A Dependable Distribution-Transparent Remote Method Invocation Model for Object-Oriented Distributed Embedded Computer Systems

Luiz F. Bacellar

bacellar@utrc.utc.com�and�Bhargav P. Upender

barg@utrc.utc.com��United Technologies Research Center

411 Silver Lane – MS 129-55��useraddress �East Hartford, CT, 06108, U.S.A.���

Abstract: Decreasing hardware costs is permitting the increasing use of embedded computers to support complex and sophisticated applications in a large variety of products such as the control of automotive engines and interiors, climate control in buildings, elevator systems, etc. Most of these applications require computing nodes distributed in different physical locations and interconnected by communication networks. The object-oriented model with its well-known properties that facilitate the design of complex software applications is a natural choice for designing distributed embedded system applications. Existing models that support remote method invocation (RMI) in object-oriented distributed computer systems such as Common Object Request Broker Architecture (CORBA), Distributed Component Object Model (DCOM), and Java Remote Method Invocation (JRMI) possess many services that are not relevant for distributed embedded systems. Moreover, the implementation of these existing RMI models and some of their unnecessary functionality introduces unacceptable overhead for distributed embedded system applications. In this paper, we analyze some of the existing RMI models concerning their use for designing distributed embedded system applications. We identify the functionality present in these models that make them unacceptable to be used in these applications. Based on this analysis, we propose a dependable, distribution-transparent RMI model suitable to support the execution of distributed embedded system applications. The proposed model is aimed at satisfying the requirements imposed by distributed embedded computer systems. These requirements are illustrated by using practical application scenarios.

Index Terms: Remote method invocation, Object request broker, Inter-object communication, Distributed embedded computer systems, Distributed object models, Dependable systems, Distribution transparency

�1. Introduction

During the last two decades the cost of microprocessors and their supporting electronic components has been decreasing dramatically. This has allowed the use of microprocessor-based electronic systems in a wide variety of products intended to offer the user services other than the basic processing capability of conventional computer systems. From toys to jet engines, one or more microprocessors can be found inside these products performing tasks that span from the simplest ones (e.g., sequentially turning toy lights on and off) to the most complex ones (e.g., controlling the fuel and pressure valves in jet engines). Such microprocessor-based electronic systems are called embedded computer systems (ECS).

A large number of applications supported by ECS are inherently distributed, i.e., they require computing nodes distributed in different physical locations and interconnected by communication networks. For example, in elevator systems, while the main control node responsible for dispatching and moving the elevator cars is normally located in the roof of the building, the node responsible for controlling the car buttons, lights, and doors is naturally located inside the car. In general, the applications supported by distributed embedded computer systems (DECS) possess strict requirements such as high availability and predictability. The physical distribution of the computing nodes associated with the strict requirements imposed by the applications yields complex and sophisticated DECS and the design of their applications becomes a non-trivial task.

The object oriented (OO) model with its well-known properties that facilitate the design of complex software applications [Boo94] is a natural choice for designing DECS applications. Extensions have been made to the conventional OO model to support the design of real-time software applications [Kim95, Kim97]. These extensions are fundamental for designing DECS applications, as timeliness is an important requirement for most of these applications.

Various models have been proposed to support OO applications in distributed computing systems (DCS) [Hor97, Jav96, OMG95]. These models provide the support for remote method invocation (RMI), an essential mechanism for the implementation of interacting objects in distributed computing environments. However, the existing distributed object models (DOM) have been conceived to satisfy the requirements imposed by general-purpose DCS applications such as distributed databases and information systems. As an example, the existing distributed object models possess various capabilities tailored to support generic wide area networks (WAN) distributed computing environments and multiple heterogeneous applications being executed in parallel.

Some of the requirements imposed by general-purpose DCS applications are not applicable to DECS applications. On the other side, DECS impose other requirements that are not satisfied by the existing DOM. For example, the cost optimization requirement present in a large variety of DECS prevents the use of the memory-intensive existing DOM to support software applications in DECS.

We propose in this paper the Distributed Embedded Object Model (DEOM) to support the design of DECS applications using the OO paradigm. The DEOM model provides a simple mechanism to implement RMI between objects in DECS. The DEOM model is aimed at satisfying the basic requirements imposed by DECS applications such as dependability and reconfigurability. It introduces a mechanism to facilitate a systematic approach for identifying and handling system component faults in case the local approaches for fault-tolerance cannot recover from the component fault.

