
Bran Selic
ObjecTime Limited

bran@objectime.com

Requirements
Specification Using
Executable Models

2

• Requirements Modeling and Executable Models

• Basic Concepts of ROOM

• Requirements Capture Process

Overview

3

• The most expensive errors in software development
are those made early in the development process
(foundation for subsequent work)

• Misunderstandings about requirements are among
the principal sources of up-front mistakes

=> An explicit requirements specification is required

time

Impact of
Design
Choices

Level of
System
Knowledge

Context...

4

• Basis for communication among the users, operators,
and developers of a system

• Used to systematically verify the soundness of a
requirements set

• Reference for final system certification and
acceptance

• Controlling system evolution

- fitting new requirements over existing set

The Uses of Requirements Specs

5

“I maintain that there is only one way to determine the
specification for a new piece of software—write the
code and see what it looks like.”

P.J. Plauger
C/C++ software guru

An Extreme View...

6

• However, even for moderately complex systems,
generating requirements specs is hard

- incomprehensibility

- incorrectness

- ambiguity

- inconsistency (redundancy)

- incompleteness

- instability

- implementability hurdles

- design bias

Problems of Requirements Specs

7

• In the early days of software development
implementation often overlapped with design and,
sometimes, even with requirements specification

• Hence: “what (requirements) before how (design) ”

• However, this is often taken to an extreme:

- the two are sometimes very difficult to decouple
cleanly (e.g., is distribution just an implementation
issue or is it a fundamental user-level requirement?)

- detracts from comprehensive problem understanding

- can lead to major implementation problems

Implementability Hurdles

8

• Use of formal specification techniques can mitigate
and even eliminate many of the cited problems

• However, no guarantees...

- e.g., comprehensibility

- e.g. implementability: “...we assume a loss-free
broadcast communication medium with zero delay...”

n E1
a n(,) ω⊗()

s1→⇒

n E1 E2+() a n(,) ω⊗()
s1→⇒

s1
a n(,) ω⊗()

s'1→() s2
a n(,) ω⊗()

s'2→()

s1 sA 2|| a n(,) ω1 ω2
||()⊗()

k1 ω1[,] s'1 A k2 ω2[,] s'2||()→()

An Approach: Formal Requirements Specs

9

• Cascade process

- mostly unidirectional

- source of many of the problems cited earlier

Users Customers
System

Architects

Testers

Implementors

Traditional Requirements Process

10

• Roundtable elicitation model (design-build teams)

- synergy: ensures all stakeholders’ interests are taken
into account

- facilitates agreement

- protects against downstream corruption of
requirements

Users

Customers
System

Architects

Testers
Implementors

A Different Process Model

11

• A formal requirements specification technique that
represents a balance between the extremes of:

- highly-idealized denotational formalisms (that are often
difficult to understand and potentially infeasible) and

- generally understandable but seriously flawed informal
specifications

Informal
Specs

? “Denotational”
Formal Specs

We Need...

12

• Specifications in the form of programs written for a
formally specified “virtual machine”

- requirements specifications = executable models

• These specifications define elements of structure and
behavior

Requirements Specification

Virtual Machine

Operational Specifications

13

• Formality a basis for ensuring:

- consistency, completeness, precision, correctness

• Facilitates system understanding through observing
the executing model “in action”

- through suitable GUI interfaces, can be presented in
forms directly comprehended by users and operators

- usually accelerates the requirements specification
process and cuts down on requirements instability

GUI Requirements Specification

Virtual Machine

Advantages of Operational Specifications

14

• The abstraction level of the virtual machine can have
a significant impact

• A highly abstract virtual machine

- reduces bias towards particular designs

- increases expressive power (ability to directly model
complex phenomena)

- may have complex and very subtle semantics

- may have inappropriate semantics for a given problem
domain

- may result in unimplementable specifications

The Virtual Machine

15

• A middle ground: virtual machine specialized for
distributed reactive system domain

• Object-oriented approach: takes advantage of the
features of the object paradigm (classification,
compositionality, encapsulation)

• A full cycle language: modeling concepts can be
applied to:

- requirements specification

- analysis and design

- (implementation step can be automated)

ROOM Approach

16

• Requirements Modeling and Executable Models

• Basic Concepts of ROOM

• Requirements Capture Process

17

• Phase-independent modeling concepts split across
two formally correlated levels

Analysis&Design Implementation

Development Phase

Scope

Detail

Architecture

Data Modeling

Languages (e.g., C++, Java)

