Requirements
Specification Using
Executable Models

Bran Selic
ObjecTime Limited
bran@objectime.com

Overview

* Requirements Modeling and Executable Models
* Basic Concepts of ROOM

* Requirements Capture Process

Context...

* The most expensive errors in software development
are those made early in the development process
(foundation for subsequent work)

Impact of
Design
Choices

Level of
System
Knowledge

> time

* Misunderstandings about requirements are among
the principal sources of up-front mistakes

—

The Uses of Requirements Specs
* Basis for communication among the users, operators,
and developers of a system

« Used to systematically verify the soundness of a
requirements set

* Reference for final system certification and
acceptance

e Controlling system evolution

- fitting new requirements over existing set

An Extreme View...

“I maintain that there is only one way to determine the
specification for a new piece of software—write the
code and see what it looks like.”

P.J. Plauger
C/C++ software guru

Problems of Requirements Specs

* However, even for moderately complex systems,
generating requirements specsis hard

incomprehensibility

- incorrectness

- ambiguity

- inconsistency (redundancy)
- incompleteness

- instability

- implementability hurdles

- design bias

Implementability Hurdles

* In the early days of software development
implementation often overlapped with design and,
sometimes, even with requirements specification

* Hence: “what (requirements) before how (design)”
* However, this is often taken to an extreme:

- the two are sometimes very difficult to decouple
cleanly (e.qg., is distribution just an implementation
issue or is it a fundamental user-level requirement?)

- detracts from comprehensive problem understanding

- can lead to major implementation problems

5
](':: :-:"|
7 B

An Approach: Formal Requirements Specs
* Use of formal specification techniques can mitigate
and even eliminate many of the cited problems
* However, no guarantees...

- e.g., comprehensibility

no gl@NEe g

nO (E +Ef*7Y s

,n) O . ,n) O .
(Si(a;';‘)) sl)(sé(al]) W) 32)

(a,j) 0 (0 I @)

(s, Asé ([ky 0] Il [kpw,]S5))

- e.g. implementability: “...we assume a loss-free
broadcast communication medium with zero delay...”

3
](':: :j'|
8 LB

Traditional Requirements Process

e Cascade process

| '||mp|ementors
¢ — — ¢ — —
Users Customers System

L v

| Architects
Testers

A 4

- mostly unidirectional

- source of many of the problems cited earlier

A Different Process Model

* Roundtable elicitation model (design-build teams)

Customers

]S

Implementors

System
Architects

Testers

- synergy: ensures all stakeholders’ interests are taken
into account

- facilitates agreement

- protects against downstream corruption of
requirements

10

"F."':.n-'l

We Need...

* A formal requirements specification technique that
represents a balance between the extremes of:

- highly-idealized denotational formalisms (that are often
difficult to understand and potentially infeasible) and

- generally understandable but seriously flawed informal

specifications

le 1 Al

| T ”1
Informal 5 “Denotational”
Specs ’ Formal Specs

" éﬁjn?.l.

Operational Specifications

» Specifications in the form of programs written for a
formally specified “virtual machine”

- requirements specifications = executable models

Requirements Specification

Virtual Machine

* These specifications define elements of structure and
behavior

" é@n?.l.lx.

Advantages of Operational Specifications

* Formality a basis for ensuring:
- consistency, completeness, precision, correctness

* Facilitates system understanding through observing
the executing model “in action”

- through suitable GUI interfaces, can be presented in
forms directly comprehended by users and operators

Requirements Specification
Virtual Machine
- usually accelerates the requirements specification
process and cuts down on requirements instability

L
13 éd}]

F N
v

GUI

The Virtual Machine

 The abstraction level of the virtual machine can have
a significant impact

* A highly abstract virtual machine

reduces bias towards particular designs

- increases expressive power (ability to directly model
complex phenomena)

- may have complex and very subtle semantics

- may have inappropriate semantics for a given problem
domain

- may result in unimplementable specifications

i
14 éd}_']

ROOM Approach

* A middle ground: virtual machine specialized for
distributed reactive system domain

* Object-oriented approach: takes advantage of the
features of the object paradigm (classification,
compositionality, encapsulation)

* A full cycle language: modeling concepts can be
applied to:

- requirements specification
- analysis and design

- (implementation step can be automated)

i San

15

Requirements Modeling and Executable Models

* Requirements Capture Process

16

i e

The Languages of ROOM

* Phase-independent modeling concepts split across
two formally correlated levels

Scope t
ROOM
Architecture High-Level Modeling
Language
Data Modeling
Detail Languages (e.g., C++, Java)