The paper starts in Section 2 introducing three practical DECS application scenarios and using these scenarios to identify several fundamental DECS requirements. Section 3 briefly describes existing DOM models and analyzes them concerning their applicability to DECS. The DEOM model is introduced in Section 4 and issues concerning the requirements imposed by DECS are addressed. The conclusions are drawn in Section 5.

2. Distributed Embedded Computer Systems Requirements

2.1 Practical DECS application scenarios

ECS are dedicated computer systems that control machines and devices. Typically, these computers are hidden from the user and have simple user interface. Example applications include microwave ovens, VCRs, and medical equipment. In general an ECS can be designed with all the processing capability residing on a single processor module. However, there are a reasonably large set of ECS applications that would benefit from a distributed ECS architecture. These applications contain components (e.g. sensors and actuators) that are physically distributed. Three application scenarios that span the DECS spectrum are shown in Figure 1.

Figure 1(a) depicts two software components, SpeedControl and ValveControl, in a jet engine control application. The SpeedControl executes the FeedbackControl function that is responsible for (a) acquiring information from various sensors, (b) computing the displacement of the fuel valve according to the desired speed, and (c) issuing a command to the ValveControl to change the fuel valve position to the computed displacement.

The jet engine control could be designed using a single processor architecture where both SpeedControl and ValveControl components would reside in the same hardware module. However, this architecture requires large number of wires to connect the processor module to the fuel valves and other sensors and actuators. An alternative approach would be a distributed architecture where a powerful node is performing the basic control task and less powerful processing nodes are locally connected to the sensors and actuators. These nodes would be interconnected through a network medium consisting of just a few wires. The distributed architecture approach would substantially decrease the size, weight, and installation time of the wiring harness.

� EMBED CorelDraw.Graphic.7 ���

Figure 1. Practical DECS application scenarios

By substantially reducing the number of wires and consequently the size of the connectors, the distributed architecture will also improve the system dependability. Moreover, in addition to implementing the basic functions of network communication and device control, each of the small distributed processing nodes could also perform local diagnostics functions. This would provide system with more accurate diagnostics capabilities and also simplify the control task being executed in the main processing node.

The same aspect discussed above exists in the elevator control application and in the automotive body control application depicted in part in Figures 1(b) and 1(c) respectively. In the elevator control application the issue on the number of wires is even more relevant due to the extremely long distance (500m in modern high-rise buildings) between the control module located in the roof of the building and the devices such as the door motors located inside the elevator car. In the automotive body control application, where the large volume mandates minimum cost, decreasing the number of wires would also have a significant impact.

We believe that many of the existing centralized ECS would benefit from a distributed architecture. As the costs of electronic components decrease, an increasing number of centralized ECS will eventually evolve into distributed ECS. In this paper, we will primarily focus on DECS. Whenever necessary, the three application scenarios described above will be used to illustrate the interaction among software components and to clarify the issues being addressed.

2.2 Fundamental DECS requirements

Embedded systems are difficult to characterize due to broad variability in their application. A comprehensive overview of embedded systems, example applications, system requirements, and design issues is presented in [Koo96]. Fundamentally, embedded systems have different requirements than transaction oriented information systems. This section describes several of these requirements and identifies key properties (marked in italics) that satisfy them.

2.2.1 Component cost optimization

Customers continuously demand better, faster, and cheaper products. Despite the decreasing costs of hardware, high volume and fierce competition drive component-level cost optimization in embedded electronics. For example, in the high volume automotive industry, a small component cost in the order of a dollar has a large impact on the company profits due to production of millions of units. In the low volume elevator and jet engine markets, each system contains large number of subsystems. Therefore, the components of each subsystem are under intense pressure to optimize cost. For instance, the designer is often unable to upgrade a subsystem component (e.g., micro-controller) that costs few dollars even though the entire system costs millions of dollars. A small increase in each component cost compounds to significantly impact the system cost. Moreover, the competition would be able to produce the same product at a lower cost by optimizing cost at every subsystem and sacrificing flexibility and expandability.

Efficient implementations - To satisfy the cost optimization requirement, embedded systems must have efficient implementations that utilize the resources effectively. The cost constraints dictate the configuration of the embedded computer system. A typical embedded computer is diskless, has a small amount of memory, interacts via a simple user interface, and contains limited processing power. Often, the microprocessor is integrated with other control and monitoring functions (e.g. analog to digital converters) to reduce cost and size.

2.2.2 Timeliness

An embedded system must respond to the stimuli in the environment in a timely manner. Large delays can compromise the stability of time-driven control algorithms or produce undesirable behavior for event-driven actions. For instance, in the jet engine control application scenario, the valve should react to a command within a specified constraints. Even in a less time constrained systems, timely response is an issue. For example, when an elevator stops at a destination floor, the doors should open promptly. A delayed response will result in the user’s perception of poor quality.

