforms
(Platforms B and C), as well as using tasksets with the bimodal-light,
bimodal-medium and bimodal-heavy utilization distributions.

The results for Platforms B and C (using tasksets with uniform
utilization distribution) are shown in Figs. 2(b) and 2(c), respectively.
We observe that vC>M continues to substantially outperform the
existing solutions as before. We also observe that the more powerful
(e.g., with more cores) the platform is, the more performance benefit
vC2M provides over solutions based on existing techniques.

Fig. 3 shows the results for tasksets with the three bimodal distri-
butions on Platform A. Again, we observe that the superior perfor-
mance of vC2M is consistent across all taskset parameters.

5.4 Running time complexity

Fig. 4 shows the measured run-
ning time of the five solutions in
the evaluation in Section 5.2. We
observe that our overhead-free
analysis and heuristic allocation
algorithms are highly efficient;
e.g., the average running time
of Heuristic (overhead-free CSA)
is always less than 3 seconds.
In contrast, the running time for
Heuristic (existing CSA) is much higher (e.g., up to 25 seconds),
and it increases quickly as the taskset utilization increases. This
demonstrates that removing the abstraction overhead substantially
improves not only schedulability but also analysis efficiency.
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6 Conclusion

We have presented a framework called vC2M for CPU, cache and
memory bandwidth resource allocation on multicore virtualization
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systems, along with its design and implementation. Our framework
integrates cache partitioning and BW regulation to provide strong
cache and BW isolation among concurrently running tasks in a vir-
tualized environment. Based on this capability, it introduces a novel
resource allocation technique that can substantially improves schedu-
lability by removing the abstraction overhead in the analysis and by
allocating all three types of resources in a holistic manner. We have
shown through extensive evaluations that vC2M can effectively re-
duce interferences, and that it offers substantial performance benefits
over existing solutions while being highly efficient.
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