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Context...

* The most expensive errors in software development
are those made early in the development process
(foundation for subsequent work)

Impact of
Design
Choices

Level of
System
Knowledge

> time

* Misunderstandings about requirements are among
the principal sources of up-front mistakes

—

The Uses of Requirements Specs
* Basis for communication among the users, operators,
and developers of a system

« Used to systematically verify the soundness of a
requirements set

* Reference for final system certification and
acceptance

e Controlling system evolution

- fitting new requirements over existing set



An Extreme View...

“I maintain that there is only one way to determine the
specification for a new piece of software—write the
code and see what it looks like.”

P.J. Plauger
C/C++ software guru

Problems of Requirements Specs

* However, even for moderately complex systems,
generating requirements specsis  hard

incomprehensibility

- incorrectness

- ambiguity

- inconsistency (redundancy)
- incompleteness

- instability

- implementability hurdles

- design bias



Implementability Hurdles

* In the early days of software development
implementation often overlapped with design and,
sometimes, even with requirements specification

* Hence: “what (requirements) before how (design)”
* However, this is often taken to an extreme:

- the two are sometimes very difficult to decouple
cleanly (e.qg., is distribution just an implementation
issue or is it a fundamental user-level requirement?)

- detracts from comprehensive problem understanding

- can lead to major implementation problems
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An Approach: Formal Requirements Specs
* Use of formal specification techniques can mitigate
and even eliminate many of the cited problems
* However, no guarantees...

- e.g., comprehensibility
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- e.g. implementability: “...we assume a loss-free
broadcast communication medium with zero delay...”
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Traditional Requirements Process

e Cascade process

| '||mp|ementors
¢ — — ¢ — —
Users Customers System

L v

| Architects
Testers
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- mostly unidirectional

- source of many of the problems cited earlier

A Different Process Model

* Roundtable elicitation model (design-build teams)

Customers

]S

Implementors

System
Architects

Testers

- synergy: ensures all stakeholders’ interests are taken
into account

- facilitates agreement

- protects against downstream corruption of
requirements
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We Need...

* A formal requirements specification technique that
represents a balance between the extremes of:

- highly-idealized denotational formalisms (that are often
difficult to understand and potentially infeasible) and

- generally understandable but seriously flawed informal

specifications
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Operational Specifications

» Specifications in the form of programs written for a
formally specified “virtual machine”

- requirements specifications = executable models

Requirements Specification

Virtual Machine

* These specifications define elements of  structure and
behavior
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Advantages of Operational Specifications

* Formality a basis for ensuring:
- consistency, completeness, precision, correctness

* Facilitates system understanding through observing
the executing model “in action”

- through suitable GUI interfaces, can be presented in
forms directly comprehended by users and operators

Requirements Specification
Virtual Machine
- usually accelerates the requirements specification
process and cuts down on requirements instability
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The Virtual Machine

 The abstraction level of the virtual machine can have
a significant impact

* A highly abstract virtual machine

reduces bias towards particular designs

- increases expressive power (ability to directly model
complex phenomena)

- may have complex and very subtle semantics

- may have inappropriate semantics for a given problem
domain

- may result in unimplementable specifications
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ROOM Approach

* A middle ground: virtual machine specialized for
distributed reactive system domain

* Object-oriented approach: takes advantage of the
features of the object paradigm (classification,
compositionality, encapsulation)

* A full cycle language: modeling concepts can be
applied to:

- requirements specification
- analysis and design

- (implementation step can be automated)

i San
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Requirements Modeling and Executable Models

* Requirements Capture Process
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The Languages of ROOM

* Phase-independent modeling concepts split across
two formally correlated levels

Scope t
ROOM
Architecture High-Level Modeling
Language
Data Modeling
Detail Languages (e.g., C++, Java)

Analysis&Design Implementation

>

Development Phase
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Modeling in ROOM

Behavior

Structure

Two Levels of Modeling

Architectural Level — e
Language (ROOM) ——

Detail Level Structure j& Behavior
Language
e.g. C++

v C++ --» Generator:initializ | Code View

/¢ send out massages throygfh the replicated port:
cycleCntr = 0;

sendMsgs(){
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Basic Structure Modeling

| Actor
user dbase
userl m entrancel console
keyrlJad 2= <=
dbase
I
console
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Interfaces and Protocols

* Each actor interface is defined by its protocol
attribute

- an extension of the classical interface concept to cover
information exchange sequences

» JokeProtocol

| Protocol View

In Signals Data Class Out Signals Data Class
knockknock Mull WhosThere Mull
Boo Mull BooWhao Mull

PleaseDontCry  Mull

- set of incoming and outgoing message types

* Only compatible protocol-based interfaces can be
bound to each other
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Message Sequence Charts

¢ Message sequences are expressed by  Message
Sequence Charts (MSCs)

msc Joke

Comedian | | StraightMan

KnockKnock

WhosThere

Boo

BooWho

PleaseDontCry

* Defined by ITU standard Z.120
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Actors

e The active objects of ROOM are called actors

ENCAPSULATION
SHELL ACTOR

C_J

MESSAGE

INCOMING
MESSAGE

PORTS

* Actors can send and receive messages through one or
more ports
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Modeling Dynamic Structures