Bounded delay - To meet timeliness requirement, the components within the system should have upper bounds on the delay. For example, worst-case processing, communication, and task switching delays must be clearly understood by the designer. Timing must be explicitly considered early in the design in a systematic way, it can not be added into the design as an afterthought [Kim95, Kim97]. In general, bounded delay is achieved by using system components with deterministic behavior.

2.2.3 Dependability

Embedded systems have dependability requirements. The tolerance of these requirements will vary with the system. Dependability includes four attributes: reliability, availability, safety, and security [Lap90].

System reliability

System reliability is the “measure of continuous correct service delivery” [Lap90]. High reliability is achieved by using both reliable components (i.e. low failure-rate components) and/or recovering from faults caused by component failures (i.e. fault tolerance).

Low failure rate components - Characterizing failure rate for hardware is relatively straight forward. However, characterizing failure rates of software components is much harder. Software has to be thoroughly tested to ensure correctness. Unlike word processors, jet engine control software can not be shipped with a “known_bugs” list. Correctness can be easier to assess if the designs are simple. Often, the simplicity of the application software depends on the underlying software model. The use of static design concepts where the application is fixed at compile-time eases the task of assessing software correctness. For example, dynamic loading of software components into memory should be avoided to eliminate “out_of_memory” errors.

Fault tolerance - Fault tolerance involves providing correct service even when components fail. Often this is achieved by applying redundancy. When low-failure rate components do not adequately satisfy the reliability requirements, fault tolerance techniques must be used. However, many embedded systems are forced to compromise reliability to reduce system cost.

Availability

The availability attribute measures the correct service time with respect to the entire service time (including time to repair). Users often rely on embedded system to accomplish their tasks. Therefore, high availability is a key requirement.

Accurate diagnostics - High availability is achieved through high reliability and/or rapid maintenance. High reliability increases system cost. However, reducing maintenance time can be accomplished without significantly improving the cost of the system. For example, accurate diagnostics and prognostics (i.e. failure prediction) can increase availability of the system.

Graceful degradation - Even if system components are designed to meet the reliability requirements, there is always a non-negligible probability that the component may fail. A component failure that is not tolerated will introduce a fault in the system. This can lead to system failure. Whenever possible, the system should preserve as much functionality as possible in the presence of these faults. In other words, the system should gracefully recover from the faults even if that means degraded service until the repair person arrives to restore the system.

Safety

Safety deals with “avoidance of catastrophic consequences on the environment due to incorrect behavior of the system” [Lap90]. Personal harm combined with ethical responsibility and economic loss drive the safety requirement.

Fail-safe - The components should be designed to fail to a known, safe state. A global, systematic approach to fault detection and fault management is essential to achieve this. Often, mechanical safeties are used as a backup for electronic controls.

Security

Security involves prevention of unauthorized access from affecting the correct behavior [Neu95]. Typically, security is handled outside the embedded computing system (e.g., access-restricted facilities). In addition, the computing environment is closed. However, as more embedded systems are connected to public networks (e.g. internet), safety will become an issue in the future. Due to space limitations, security issues will not be discussed in this paper.

 Reconfigurability

Many embedded products come in multiple versions with optional add-on features. This marketing strategy requires the embedded computing system to be re-configurable at installation time (not at run-time). For example, in a low-cost installation, an elevator controller is directly connected to the fixtures (e.g., buttons and indicators) using point to point wires. The same product for a high-rise building will require a communication bus to connect the controller to the fixtures because it is not cost effective to install point-to-point wiring for every fixture. In this configuration, the button reading and indicator control functions are moved to the intelligent fixtures. Therefore, the level of distribution changes with installation. In addition, availability of low-cost networks and micro controllers will increase the distribution of control.

Distribution transparency - Transparency measures the level of independence between the application and the underlying hardware implementation. There are two issues with transparency: location and distribution transparency. In location transparency, two components can communicate without knowing their respective location. In addition, the components can be dynamically relocated at run-time without affecting the component interaction. In general, we feel location transparency is necessary but not sufficient for distributed embedded computer systems. We feel distribution transparency is also needed to simplify designing distributed embedded applications. An application achieves distribution transparency if the application software is written as a conventional, non-distributed application and it can be distributed without making any changes to the application. In other words, the application code should not contain special constructs for distribution and the process of mapping software components to processor should not require changes in the application. We believe a model that supports both location and distribution transparency will bring enormous benefits to DECS.

