A Cascaded Linear Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging

Wenbin Jiang
Institute of Computing Technology

Liang Huang
University of Pennsylvania

Qun Liu & Yajuan Lü
Institute of Computing Technology

ACL 2008 talk, Columbus, OH, June 2008
Chinese Word Segmentation

民主
min-zhu
people-dominate
“democracy”
Chinese Word Segmentation

民主

people-dominate

江泽民 主席

jiang-ze-min zhu-xi

… - … - people dominate-podium

“democracy”

“President Jiang Zemin”
Joint Chinese Segmentation and POS Tagging

民主 people-dominate

江泽民 主席 jiang-ze-min zhu-xi
... - ... - people dominate-podium

“democracy”

“President Jiang Zemin”
Joint Chinese Segmentation and POS Tagging

Chinese Word Segmentation

民主 min-zhu
people-dominate

江泽民 jiang-ze-min
zhu-xi

“democracy”

“President Jiang Zemin”

now Google is good at segmentation!

this was 5 years ago.

now Google is good at segmentation!
Chinese Word Segmentation

- Word segmentation is needed for Chinese processing
- First step in pipeline: its quality affects later modules
- Esp. in MT: mis-segmentation affects rule extraction
- A lot of ambiguities: 下雨天地面积水
- Sometimes unsolvable: 洽谈会 很 成功 vs. 洽谈 会 很 成功
- This work: joint word segmentation and POS tagging
Chinese Word Segmentation

- word segmentation is needed for Chinese processing
- first step in pipeline: its quality affects later modules
- esp. in MT: mis-segmentation affects rule extraction
- a lot of ambiguities: 下雨天地面积水
- sometimes unsolvable: 洽谈会 很 成功 vs. 洽谈 会 很 成功
- this work: joint word segmentation and POS tagging

this was 5 years ago. now Google is good at segmentation!

“democracy”
Joint Chinese Segmentation and POS Tagging

- word segmentation is needed for Chinese processing
 - first step in pipeline: its quality affects later modules
 - esp. in MT: mis-segmentation affects rule extraction
 - a lot of ambiguities:
 - sometimes unsolvable:

- this work: joint word segmentation and POS tagging

- "democracy"

- this was 5 years ago.

- now Google is good at segmentation!
Joint Chinese Segmentation and POS Tagging

- word segmentation is needed for Chinese processing
- first step in pipeline: its quality affects later modules
- esp. in MT: mis-segmentation affects rule extraction
- a lot of ambiguities:
- sometimes unsolvable:
- this work: joint word segmentation and POS tagging
Overall Architecture

- cascaded approach (two levels of log-linear models)
 - core: perceptron with sparse features, word-level DP
 - outside-layer: extra probabilistic features, MERT
Outline

- Dynamic Programming for Joint Segmentation/Tagging
- Core Features and the Perceptron
- Incorporating Non-Local Probabilistic Features
- Experiments
 - SIGHAN Bakeoff -- segmentation only
 - Chinese Treebank -- segmentation and tagging
Simple Dynamic Programming

• search through the lattice for the best path
• at each character
 • look back 1, 2, ... chars to make a potential word
 • score of this word = sum of features on each char
 • each char within the words is annotated \{b, m, e, s\}
 • each word is annotated with a POS tag
• \(O(nmT) \) - \(n \) sent. len.; \(m \) max word len.; \(T \) tagset

下雨天地面积水问题
Simple Dynamic Programming

- search through the lattice for the best path
- at each character
 - look back 1, 2, ... chars to make a potential word
 - score of this word = sum of features on each char
 - each char within the words is annotated \{b, m, e, s\}
 - each word is annotated with a POS tag
- \(O(nmT)\) - \(n\) sent. len.; \(m\) max word len.; \(T\) tagset

下雨天地面积水问题
Simple Dynamic Programming

- search through the lattice for the best path
- at each character
 - look back 1, 2, ... chars to make a potential word
 - score of this word = sum of features on each char
 - each char within the words is annotated \{b, m, e, s\}
 - each word is annotated with a POS tag
- \(O(nmT)\) - \(n\) sent. len.; \(m\) max word len.; \(T\) tagset
Simple Dynamic Programming