» Components created after their container

HandSat

i

TerminalControlar Linelnterface

* Multiple containment (support for roles and dynamic
relationships)

TelephoneSystem

Telephones

TelephoneX TelephoneY;
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Actor Class Inheritance — Structure

CLASS

—
user

entrancel

==

dbase

r
user

entrance2 ¢

==

dbase

L,

ctrlrs

atabase

—
user

entrance3

==

dbase

Gray pen used to
indicate inherited attributes

=

NEW ATTRIBUTES — ]

IN SUBCLASS
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Modeling Behavior — ROOMchart Basics

ate
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user keypad ctrlr
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Modeling Behavior — Hierarchical States
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ROOMcharts vs. Statecharts

* ROOMcharts incorporate the major features of the
object paradigm, notably, encapsulation and
inheritance

*  ROOMcharts do not allow “and” states and their
accompanying idealizations due to concerns
regarding:

- virtual machine complexity (semantics of steps)
- reliability of implicit communication

- general implementability of broadcast semantics
i_’ .

End-to-End Behavior Modeling

* Use of Message Sequence Charts (ITU Z.120)

‘ ‘ KeypadDisplay ‘ ‘ cccccccccccccccc ‘ ‘ GateController ‘ ‘ aaaaaaaaaa

key

uuuuuu

resetDisplay
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* Requirements Modeling and Executable Models

* Basic Concepts of ROOM

i%=- Requirements Capture Process
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An Analogy — The Scientific Method

@ Hypothetico-deductive

* (HD) method:
Observe
.................. K| Developing specifications
Formulate and software for complex
Hypothesis systems has much in
------------------ el common with this process
Experiment
NO Hypotlhesis » Jteration and
Validated? > experimentation are the

key elements of this
process
% ORIECIME
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ROOM and Automation

DEVELOPMENT WORKSTATION

REQUIREMENTS
<«—p| MODEL
«—
MODELING DESIGN
INTERFACE || MODEL
—> ]

|
RUN-TIME COMPILE
INTERFACE

MODELER EXECUTABLE MODEL

ROOM VIRTUAL MACHINE
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Typical ROOM Microcycle

Required MSC

Generate e — -
Scenarios ) ] ] e

Derive structure

Requirements
Spec

) ) ) o) o || Compare
= MSCs
e I Structure
...... Model
Generated MSC ;
Derive
behavior

Execute model
and generate MSC Behavior

Model
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But Isn’t This Just Design?

* No, since what is being “designed/modeled” during
requirements identification is not the software to be
developed but the requirements

* Example: Secure room problem

- design the software for a system that will allow access
to a “secure” room only to authorized personnel:

- To gain access, it is necessary to key in a user id and a
personalized password on the keypad situated next to
each entrance

The Secure Room — Requirements

* A room with 3 secured entrances

Entrance 1 Entrance 3
= (o]

SECURE
ROOM

@ Entrance 2

Password Administrator
Database Console
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Requirements — Hardware Configuration
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Display —| Latch

Microprocessor Administrator
Keypad Console

Display —| Latch
Microprocessor

Central
Computer

Keypad

Display Latch

i

Microprocessor

i Wy s

Keypad

Requirements — Sample Usage Scenario
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User enters user id on keypad

User enters personal password on keypad

System validates user id and password against central
database

For valid access codes, door is unlocked for 3 seconds
during which user can enter

After 3 seconds expire, door is locked again



Usage Scenario — Graphical Rendering (1)

Use-case Map (UCM):

Display

Keypad

Microprocessor<¥

q ! Latch

Display

Keypad

Microprocessor

—| Latch

Administrator
Console

Display

Keypad
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Microprocessor

—| Latch

> Central

Computer

Usage Scenario — Graphical Rendering (2)

Message Sequence Chart (MSC):

ccessfulAccess!

Scenario

Use l l KeypadDisplay l l AccessController l l GateController l l PWDatabase
key
key
key
key
entryReq
validationReq
alid
unlocl
displayMsg
time
lock
resetDisplay
I I I I I
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Deriving Protocols From Scenarios

v AxCtrirToDbase | Protocol View
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Deriving High-Level Behavior

| ] KeypadDisplay | [ Adesscontoler | | GateController | ] PWDatabase
key
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key
key
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timeout resetDisplay displayMsg
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-
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Summary

* Specifying requirements for complex systems is a
hard problem

« ROOM is a formal modeling language that allows the
capture the structural and behavioral requirements of
real-time systems

* The same modeling concepts are applicable to the
design phase greatly facilitating the transition from
requirements to design

« Extensive industrial experience has proven the
viability of the approach

.
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Appendix: More About ROOM
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Real-Time Object- Oriented Modeling (ROOM)

Developed at Bell-Northern Research

suitable for event-driven distributed systems

full-cycle method (A - -
- uses a formal graphical modeling language
- Described in: B. Selic, G. Gullekson, and

P. Ward, “Real-Time Object-Oriented
Modeling, John Wiley & Sons, NY, 1994.

REAL-TIME
OBJECT-ORIENTED

MODELING