 Manage complexity

Demands for new features, product variations, and geographical customizations are a way of life for many embedded systems. For instance, in the elevator market, the safety codes requir slightly different behavior in different countries. Therefore, it is very important to have a flexible computing architecture that supports modularization.

Modularity and encapsulation - These properties have a direct impact in the selection of the software model to be used for designing the applications. The object oriented model with its intrinsic properties of modularity and encapsulation is a natural choice to satisfy the complexity management requirement. Therefore, this paper assumes the object model for designing software components. However, the object model requires extensions for distribution. In the next section, we review several commercially available distributed object models and assess how they satisfy the embedded system requirements.

A summary of the requirements imposed by DECS and the key properties needed to satisfy them is shown in Table1.

�

Requirements�Key Properties��Cost optimization�Efficient implementations��Timeliness�Bounded delay��Reliability�Low failure rate components, fault tolerance��Availability�Accurate diagnostics, graceful degradation��Safety�Fail-safe��Security�Secure infrastructure��Reconfigurability�Distribution transparency��Manage complexity�Modularity and encapsulation��Table 1. Summary of DECS requirements and key properties

Applicability of Existing Distributed Object Models to DECS

In this section, we provide an overview of three commercially available distributed object models. For each model, we discuss the two basic steps involved in attaining remote method invocation between a client and a server object: creation and invocation. The creation process establishes the connection between these objects. This involves locating the server objects, instantiating the objects, registering object references, and linking all the references between the client and the server. The invocation process performs the actual method call. This involves marshaling (i.e., the process of converting a parameter list into a byte stream for network transmission), passing the request to the server, unmarshaling (i.e., the process of converting a byte stream received from the network to a parameter list), and the method invocation on the server.

Following the overview, we pinpoint the key obstacles in adopting these three models for distributed embedded computer systems. We end the section with a brief discussion on other existing distributed object models.

3.1 Common Object Request Broker Architecture (CORBA)

3.1.1 Overview

� EMBED CorelDraw.Graphic.7 ���

Figure 2. The CORBA architecture

CORBA is a distributed object model specified by a consortium of over 700 companies called the Object Management Group (OMG) [OMG95]. The specification has been implemented by several competing vendors (e.g., IONA’s Orbix, Digital’s Object Broker). Key components of the CORBA architecture are shown in Figure 2. The Object Request Broker core (ORB core) is the basic component in CORBA [Orf96]. It uses OMG’s General Inter-ORB Protocol (GIOP) to support the inter-object communication across the network. A GIOP based on TCP/IP transport protocol is called the Internet Inter-ORB Protocol (IIOP) [Orf96]. Using the components depicted in Figure 2, the creation and invocation process are described below.

Creation: The client object requests the creation of the remote object implementation by calling the stub. The stub obtains the location of the server program from the implementation repository and passes the request to the client-side ORB core (cORB). cORB sends a request to the server-side ORB core (sORB) to instantiate the object implementation. The sORB obtains the server path and loads it into the memory. The server program creates the object implementation using an Object Adapter (OA). The OA assigns a reference to the object implementation and passes it the sORB. The OA also creates the skeleton object. The cORB receives the object reference from the sORB and passes it to the stub. The stub returns the object reference to the client.

Invocation: Upon completing the above binding, the client can invoke the object implementation method by calling the stub. The stub marshals the method parameters and uses the cORB to request a method invocation. The OA handles the incoming client request from the sORB and passes it to the skeleton. The skeleton unmarshals the parameter list and calls the method on the object implementation. The optional return value would be passed back to the client in the reverse order.

3.1.2 Analysis

Elaborate specification: The CORBA specification is too large and complex for DECS [Gok96a, Upe97]. It contains many unnecessary services. For example, dynamic invocation interface, interoperability extensions, and language-neutral support leads to inefficiencies. These services require aditional memory and processing cycles that increase the cost of computing resources. Inadequate resources could lead to large delays and incorrect application performance. The complexity of the specification adversely affects the dependability requirement since it becomes harder to identify the source of faults.

Timeliness not considered: CORBA specification and its implementations do not adequately address timing issues. The specification does not address time bounds on services and the architecture is not designed to minimize overhead. The current CORBA implementations are inadequate for real time systems as pointed out in [Gok96a, Gok96b]. They are inefficient (e.g. excessive memory copies, long chain of function calls) and are built on unbounded components (e.g. non-real time operating systems, network protocols, etc.). A real-time OMG working group is attempting to address these issues [OMG96].