- search through the lattice for the best path
- at each character
 - look back 1, 2, ... chars to make a potential word
 - score of this word = sum of features on each char
 - each char within the words is annotated \{b, m, e, s\}
 - each word is annotated with a POS tag
- \(O(nmT)\) - \(n\) sent. len.; \(m\) max word len.; \(T\) tagset
Simple Dynamic Programming

- search through the lattice for the best path
- at each character
 - look back 1, 2, ... chars to make a potential word
 - score of this word = sum of features on each char
 - each char within the words is annotated \{b, m, e, s\}
 - each word is annotated with a POS tag
- \(O(nmT)\) - \(n\) sent. len.; \(m\) max word len.; \(T\) tagset
Simple Dynamic Programming

- search through the lattice for the best path
- at each character
 - look back 1, 2, ... chars to make a potential word
 - score of this word = sum of features on each char
 - each char within the words is annotated \{b, m, e, s\}
 - each word is annotated with a POS tag
- \(O(nmT)\) - \(n\) sent. len.; \(m\) max word len.; \(T\) tagset
Simple Dynamic Programming

- search through the lattice for the best path
- at each character
 - look back 1, 2, ... chars to make a potential word
 - score of this word = sum of features on each char
 - each char within the words is annotated \{b, m, e, s\}
 - each word is annotated with a POS tag
- \(O(nmT)\) - \(n\) sent. len.; \(m\) max word len.; \(T\) tagset
Simple Dynamic Programming

- search through the lattice for the best path
- at each character
 - look back 1, 2, ... chars to make a potential word
 - score of this word = sum of features on each char
 - each char within the words is annotated \{b, m, e, s\}
 - each word is annotated with a POS tag
- $O(nmT)$ - n sent. len.; m max word len.; T tagset

```
下雨天地面面积水问题
```

Joint Chinese Segmentation and POS Tagging
Feature Templates

- word-level dynamic programming, char-level features
- each character is annotated by \{b, m, e, s\} scheme
 - plus the POS tag
- characters around the current char (local window)
- is the current character a punctuation? (Ng & Low 04)

下雨天 地 面 积 水 问 题
Feature Templates

- word-level dynamic programming, char-level features
- each character is annotated by \{b, m, e, s\} scheme
 - plus the POS tag
- characters around the current char (local window)
- is the current character a punctuation? (Ng & Low 04)

\[
\text{下雨天地面积水问题}
\]
Perceptron

- **online algorithm:** several passes over the training data
 - in each iteration, decode each sentence
 - compare with gold-standard, update weights if needed
- **averaging helps counter over-fitting**

```plaintext
2: \( w \leftarrow 0 \) \hspace{1cm} \triangleright \text{initial weights}
3: \textbf{for} \ t \leftarrow 1 \ldots T \ \textbf{do}
4: \quad \textbf{for} \ i \leftarrow 1 \ldots N \ \textbf{do}
5: \quad \hat{y} = \arg\max_{y \in \text{cand}(s_i)} w \cdot f(y)
6: \quad \textbf{if} \ \hat{y} \neq y_i^+ \ \textbf{then}
7: \quad \quad w \leftarrow w + f(y_i^+) - f(\hat{y})
8: \textbf{return} \ w
```

Joint Chinese Segmentation and POS Tagging
Perceptron

- **online algorithm**: several passes over the training data
 - in each iteration, decode each sentence
 - compare with gold-standard, update weights if needed
- averaging helps counter over-fitting

```plaintext
2: \( w \leftarrow 0 \)
3: for \( t \leftarrow 1 \ldots T \) do
4:     for \( i \leftarrow 1 \ldots N \) do
5:         \( \hat{y} = \text{argmax}_{y \in \text{cand}(s_i)} w \cdot f(y) \)
6:     if \( \hat{y} \neq y_i^+ \) then
7:         \( w \leftarrow w + f(y_i^+) - f(\hat{y}) \)
8: return \( w \)
```

- initial weights
- \(T \) iterations
- feature representation
Outline

- Dynamic Programming for Joint Segmentation/Tagging
- Core Features and the Perceptron
- Incorporating Non-Local Probabilistic Features
- Experiments
 - SIGHAN Bakeoff -- segmentation only
 - Chinese Treebank -- segmentation and tagging
Adding Non-Local Features

- features in the perceptron are within a local window
- but we also need more context, say, POS tag seq.
- but non-local features are hard to incorporate!