ROOM

High-Level Modeling

Language

The Languages of ROOM

18

WaitingForReset

Entering2ndStr

Entering1stStr

Ready

timeout

initialize

displayMsgresetDisplay

enterKey
enterKey

keyentrance1
dbaseuser

entrance2
dbaseuser

entrance3
dbase

user

database

console

ctrlrs

console

dbase
user1

keypad

user2
keypad

user3
keypad

User KeypadDisplay AccessController GateController PWDatabase

msc SuccessfulAccessScenario

timeout

key

key

key

key

entryReq

displayMsg

resetDisplay

validationReq

valid

unlock

lock

Architectural Level
Language (ROOM)

Detail Level
Language

Two Levels of Modeling

e.g. C++

Structure
Behavior

Structure & Behavior

Modeling in ROOM

19

Basic Structure Modeling

entrance1
dbaseuser

entrance2
dbaseuser

entrance3
dbase

user

database

console

ctrlrs

console

dbase

user1
keypad

user2
keypad

user3
keypad

axCtrlr
keypad

gate

dbase

gateCtrlr
ctrlr

keypad
user

axCtrlr

dbase

user

Actor

Port

Binding

20

• Each actor interface is defined by its protocol
attribute

- an extension of the classical interface concept to cover
information exchange sequences

- set of incoming and outgoing message types

• Only compatible protocol-based interfaces can be
bound to each other

Interfaces and Protocols

21

• Message sequences are expressed by Message
Sequence Charts (MSCs)

• Defined by ITU standard Z.120

Comedian StraightMan

msc Joke

KnockKnock

WhosThere

Boo

BooWho

PleaseDontCry

Message Sequence Charts

22

• The active objects of ROOM are called actors

• Actors can send and receive messages through one or
more ports

PORTS

INCOMING
MESSAGE

OUTGOING
MESSAGE

ACTOR
ENCAPSULATION
SHELL

Actors

23

• Components created after their container

• Multiple containment (support for roles and dynamic
relationships)

Call

TelephoneYTelephoneX
Telephones

n

EQ1

EQ2

TelephoneSystem

Modeling Dynamic Structures

24

entrance1
dbaseuser

entrance2
dbaseuser

entrance3
dbase

user

database

console

ctrlrs

console

dbase

user1
keypad

user2
keypad

user3
keypad

Actor Class Inheritance — Structure

entrance1
dbaseuser

entrance2
dbaseuser

entrance3
dbase

user

database
ctrlrs

Gray pen used to
indicate inherited attributes
in subclass

SUBCLASS

CLASS

NEW ATTRIBUTES
IN SUBCLASS

25

Modeling Behavior — ROOMchart Basics

DoorOpen

Validating

Ready

initialize

timeout

invalid

valid

entryReq

axCtrlr
keypad

gate

dbase

gateCtrlr
ctrlr

keypad
user

axCtrlr

dbase

user

Wait for Next
Message

Handle
Message

26

Modeling Behavior — Hierarchical States

CP1

EnteringKeys

enterKey

key

false

true

key

key

WaitingForReset

Entering2ndStr

Entering1stStr

Ready

timeout

initialize

displayMsgresetDisplay

enterKey
enterKey

key

27

• ROOMcharts incorporate the major features of the
object paradigm, notably, encapsulation and
inheritance

• ROOMcharts do not allow “and” states and their
accompanying idealizations due to concerns
regarding:

- virtual machine complexity (semantics of steps)

- reliability of implicit communication

- general implementability of broadcast semantics

ROOMcharts vs. Statecharts

28

• Use of Message Sequence Charts (ITU Z.120)

User KeypadDisplay AccessController GateController PWDatabase

msc SuccessfulAccessScenario

timeout

key

key

key

key

entryReq

displayMsg

resetDisplay

validationReq

valid

unlock

lock

End-to-End Behavior Modeling

29

• Requirements Modeling and Executable Models

• Basic Concepts of ROOM

• Requirements Capture Process

30

An Analogy — The Scientific Method

Hypothetico-deductive
(HD) method:

Observe

Formulate
Hypothesis

Experiment

Hypothesis
Validated?