Not fully distribution transparent: The client and server application code contains CORBA-specific calls that undermines the distribution transparency goal. For example, a bind() call in the client is used to activate the server object. Though this command is not specified in CORBA specification, most vendors use a similar call for object activation [Chu97]. Nonetheless, the specification does not enforce distribution transparency. In addition, the client and server code use interface definition language (IDL) types (e.g. CORBA::Long, CORBA::Short, etc.) to achieve language neutrality. This is unnecessary for the homogeneous DECS environment.

Fault handling strategy inadequate: CORBA supports C++ style exceptions. This forces the application client to resolve the fault. A more systematic fault handling strategy is required for DECS.

3.2 Java Remote Method Invocation (JRMI)

3.2.1 Overview

� EMBED CorelDraw.Graphic.7 ���

Figure 3. The JRMI architecture

JRMI is a specification of a distributed object model developed by Sun Microsystems [Jav96, Jav97]. It extends Java to support remote method invocation. The required libraries are released with the Java Development Kit (JDK) v1.1. Figure 3 shows the JRMI architecture with its major components. Currently, Java supports unicast transport layer based on TCP/IP sockets. Future versions are planning to implement multicast channels.

Using the components depicted in Figure 3, the creation and invocation process of JRMI are described below.

Creation: When the server program is launched, it creates the remote object which instantiates other JRMI objects that configure the object for remote access (e.g., creation of a skeleton object, enabling socket-based communications, etc.). The server registers the skeleton’s reference with the RMI Registry (a name server) using Universal Resource Locator (URL)-style addressing (e.g., //hostname/objectname). Then, the server-side remote reference layer (sRRL) runtime waits for the calls from the clients. On the client-side, when the client is instantiated, it requests a connection to the remote object by requesting a reference from the client-side remote reference layer (cRRL). The cRRL sends a message to the server machine. The sRRL obtains the object reference from the registry and passes it back to cRRL. The cRRL instantiates a stub and passes the reference to the client [Jav97].

Invocation: When the client invokes a remote method, the call is passed to the stub. The stub marshals the parameters and passes the request to the cRMI. The cRMI uses the underlying transport protocol to send the message to sRMI. The sRMI passes the method request to the skeleton which demarshals the message and invokes the method of the remote object.

3.2.2 Analysis

The JRMI model is not language neutral, it assumes Java code on both the client and the server side. While this assumption may hinder migrating object technology to heterogeneous legacy systems, it does bring nice properties to distributed systems being implemented in Java. For example, this assumption eliminates a need for language neutral IDL. This allows the RMI semantics to be well integrated with the Java environment. For example, the RMI can take advantage of built-in distribution, class loading, threading, and communication infrastructure of the Java environment. This tight integration can lead to a more efficient implementation and a simpler development process. JRMI also supports passing objects by value. However, there are several characteristics that are not well suited for the embedded environment.

Interpreter is inefficient: Java’s RMI is built on the Java Virtual Machine that interprets the byte codes. This approach requires more processing power (higher cost) to achieve the same response time as the pre-compiled implementations. The Just-in-Time (JIT) and native code compilers may increase efficiency.

Response times are not bounded: JRMI’s homogeneity assumption and tight integration with Java services (e.g. threading, security, class distribution, etc.) will lead to more efficient implementations relative to other distributed object models. This will improve response times. However, the response times also need to be bounded. Java’s remote garbage collection and unbounded communication protocol (e.g., TCP/IP) will introduce non-determinism. A more efficient, connectionless, bounded, primitive communication service is preferable for DECS.

JRMI is not distribution transparent: While JRMI provides location transparency, it does not support distribution transparency. The application designer has to identify classes that will be distributed and add special code to support RMI. In particular, the client and the server classes have to extend RMI classes, catch exceptions, and select a communication semantics. Therefore, the distributed version of the code looks different than the non-distributed code. In fact, the architecture assumes that invoking remote objects is fundamentally different than invoking local objects due to complex failure modes of networked applications.

Exception handling is inadequate: JRMI’s exception handling obligates the designer to deal with numerous errors that can be encountered in a network environment. While this feature is a step in the right direction, we believe a different fault handling strategy is needed for display-less, safety critical embedded systems.

3.3	Distributed Component Object Model (DCOM)

3.3.1 Overview

DCOM is a proprietary distributed object model defined by Microsoft Corporation [Hor97]. DCOM is an extension of Microsoft Component Object Model (COM) [COM94] to support object communication in DCS. Figure 4 depicts the key components of the DCOM architecture. The support for inter-object communication across the network is based on the Object Remote Procedure Call (ORPC) protocol, an extension to the Open Software Foundation’s Distributed Computing Environment RPC (DCE-RPC) specification [DCE95].