- our idea: borrow from machine translation

![Diagram showing the integration of local and non-local features in a linear model.](image-url)
Adding Non-Local Features

- features in the perceptron are within a local window
- but we also need more context, say, POS tag seq.
- but non-local features are hard to incorporate!
 - our idea: borrow from machine translation

\[
g_1 = \sum_i \alpha_i \times f_i
\]

Core Linear Model (Perceptron)

\[
S = \sum_j w_j \times g_j
\]

Outside-layer Linear Model

probabilistic features rather than sparse features!
Extra Features

- \textit{n}-gram sequence models
 - Word Trigram Language Model
 - POS 4-gram Language Model
- Word-POS co-occurrence statistics
 - \(P(t \mid w) \) and \(P(w \mid t) \)
- Word Count Penalty (otherwise tend to have longer words)
- use minimum-error rate training (Och, 2003) to tune the feature weights
- core-perceptron as one feature (most of the weight)
Experiments

1. SIGHAN Bakeoff -- segmentation only
2. Chinese Treebank -- segmentation and tagging
Experiments - SIGHAN Bakeoff 2

- Compare against SIGHAN Bakeoff 2 best result
- closed test (no extra annotation used in training)
- report segmentation accuracy F-measure

<table>
<thead>
<tr>
<th>dataset</th>
<th>SIGHAN best</th>
<th>Zhang & Clark 07</th>
<th>this work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academia Sinica</td>
<td>0.952</td>
<td>0.946</td>
<td>0.954</td>
</tr>
<tr>
<td>CityU of HK</td>
<td>0.943</td>
<td>0.951</td>
<td>0.958</td>
</tr>
<tr>
<td>Peking Univ.</td>
<td>0.950</td>
<td>0.945</td>
<td>0.940</td>
</tr>
<tr>
<td>Microsoft Research</td>
<td>0.964</td>
<td>0.972</td>
<td>0.975</td>
</tr>
</tbody>
</table>
Experiments - CTB 5

- test Joint Segmentation and Tagging on CTB 5
 - standard split (18k sent. in training; ~350 sent. for dev/test)
- Core Perceptron only
- Ng & Low 04 on CTB 3 (different split; not reproducible)

<table>
<thead>
<tr>
<th>Training</th>
<th>Test Task</th>
<th>Core Model</th>
<th>Ng/Low 04 on CTB3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmentation</td>
<td>Segmentation</td>
<td>0.971</td>
<td>-</td>
</tr>
<tr>
<td>Joint S & T</td>
<td>Segmentation</td>
<td>0.973</td>
<td>0.952</td>
</tr>
<tr>
<td>Joint S & T</td>
<td>Joint S & T</td>
<td>0.925</td>
<td>0.919</td>
</tr>
</tbody>
</table>

cross validation split
Contribution of Extra Features

• adding all extra features help a lot
 • Segment.: 97.3 => 97.85; Joint S & T: 92.5 => 93.41

• but effect of excluding individual feature is negligible
Joint Chinese Segmentation and POS Tagging

Contribution of Extra Features

- adding all extra features help a lot
 - Segment.: 97.3 => 97.85; Joint S & T: 92.5 => 93.41
- but effect of excluding individual feature is negligible

<table>
<thead>
<tr>
<th>Feature</th>
<th>Segmentation</th>
<th>Joint S & T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>All</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>-Core</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>-wLM</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>-POSLM</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>-p(w</td>
<td>t)</td>
<td>95</td>
</tr>
<tr>
<td>-p(t</td>
<td>w)</td>
<td>97.3</td>
</tr>
<tr>
<td>-LenPen</td>
<td>97.85</td>
<td>97.85</td>
</tr>
</tbody>
</table>
Contribution of Extra Features

- adding all extra features help a lot
 - Segment.: 97.3 => 97.85; Joint S & T: 92.5 => 93.41

- but effect of excluding individual feature is negligible

![Bar chart showing the contribution of extra features to Joint Chinese Segmentation and POS Tagging.](chart.png)
Conclusion

- cascaded model for joint segmentation and tagging
 - core-level: perceptron with sparse features
 - outside-layer: extra non-local prob. features (mert)
- simple architecture; fast in practice
- state-of-the-art performance in both segmentation (SIGHAN) and joint segmentation and tagging (CTB)

Future work
- incorporating more sophisticated non-local features
- semi-supervised learning (CTB is too small)
Thank you!

谢谢 大家
VV NN