Analysis&Design Implementation

>

Development Phase

- éi’]l

Modeling in ROOM

Behavior

Structure

Two Levels of Modeling

Architectural Level — e
Language (ROOM) ——

Detail Level Structure j& Behavior
Language
e.g. C++

v C++ --» Generator:initializ | Code View

/¢ send out massages throygfh the replicated port:
cycleCntr = 0;

sendMsgs(){

1 éi}l

Basic Structure Modeling

| Actor
user dbase
userl m entrancel console
keyrlJad 2= <=
dbase
I
console
user dbase L
user2 n entrance2 database
keypad ctrirs
| z=
e/ "= == a -
user il -> Y ol i
user3 m entrance3
key;laad ‘/
[T
So o keypad l ctrir
~ || keypad axCtrlr gateCtrir
- r~ . ax(l:trlr gaite
~
. . ~ o
Binding / So dbase
~
~
%

él-hl I
19 'ﬂ}

Interfaces and Protocols

* Each actor interface is defined by its protocol
attribute

- an extension of the classical interface concept to cover
information exchange sequences

» JokeProtocol

| Protocol View

In Signals Data Class Out Signals Data Class
knockknock Mull WhosThere Mull
Boo Mull BooWhao Mull

PleaseDontCry Mull

- set of incoming and outgoing message types

* Only compatible protocol-based interfaces can be
bound to each other

él--ﬁl I
20 “}

Message Sequence Charts

¢ Message sequences are expressed by Message
Sequence Charts (MSCs)

msc Joke

Comedian | | StraightMan

KnockKnock

WhosThere

Boo

BooWho

PleaseDontCry

* Defined by ITU standard Z.120

! -
21 1=

Actors

e The active objects of ROOM are called actors

ENCAPSULATION
SHELL ACTOR

C_J

MESSAGE

INCOMING
MESSAGE

PORTS

* Actors can send and receive messages through one or
more ports

E -
22 LB

L) OUTGOING

Modeling Dynamic Structures

» Components created after their container

HandSat

i

TerminalControlar Linelnterface

* Multiple containment (support for roles and dynamic
relationships)

TelephoneSystem

Telephones

TelephoneX TelephoneY;

23

Actor Class Inheritance — Structure

CLASS

—
user

entrancel

==

dbase

r
user

entrance2 ¢

==

dbase

L,

ctrlrs

atabase

—
user

entrance3

==

dbase

Gray pen used to
indicate inherited attributes

=

NEW ATTRIBUTES —]

IN SUBCLASS

24

I
user dbase
ser2 entrance2 &
keypad
b4 | z=

/

I
user
user3 entrance3
L keypad dbase
| 2=

in subclass
/ SUBCLASS
I
user dbase
serl entrancel
keypad console

console

database

ctrlrs

£y

Y
3

Modeling Behavior — ROOMchart Basics

ate

r I r
user keypad ctrlr
| | keypad axCtrir @ gateCtrlr
axCtrir g
user |

o

ase

Wait for Next
Message

\ —

Handle T
Message

I

timeout

entryReq invalid
-
Validating
valid
DoorOpen

\

25

Modeling Behavior — Hierarchical States

0.

initialize
n

timeout key

-~/

enterKey ;nfen‘e
L -~

Entering2ndStr

=

26

CP1

true

enterKey

ROOMcharts vs. Statecharts

* ROOMcharts incorporate the major features of the
object paradigm, notably, encapsulation and
inheritance

* ROOMcharts do not allow “and” states and their
accompanying idealizations due to concerns
regarding:

- virtual machine complexity (semantics of steps)
- reliability of implicit communication

- general implementability of broadcast semantics
i_’ .

End-to-End Behavior Modeling

* Use of Message Sequence Charts (ITU Z.120)

‘ ‘ KeypadDisplay ‘ ‘ cccccccccccccccc ‘ ‘ GateController ‘ ‘ aaaaaaaaaa

key

uuuuuu

resetDisplay

5
28 ('ﬂ

* Requirements Modeling and Executable Models

* Basic Concepts of ROOM

i%=- Requirements Capture Process

29 @ OBECTIME
An Analogy — The Scientific Method

@ Hypothetico-deductive

* (HD) method:
Observe
.................. K| Developing specifications
Formulate and software for complex
Hypothesis systems has much in
------------------ el common with this process
Experiment
NO Hypotlhesis » Jteration and
Validated? > experimentation are the

key elements of this
process
% ORIECIME
30 T igbny vy Mamad Thenr

ROOM and Automation

DEVELOPMENT WORKSTATION

REQUIREMENTS
<«—p| MODEL
«—
MODELING DESIGN
INTERFACE || MODEL
—>]

|
RUN-TIME COMPILE
INTERFACE

MODELER EXECUTABLE MODEL

ROOM VIRTUAL MACHINE

a éi’] Ex

Typical ROOM Microcycle

Required MSC

Generate e — -
Scenarios)]] e

Derive structure

Requirements
Spec

))) o) o || Compare
= MSCs
e I Structure
...... Model
Generated MSC ;
Derive
behavior

Execute model
and generate MSC Behavior

Model

. éi‘] Ex

But Isn’t This Just Design?