� EMBED CorelDraw.Graphic.7 ���

Figure 4. The DCOM architecture

Using the components depicted in Figure 4, the creation and invocation process are described below.

Creation: The client requests the creation of the remote object instance by passing its class identifier (CLSID) to the client-side Service Control Manager (cSCM) using the COM library. The cSCM will obtain the machine address of the object server using the Windows registry. The cSCM sends a request to the server-side SCM (sSCM) to create an object instance. The sSCM obtains the directory path for the object server executable from the Windows registry. It loads the object server and requests the object server to create the object instance. The sSCM creates the stub and passes the object instance’s reference to the stub. The sSCM passes the stub reference to cSCM. The cSCM creates the proxy and passes the stub reference. The cSCM returns the proxy reference to the client. This description is simplified due to space limitations. The actual implementation is much more complex and involves innumerable pointer passing.

Invocation: The client invokes the desired object instance method by calling the proxy. The proxy marshals the method parameters and uses ORPC to request method invocation. The stub receives the method invocation request and unmarshals the parameter list. The stub calls the method on the object instance.

3.3.2 Analysis

DCOM comes with Windows NT and Windows95. In addition, DCOM is also integrated with the Microsoft Visual C++ development environment. Since it is a single-vendor solution, the RMI interoperability issues are eliminated.

Relies on inefficient windows infrastructure: Since DCOM is an extension of COM, it heavily relies on the windows desktop environment. For example, DCOM assumes the existence of windows registry, file system, and installer. All of these components are resource hungry which makes DCOM impractical for resource constrained embedded applications. In addition, since DCOM is a proprietary solution, it is harder to optimize the components for embedded systems.

Does not achieve distribution transparency: the designer has to include many DCOM API calls in the client and the server code to achieve remote method invocation [Chu97]. This requires the designer to master a new programming model. In addition, inclusion of DCOM calls in the application code undermines the broad reusability of the application code.

Variable execution timing: DCOM heavily relies on Windows components which do not possess timely behavior. Also the process of implementing persistent objects through monikers introduces a variable delay to the method invocation [Hor97].

Fault handling is inadequate: Methods in DCOM use a 32-bit return value to indicate error signals [Chu97]. Additional tools and system services can be used to map to a C++ exception mechanism. In general, the fault handling is left up to the client.

3.4 Other Distributed Object Models

Several other distributed object models have been proposed [EC97, Hir97, Hur97]. Many of these models are either different variations on the above models or in an infant state. For example, HORB [Hir97] is an RMI developed for Java prior to the release of JRMI from SunSoft. Most of the obstacles present in JRMI are also present in HORB (e.g., unbounded delay as a result of garbage collection). Due to space limitations, these models are not discussed in detail in this paper.

4. The Distributed Embedded Object Model

Model objectives

As discussed in the previous section, the existing distributed object models do not adequately satisfy the requirements for DECS applications. The primary reason for the disconnect is that existing object models were designed to support an open, general-purpose desktop computing environment. Adapting these models to DECS environment would not be trivial because they require fundamental design changes. We believe that the only way to obtain an efficient distributed object model that can satisfy the DECS requirements is through clean-sheet, top-down model designed specifically for DECS.

In this section, we propose the Distributed Embedded Object Model (DEOM) that has been devised to accomplish the following objectives:

Simple architecture: The model architecture should be based on a reduced number of components that provide only the essential services. For example, support for dynamic object creation and dynamic method invocation is not required.

Distribution transparent: The model components should handle all the distribution issues. The application code for a distributed environment should be identical to the same application code for a centralized environment. This allows the application to vary the degree of distribution without modifications to the code. Such a property is fundamental in supporting continuously evolving embedded systems.

Systematic approach for fault handling - the model should provide a means to separate application issues from fault handling issues. In particular, the application code should be designed for a fault-free environment. All faults should be handled independently by a supervisory component that possesses global knowledge of the system state.

4.2 The model architecture

The DEOM architecture is shown Figure 5. It is structured into application layer, RMI layer, and the system layer. The Fault Management Module (FMM) interacts with all the modules in each layer. The layers and their modules are described below.

Application Layer (AL): The application layer contains the objects required to meet the application functional requirements. The application objects do not contain any dependencies (i.e. references) to the underlying RMI subsystem.

Proxy Layer (PL): The PL contains the proxies (i.e., stubs and skeletons). The proxies are responsible for marshaling, demarshaling, and mediating between the application layer and both OCM and SL.