NO

Developing specifications
and software for complex
systems has much in
common with this process

• Iteration and
experimentation are the
key elements of this
process

31

MODELING
INTERFACE

RUN-TIME
INTERFACE

REQUIREMENTS
MODEL

DESIGN
MODEL

COMPILE

ROOM VIRTUAL MACHINE

EXECUTABLE MODEL

DEVELOPMENT WORKSTATION

MODELER

ROOM and Automation

32

Typical ROOM Microcycle

Requirements
Spec

WaitingForReset

Entering2ndStr

Entering1stStr

Ready

timeout

initialize

displayMsgresetDisplay

enterKey
enterKey

key

User KeypadDisplay AccessController GateController PWDatabase

msc SuccessfulAccessScenario

timeout

key

key

key

key

entryReq

displayMsg

resetDisplay

validationReq

valid

unlock

lock

User KeypadDisplay AccessController GateController PWDatabase

msc SuccessfulAccessScenario

timeout

key

key

key

key

entryReq

displayMsg

resetDisplay

validationReq

valid

unlock

lock

entrance1
dbaseuser

entrance2
dbaseuser

entrance3
dbase

user

database

console

ctrlrs

console

dbase
user1

keypad

user2
keypad

user3
keypad

+
-

Generate
Scenarios

Derive structure

Derive
behavior

Execute model
and generate MSC

Compare
MSCs

Required MSC

Structure
Model

Behavior
Model

Generated MSC

33

• No, since what is being “designed/modeled” during
requirements identification is not the software to be
developed but the requirements

• Example: Secure room problem

- design the software for a system that will allow access
to a “secure” room only to authorized personnel:

- To gain access, it is necessary to key in a user id and a
personalized password on the keypad situated next to
each entrance

But Isn’t This Just Design?

34

• A room with 3 secured entrances

SECURE
ROOM

Entrance 1

Entrance 2

Entrance 3

Password
Database

Administrator
Console

The Secure Room — Requirements

35

Requirements — Hardware Configuration

Central
Computer

Administrator
ConsoleKeypad

Microprocessor
Display Latch

Keypad
Microprocessor

Display Latch

Keypad
Microprocessor

Display Latch

36

1. User enters user id on keypad

2. User enters personal password on keypad

3. System validates user id and password against central
database

4. For valid access codes, door is unlocked for 3 seconds
during which user can enter

5. After 3 seconds expire, door is locked again

Requirements — Sample Usage Scenario

37

Usage Scenario — Graphical Rendering (1)

Central
Computer

Administrator
ConsoleKeypad

Microprocessor
Display Latch

Keypad
Microprocessor

Display Latch

Keypad
Microprocessor

Display Latch

Use-case Map (UCM):

38

Usage Scenario — Graphical Rendering (2)

Message Sequence Chart (MSC):

User KeypadDisplay AccessController GateController PWDatabase

msc SuccessfulAccessScenario

timeout

key

key

key

key

entryReq

displayMsg

resetDisplay

validationReq

valid

unlock

lock

39

Deriving Protocols From Scenarios

User KeypadDisplay AccessController GateController PWDatabase

msc SuccessfulAccessScenario

timeout

key

key

key

key

entryReq

displayMsg

resetDisplay

validationReq

valid

unlock

lock

40

entrance1
dbaseuser

entrance2
dbaseuser

entrance3
dbase

user

database

console

ctrlrs

console

dbase

axCtrlr
keypad

gate

dbase

gateCtrlr
ctrlr

keypad
user

axCtrlr

dbase

user

Deriving Structure From Requirements

Central
Computer

Operator
ConsoleKeypad

Microproc.
Display Latch

Keypad
Microproc.

Display Latch

Keypad
Microproc.

Display Latch

41

Deriving High-Level Behavior

User KeypadDisplay AccessController GateController PWDatabase

msc SuccessfulAccessScenario

timeout

key

key

key

key

entryReq

displayMsg

resetDisplay

validationReq

valid

unlock

lock

WaitingForReset

Entering2ndStr

Entering1stStr

Ready

timeout

initialize

displayMsgresetDisplay

enterKey
enterKey

key

42

• Specifying requirements for complex systems is a
hard problem

• ROOM is a formal modeling language that allows the
capture the structural and behavioral requirements of
real-time systems

• The same modeling concepts are applicable to the
design phase greatly facilitating the transition from
requirements to design

• Extensive industrial experience has proven the
viability of the approach

Summary

43

• Real-Time Object- Oriented Modeling (ROOM)

• Developed at Bell-Northern Research

- suitable for event-driven distributed systems

- full-cycle method (A D I)

- uses a formal graphical modeling language

- Described in: B. Selic, G. Gullekson, and
P. Ward, “Real-Time Object-Oriented
Modeling,’ John Wiley & Sons, NY, 1994.

REAL-TIME
OBJECT-ORIENTED
MODELING

Bran Selic, Garth Gullekson
and Paul T. Ward

WILEY WILEY PROFESSIONAL COMPUTING

Appendix: More About ROOM