* No, since what is being “designed/modeled” during
requirements identification is not the software to be
developed but the requirements

* Example: Secure room problem

- design the software for a system that will allow access
to a “secure” room only to authorized personnel:

- To gain access, it is necessary to key in a user id and a
personalized password on the keypad situated next to
each entrance

The Secure Room — Requirements

* A room with 3 secured entrances

Entrance 1 Entrance 3
= (o]

SECURE
ROOM

@ Entrance 2

Password Administrator
Database Console

34 idﬁ N

Requirements — Hardware Configuration

35

Display —| Latch

Microprocessor Administrator
Keypad Console

Display —| Latch
Microprocessor

Central
Computer

Keypad

Display Latch

i

Microprocessor

i Wy s

Keypad

Requirements — Sample Usage Scenario

36

User enters user id on keypad

User enters personal password on keypad

System validates user id and password against central
database

For valid access codes, door is unlocked for 3 seconds
during which user can enter

After 3 seconds expire, door is locked again

Usage Scenario — Graphical Rendering (1)

Use-case Map (UCM):

Display

Keypad

Microprocessor<¥

q ! Latch

Display

Keypad

Microprocessor

—| Latch

Administrator
Console

Display

Keypad

37

0 10 i

Microprocessor

—| Latch

> Central

Computer

Usage Scenario — Graphical Rendering (2)

Message Sequence Chart (MSC):

ccessfulAccess!

Scenario

Use l l KeypadDisplay l l AccessController l l GateController l l PWDatabase
key
key
key
key
entryReq
validationReq
alid
unlocl
displayMsg
time
lock
resetDisplay
I I I I I

38

Deriving Protocols From Scenarios

v AxCtrirToDbase | Protocol View
In Signals Data Class Out Signals Data Class
valid Tl validationReq YalidationRequest

invali\ Tull ‘
\ /

sc SuccessfulAccessScenario
User ‘ ‘ KeypadDisplay ‘ ‘ Ac¥sscomrouer ‘ ‘ GateController ‘ ‘ I PWhatabase
key
key
key
key
entryReq
validationReq
valid
unlock
displayMsg
timeout
ook N\
resetDisplay \
* I

v AxCtrirToGateCorir | Protocol Yiew
In Signals Data Class Out Signals Data Class
unlack Tl
lack Mull
-

i{‘; B EC T
39 -..__.

| Displayl— —| Latch ||
) . |
: Keypadl— Microproc T ggﬁg%ﬁgr

L e e e — = = = R ——

| —— - - - =" I

| Displayl— —| Latch | ! Central
Microproc. |
| [Keypad— P | Computer

L - - — = = = = R ——

L D e = — — — — 4
—_—
user dbase
entrancel
console
el
dbase
f console
user dbase
entrance2 & database
ctrrs
el
I [r
user keypad ctrir | ——
] keypad @ axCtrlr gateCtrlr user
axCtrlr gate entrance3
user _ | dbase
dbase al
||

dbase

40

‘E,_ W

Deriving High-Level Behavior

|] KeypadDisplay | [Adesscontoler | | GateController |] PWDatabase
key
key
key
key

displayMsg @\
initiali

ze
b A
eeeeeeeeeeee Ready
- »
4|

timeout resetDisplay displayMsg

key
v v
@ WaitingForReset

enterKey

enterKey

0 /
-
.
i
a1 =

Summary

* Specifying requirements for complex systems is a
hard problem

« ROOM is a formal modeling language that allows the
capture the structural and behavioral requirements of
real-time systems

* The same modeling concepts are applicable to the
design phase greatly facilitating the transition from
requirements to design

« Extensive industrial experience has proven the
viability of the approach

.
3]
42 J

£y

Appendix: More About ROOM

43

Real-Time Object- Oriented Modeling (ROOM)

Developed at Bell-Northern Research

suitable for event-driven distributed systems

full-cycle method (A - -
- uses a formal graphical modeling language
- Described in: B. Selic, G. Gullekson, and

P. Ward, “Real-Time Object-Oriented
Modeling, John Wiley & Sons, NY, 1994.

REAL-TIME
OBJECT-ORIENTED

MODELING