Object Communication Module (OCM): The OCM contains required services and repositories to support remote method invocation. It receives invocation requests from the client objects and calls the appropriate skeleton. The OCM maintains the Object Location Table (OLT), which maps an object name to a node location.

� EMBED CorelDraw.Graphic.7 ���

Figure 5. The DEOM architecture

System Layer (SL): The system layer contains operating system and communication services. These services should provide time bounded response and have a simple interface [Kim95, Kim97]. The communication API (application program interface) basically consists of the following two functions:

sendMessage(communicationChannel, destinationNode, dataStream)

readMessage(communicationChannel, sourceNode, dataStream)

Fault Management Module (FMM): The FMM is responsible for handling component failures that could not be tolerated by the DEOM modules. In other words, it is assumed that fault tolerance techniques (e.g., redundant media, redundant software components) are implemented locally in each module to satisfy the system reliability requirement. The faults that can not be tolerated by the fault tolerance mechanisms will then be passed to the FMM. For each fault information that the FMM receives, there is an application-specific policy that defines the appropriate action to be taken.

4.3 Remote method invocation

A development tool is required to ease the application design using DEOM model. As previously discussed, the application software should be written as a conventional non-distributed application. The tool reads the application classes and interacts with the designer to map the application classes to the processor nodes. Based on this mapping, the design tool will create the required proxies and generate program files for each processor node. These program files can be compiled and executed by each processor node.

Creation: At startup, all objects are created. On the client machine, the client objects instantiate the stubs. The stub obtains the node ID of the server machine from the object location table. This concludes the configuration of the client. At the server side, a ClassFactory class (generated by the design tool) is instantiated to create all the skeleton classes. The class factory passes the references to the skeletons and the respective object names to the OCM. These skeleton classes in turn creates the server objects. The key difference with respect to the other DOM models is that, the client and server sides configure themselves independently. There is no explicit connection between the client and server.

Invocation: The client uses a standard method call to invoke a method. If the method is on a remote object, the client is connected to the stub. The stub uses OCM services to marshal (e.g., using techniques described in [Mar95]) the call parameters and sends a message to the SL. The SL will transmit the signal to the server node. The SL on the server node receives the message and passes it to the OCM. The OCM looks at the object name and passes the request to the appropriate skeleton object. The skeleton demarshals the message stream and invokes the message on the server object. Connection-less communication (i.e., no sockets) is the key difference between DEOM and the other DOM models.

4.4 Achieving the model objectives

Simple architecture: A simple distributed object model is attained in the DEOM by eliminating the resource demanding services provided by the other models (e.g., dynamic loading, communication daemons based on sockets, etc.). In addition, we optimized the model for DECS environment. The DEOM achieves an efficient resource utilization by moving the application configuration to design time. The design tool eases the configuration process. The capabilities of the tool can be integrated with the popular object oriented design tools (e.g., Rational Rose [Rat96]).

Distribution transparency: The DEOM achieves distribution transparency by the use of the standard proxy layer. Unlike the other model, the client and the server code do not contain any references to the RMI mechanism (see Table 2). The design tool substitutes the implementation classes with the proxy classes.

Client�Server��SpeedControl::feedbackControl()

{

 ValveControl vc;

 vc.setValvePosition(pos);

 . . .

}�ValveControl::setValvePosition(int posP)

{

 valvePosition=posP;

 . . .

}��Table 2. Distribution-transparent remote method invocation code

Systematic approach to fault handling: The FMM in the DEOM satisfies this objective. By communicating with all the modules in the system, the FMM has a global knowledge of the system state. By possessing global knowledge, the FMM can take the appropriate action. For example, we use the code in Table 2 to show how the FMM handles a fault scenario. During the invocation of setValvePosition by the feedbackControl method, the SL detects a permanent channel failure. The SL reports the channel failure to the FMM. Using the state of the system, the FMM may either terminate the application or switch to a degraded mode of operation that uses a slower communication channel.

5. Conclusions

We believe that the Distributed Embedded Object Model (DEOM) goes one step forward in providing the ideal environment for supporting the design of distributed embedded computing systems. Its property of distribution transparency is essential in varying the degree of distribution in evolving embedded systems. Its provision for a systematic approach to fault handling facilitates the design of dependable embedded systems. An initial prototype is being developed to validate the model.

Acknowledgements: We like to thank Alan Finn, Nagarajan Kanadasamy and Colin Zhao for the valuable technical discussions. Many thanks to Christian Netter and Adriana Bacellar for their comments on the paper.

References

[Boo94] Booch, G., Object-Oriented Analysis and Design with Applicaitons, Addison Wesley Publishing Company, 1994.

[Chu97] Chung, P.-Y., Huang, Y., Yajnik, S., Liang, D.-R., Shih, J., Wang, C.-Y., Wang, Y.-M., ``DCOM and CORBA, Side by Side, Step by Step and Layer by Layer'', Submitted to the C++ report, 1997. http://www.bell-labs.com/ ~emerald/dcom_corba/ Paper.html.

[COM94] “The Component Object Model: Technical Overview”, Dr. Dobbs Journal, Dec. 1994.

[DCE95] AES/Distributed Computing - Remote Procedure Call, Revision B, Open Software Foundation, http://www.osf.org/mall/dce/free_dce.htm.

[EC97] “The E Extensions to Java”, Electric Communities, http://www.communities,. com/ products/tools/e/e_white_paper.html.

[Gok96a] Gokhale, A., Schmidt, D. "Measuring the Performance of Communication Middleware on High-Speed Networks", SIGCOMM Conference, ACM 1996, Stanford Univ., Aug. 28-30, 1996.

[Gok96b] Gokhale, A., Schmidt, D. C., Harrison, T., and Parulkar, G., "Operating System Support for High-Performance, Real-time CORBA", Proceedings of the 5th International Workshop on Object-Orientation in Operating Systems, Oct. 27-28, 1996, Seattle, Washington.

[Hir97] Hirano, S., “HORB: Distributed Execution of Java Programs”, Electrotechnical Laboratory and RingServer Project, http://ring.elt.jp/openlab/horb/

[Hor97] Horstamann, M. and Kirtland, M., “DCOM Architecture”, http://premium.microsoft.com/msdn/library/bkgrnd/dcomarch.htm, July 23, 1997.

[Hur97] Huray, L., “Interoperable Objects for Distributed Real-Time Systems”, Embedded Systems Programming, March 1997, pp 38-56.

[Jav96] “Remote Method Invocation Specification”, JavaSoft, Inc., 1996, http://splash.javasoft.com/products/jdk/rmi/doc/rmi-spec/rmiTOC.doc.html.

[Jav97] “Java Remote Method Invocation - Distributed Computing for Java”, a white paper from SunSoft, http://java.sun.com/marketing/collateral/javarmi.html

[Kim95] Kim, K. H., Bacellar, L., Kim, Y., Subbaraman, C., Yoon, H., Kim, J., and Rim, K. W., "A Timeliness-Guaranteed Kernel Model - DREAM Kernel - and Implementation Techniques", Proceedings of the 2nd International Workshop on Real-Time Computing Systems and Applications (RTCSA'95), Tokyo, Japan, October 25-27, 1995, pp. 80-87.

[Kim97] Kim, K. H., Bacellar, L., and Subbaraman, C., "Support for RTO.k Object Structured Programming in C++", to appear in the IFAC Control Engineering Practice Journal, Elsevier Science, Amsterdam, The Netherlands, 1997.

[Koo96] Koopman, P., "Embedded System Design Issues -- The Rest of the Story", Proceedings of the 1996 International Conference on Computer Design, Austin, October 7-9 1996.

[Lap90] Laprie, J. C., “Dependability: Basic Concepts and Terminology”, Final Draft, IFIP WG 10.4, Dependable Computing and Fault Tolerance, October 1990.

[Mar95] Martin, R. C., “Designing Object-Oriented C++ Applications using the Booch Method”, Prentice Hall, Englewood Cliffs, New Jersey, 1995.

[Neu95] Neumann, P. G., Computer Related Risks, ACM Press, 1995.

[OMG95] Object Management Group, The Common Object Request Broker: Architecture and Specification, Rev. 2.0, OMG, Framingham, MA. 1995.

[OMG96] Object Management Group, "Realtime Technologies, DRAFT: Request for Information", Framingham, MA, OMG document realtime/96-08-02.

[OMG96b] Object Management Group, "Minutes for OMG Real-time PSIG Meeting", Hyannis, MA, Sept. 16-18, 1996. http://www.acl.lanl.gov/cgi-bin/doclist.pl#realtime.

[Orf96] Orfali, R., Harkey D., and Edwards, J., The Essential Distributed Objects Survival Guide, John Wiley & Sons, Inc., 1996.

[Rat96] “Using Rational Rose 4.0”, Rational Software Corporation, Santa Clara, Nov. 1996.

[Upe97] Upender, B. P., “The Applicability of CORBA to Embedded Systems,” Rensselaer at Hartford Computer Science Conference, April 26, 1997.

�PAGE �

�PAGE �4�

