
 

An Efficient Object-Oriented Variation of the Statecharts Formalism for 
Distributed Real-Time Systems

 

Bran Selic

ObjecTime Limited
Kanata, Ontario, CANADA

 

Abstract

 

The ROOM (Real-Time Object-Oriented Modeling)
methodology was developed specifically for dealing with
distributed real-time systems based on the object para-
digm. For describing high-level concurrent behavior of
systems, ROOM uses a variation of the basic statechart
visual formalism. This variation was driven by two sets of
requirements. First, we wanted to integrate some of the
more powerful aspects of the object paradigm, such as
inheritance, with the statechart formalism. In addition,
based on our own experience with finite-state machine
descriptions, we felt that statecharts had a potential to be
used not only for specification but also for implementation.
Consequently, we filtered the set of basic statechart con-
cepts, modifying some, removing others and introducing
new ones, based on their implementability using state-of-
the-art technology. The result is a highly efficient and
expressive formalism which can be applied from the early
phases of development (analysis) all the way to implemen-
tation. This eliminates some of the error-prone paradigm
shifts which characterized traditional system development
processes. This new formalism has been incorporated into
a commercial toolset and has been used extensively in the
design of a large number of real-time systems.

 

1. Introduction

 

Graphical finite-state machine formalisms are widely
used to specify the high-level behavior of complex real-
time systems because they are compact and easily under-
stood. However, when we attempt to use them for 

 

imple-
mentation

 

 it often happens that much of this expressive
power is lost due to the more complex nature of real-world
systems. For example, a specification for a data communi-
cations protocol typically ignores various management
issues (e.g., initialization, datafill, fault recovery) associ-
ated with the software entity that supports the protocol.
When these are merged in with the original specification,
the resulting finite-state machine graph can become incom-

prehensible.

Statecharts [1] is a variant of the finite-state machine
formalism which reduces the 

 

apparent

 

 complexity of a
graphical representation of a finite-state machine. This is
accomplished through the addition of simple graphical rep-
resentations of certain common patterns of finite-state
machine usage. As a result, what might be a complex sub-
graph in a “basic” finite-state machine is replaced by a sin-
gle graphical construct. In the remainder of this paper, we
assume a basic familiarity with the statechart formalism.
Comprehensive descriptions can be found in references [1]
and [2].

In the majority of cases, statecharts are far more com-
pact than equivalent flat state machines enabling the graph-
ical representation to be extended to implementation-level
systems. The benefits of this are significant: by “program-
ming” system behavior directly in statechart form we not
only reap the design and documentational benefits of a
graphical representation but we also eliminate the error-
prone manual step of translating a graphical design repre-
sentation into an equivalent programming language imple-
mentation.

Unfortunately, as originally defined, the statechart for-
malism has some basic concepts which are difficult to
implement for real-time systems. This applies particularly
to its communication model. Our objective was to define a
variant of the statechart formalism that would be more
amenable to direct implementation. This meant modifying
or replacing some of these inherently difficult concepts to
be more in tune with currently available hardware and soft-
ware technologies. For example, it is generally unrealistic
to apply the concept of broadcast communications across a
lossy wide-area network.

A second major requirement that motivated our work
was the desire to integrate statecharts with the object para-
digm [3]. Our experience with real-time system design
indicated that the object paradigm was an excellent fit to
the real-time domain [4]. In particular, we found that most
real-time applications are more naturally expressed as net-

 

Paper submitted (23/10/92) to

 

 CHDL ‘93: IFIP Conference on Hardware Description Languages and Their 
Applications

 

,

 

 April 26-28, 1993, Ottawa, CANADA



 

2

works of cooperating objects rather than in algorithmic
form. This representation is inherent in object-oriented sys-
tems. In addition, the object paradigm includes a spectrum
of additional features that complement each other well. For
example, inheritance, encapsulation, and polymorphism
are generally useful features that have the potential for
improving productivity and overall system reliability.

Over the last five years we have developed a conceptual
framework for real-time system design which, among other
things, allowed us to meet both of the major objectives
described above. This framework is part of a system devel-
opment methodology called Real-Time Object-Oriented
Modeling or ROOM. A very brief overview of the funda-
mental aspects of ROOM is provided in the next section of
this paper but readers interested in a more in-depth view
should consult reference [4]. The focus of the remainder of
this paper is the particular refinement of statecharts devel-
oped in ROOM and which we shall call, for want of a bet-
ter name, 

 

ROOMcharts

 

.
At this time there is a substantial body of experience in

using ROOMcharts since they are supported by a commer-
cial CASE tool called ObjecTime. They have been used in
over fifty different real-time projects. A summary of this
experience is provided in Section 5 of this paper.

 

2. An Overview of ROOM

 

ROOM is a methodology that was developed primarily
for distributed real-time systems. By focusing on a particu-
lar domain, as opposed to being general purpose, we felt
that we could retain a compact yet highly expressive con-
ceptual base. We decided on an evolutionary approach so
that the modeling concepts which represent the basic
vocabulary of ROOM are typically generalizations or
extensions of concepts already common in the real-time
domain. As a result, practitioners in the domain generally
find the concepts intuitive and absorb them without too
much difficulty.

One of the fundamental objectives of ROOM is the
removal of conceptual discontinuities that characterize tra-
ditional development processes. These discontinuities
occur during transitions from one phase of development to
another. For example, the outcome of the design phase is
typically a design model. While this is used as input to the
implementation model, the two models are usually not for-
mally related. 

This leads to many problems. If the design model is
informal, there is no guarantee that it is consistent. Such
design inconsistencies are then detected during implemen-
tation where they are often very difficult to fix because of
the often overwhelming intricacies of implementation
issues. Furthermore, informal models can be easily misin-
terpreted since their semantics are unclear. Hence design

intent may not be properly conveyed. Last but not least,
with an informal model there is no possibility of enforcing
design decisions through implementation. It is not uncom-
mon for implementors to “shortcut” designs in ways which
impinge on the architectural integrity of a system thus
jeopardizing its evolutionary potential.

ROOM avoids these pitfalls by specifying a conceptual
base which is formal. In contrast to the more mathemati-
cally-oriented formalisms [5] [6] which stress expressive
power at the cost of almost completely ignoring implemen-
tation concerns

 

1

 

, ROOM concepts were carefully selected
to be relatively easily mappable to efficient implementa-
tions while still retaining much expressive power. (The fact
that the methodology is restricted to a single domain makes
this easier to achieve.)

With a formal set of concepts, it becomes possible to
analyze models for consistency and completeness at any
point in the development cycle. This can be done by algo-
rithmic means or by direct execution. Furthermore, since
ROOM concepts range from the very abstract (e.g., layer-
ing) to the very concrete (e.g., individual low-level data
structures), all of which are formally interrelated, it is pos-
sible to span the entire development cycle seamlessly with
one set of concepts and thus eliminate the conceptual dis-
continuities.

The elimination of conceptual discontinuities has a pro-
found effect on the way in which development is done.
Traditional development processes tended to be phased
with each phase focused around its own conceptual base
(the analysis model, the design model, etc.). In ROOM it is
more appropriate to talk about activities rather than phases
of the development cycle. The three basic activities are:

 

analysis

 

 which focuses on problem understanding, 

 

design
and implementation

 

 which generates a solution to the prob-
lem, and 

 

execution and verification

 

 which measures the
suitability of the solution to the problem.

As indicated in the diagram above, at any given
moment, all three activities might be performed although
the emphasis changes throughout the cycle (e.g., heavy on

 

1. Another argument against strongly mathematical formalisms is that
most software and hardware designers today do not have the necessary
training to use these properly. Until this situation is rectified, rather than
bemoan the state of the educational system, we feel that it is necessary to
deal with current realities.

Analysis
Design &
Implementation

Execution &

Time

Effort

Verification



 

3

analysis in the initial part of the cycle).

For clarity, the ROOM concepts are organized around
two basic paradigms. The 

 

abstraction levels

 

 paradigm clas-
sifies the modeling concepts according to the scope which
they encompass. 

At the bottom is the Detail Level which has concepts
that are found in traditional non-concurrent programming
languages. This is the level at which much implementation
detail occurs. The next level up, the Concurrency Level,
deals with aggregates of cooperating (concurrent) state
machines. At the highest, System, level are concepts, such
as layering, which encompass the entire system.

The second paradigm, called the 

 

modeling dimensions

 

paradigm, identifies three main aspects of modeling: struc-
ture, behavior, and inheritance.

Behavior specifies the dynamic aspects of a system
while structure deals mainly with architectural issues: how
is the system decomposed, what is the relationship between
the components, etc. Inheritance is both a reuse and an
abstraction facility. In our experience, getting the inherit-
ance done properly requires careful and dedicated effort
which is why it is given equal prominence as the other two
more classical dimensions of system design.

 

3. ROOMcharts

 

ROOMcharts belong at the Concurrency abstraction
level. The computational model which they enforce is best
described as sets of cooperating finite state machines. 

System Level

Concurrency Level

Detail Level

Behavior

Inheritance

Structure

 

3.1. Structural concepts

 

The fundamental structural concept at the Concurrency
level is that of an 

 

actor.

 

 An actor represents an active con-
current entity with a specific responsibility. Concurrency
means that an actor can exist and operate in parallel with
other actors in the same environment. An actor’s imple-
mentation is completely hidden from its environment and
other actors by an encapsulation shell.

In order for an actor to communicate with its environ-
ment, its encapsulation shell has openings called 

 

ports

 

through which information can flow in or out. The infor-
mation that is exchanged is packaged into discrete units
called 

 

messages

 

. In our model, messages are instances of
abstract data types and are the sole means of communica-
tion

 

 

 

available to an actor. Because of the encapsulation
shell, the behavior of an actor can only be deduced from
the outside by observing the flow of messages on its ports.
Conversely, an actor's perception of its surroundings is lim-
ited to the information received through its ports.

Each port on an actor represents one specialized inter-
face of the actor. One of the major attributes of a port is its
associated 

 

protocol

 

, consisting of a set of valid

 

 message
types

 

 which are allowed to pass through the port, and a set
of valid

 

 message exchange sequences 

 

on that port.

Note that this is a richer definition of an object interface
than those found in most current object-oriented languages
which are limited to simple data type signatures.

Since the same type of interface often appears on differ-
ent actors, we have introduced the concept of a 

 

protocol
class

 

. A protocol class is a common specification for all
port instances that respond to the same protocol. Protocol

Actor

Ports
Message

Message

Connect (data)

Disconnect

Disconnected

Connected



 

4

classes are organized into an inheritance hierarchy. This
allows standard subclassing techniques to be used to pro-
vide abstractions or refinements of protocols as well as re-
use of common protocol specifications.

Actors which implement complex functionality may
have to be broken down further into component actors,
each responsible for a subset of the overall functionality.
(This process of decomposition can be carried to an arbi-
trary level.)

The concept of 

 

bindings

 

 is used to explicitly represent
and constrain the valid communication relationships
between actors. A binding is an abstraction of an underly-
ing communication channel which carries messages from
one actor to another. Bindings can be drawn only between
ports that have mutually compatible protocols. Graphically,
bindings are represented by undirected arcs connecting two
ports on two actors in the same decomposition frame. 

In general, bindings do not indicate the direction of
communications. They can be either unidirectional or bidi-
rectional depending on the characteristics of the underlying
communication service. 

Note that ports appearing on the containing actor’s inter-
face can be connected to internal component actors which
is equivalent to the concept of delegation.

We impose a fundamental restriction that two actors in
the same layer can communicate directly only if they have
a binding between them. As a result, the decomposition
structure, or 

 

architecture

 

, of an actor explicitly captures the
interactions between its component actors. This not only
ensures that the architecture of large systems is directly
visible, but also that it cannot be corrupted as a result of
design decisions made at lower abstraction levels.

Similar to ports, each actor is an instance of some actor
class which is a template for creating instances of that
class. Since actor classes are also organized into class hier-
archies, entire system architectures can be subclassed and
reused through standard inheritance mechanisms. 

Actor classes use single inheritance. Although this may
appear restrictive, the ability of an actor to incorporate
instances of other actor classes and pass through part of
that object’s interface as its own is, in our view, preferable
to the intricacies of managing multiple inheritance.

C1 C2

C3 p3

p1

A

p2

 

In order to accommodate the highly dynamic nature of
real-time systems, component actors can be specified as
being 

 

dynamic

 

. These are actors that are not automatically
instantiated when their containing actor is created. Instead,
they may created or destroyed under the control of the con-
taining actor. In the ROOM notation, a dynamic actor is
indicated by a shaded rectangle (e.g., actor 

 

C2

 

 in the dia-
gram above).

 

3.2. Behavior

 

Actors are structural entities which provide the logical
containers for behavior. The behavior of an actor is just one
of its attributes. (Other attributes include the set of ports,
the set of component actors and their interconnection, etc.)
The linkage between behavior and structure is achieved
through ports

 

1

 

. A port which is not bound to a container
actor is called an 

 

end port

 

 (such as port 

 

p2

 

 in the previous
diagram) and is directly accessible by the actor’s finite-
state machine. 

 

Communication model 

 

Note that the strong encapsulation of actors eliminates
the possibility of shared variables between actors and also
dictates a pure message-based communication model. The
advantage of this model is that it is general enough to cover
both software and hardware as well as distributed and non-
distributed systems.

An 

 

event

 

 in this model is defined as the arrival of a mes-
sage at some end port. More precisely, an event is the 4-
tuple:

 

<port, signal, priority, data>

 

where 

 

port

 

 is the port on which the event occurred, 

 

sig-
nal

 

 is a unique application-specific identifier which cap-
tures the semantics of the event/message, 

 

priority

 

 is the
dispatch priority with which the message was sent, and

 

data

 

 is an optional application-specific passive object
embedded in the message

Communications can b

 

e either asynchronous

 

 or 

 

syn-
chronous

 

. Asynchronous message communication is non-
blocking: after sending a message, the sender simply con-
tinues its activity. In case of synchronous communication,
the sender is blocked until the receiver replies with a mes-
sage of its own. This reply message takes precedence over
any other messages that may have been queued at the
sender so that this communication mode is equivalent to a
remote procedure call. However, at the receiving end there

 

1. In addition to ports, behavior has access to 

 

service access points

 

 and

 

service provision points

 

 which pertain to the layering feature of the Sys-
tem abstraction level. However, in this paper we will omit discussing the
layered structures in ROOM.



 

5

is no distinction between a synchronous and an asynchro-
nous communication. The same primitive can be used to
send the reply message in either case so that the receiver is
effectively decoupled from the communication mode of the
sender. This means that the exact same actor class can be
used both in synchronous and asynchronous client-server
scenarios.

 

Event processing model

 

We have chosen the 

 

run-to-completion

 

 programming
model for the behavior of actors. In this model an actor is
normally in a receiving mode during which it awaits
incoming events. If an event occurs, the actor responds by
performing some activity appropriate to that event and then
returns to the receiving mode to await further events. If a
new events occurs while an actor is still busy processing
the previous one, the new event is queued by the receiving
end port and will be automatically resubmitted when the
actor returns to receiving mode. 

When a message is sent, it is assigned a priority. The
general intent is that events of higher priority get some type
of precedence over events of lower priorities. However,
given the variety and volatility of scheduling policies in
real-time systems, the semantics of priorities are viewed as
an implementation issue.

The approach taken here is that events have priorities
rather than actors. This is a departure from the traditional
approach found in most operating systems in which priori-
ties are assigned to processes. In our view, given the multi-
plicity of interfaces of an actor, it is highly likely that a
single actor will be simultaneously involved in multiple
concurrent and independent threads of activity. For exam-
ple, an actor could be in the process of servicing some
functional request while at the same time responding to
background-type maintenance queries. Not all of these
activities are likely to be of the same priority so that it
would be very difficult to define one priority to fit all
needs. In general, in an “event-driven” system, we feel that
it is more reasonable to assign priorities to events.

 

Behavior description

 

The event processing model just described is easily
adapted to a finite-state machine formalism. The receiving
mode of an actor can be mapped to states while event pro-
cessing can be associated with the transitions. An event
triggers a transition which performs the event processing.

ROOM leaves open which Detail-level programming
language can be used to specify the details of event han-
dling. The ObjecTime toolset currently supports two differ-
ent object-oriented languages: C++ and a special derivative
of Smalltalk that is useful for rapid prototyping (RPL).

In ROOM a finite-state machine description (ROOM-
chart) consists of the following attributes:

- a set of end ports,
- a set of service access points,
- a set of extended state variables,
- a set of internal functions,
- an initial point,
- a set of states,
- a set of transitions.

An example behavior description is shown below:

The end ports are the same end ports that appear on the
interface of the containing actor. (Interface ports which are
bound to an internal component actor are not seen by the
behavior.) In this example, we have only one port defined,

 

p1

 

, which communicates via the 

 

pc1

 

 protocol class.

 

Service access points

 

 are similar to ports except that
they are used to communicate with entities in adjacent lay-
ers (below and above the containing actor). For example,
timing facilities are provided through service access points
to a layer which can be placed beneath any actor that
requires it (this is the case in the above example where ser-
vice access point 

 

t

 

 provides access to the 

 

Timing

 

 service.)
Like ports, service access points have an associated proto-
col. In fact, the distinction between a port and a service
access point is a structural issue and, from the viewpoint of
behavior, irrelevant. That is, the same message-based com-
munication model is used for both service access points
and ports. A message arriving on a service access point is
handled in the exactly same way as a message arriving on a
port.

 

Extended state variables

 

 are instances of passive Detail-

I
I S1

S11

S12

S3S2

ports: p1:pc1;
saps: t:Timing;
vars: v1:Integer;

v2:String;
func: fa():Integer;

vars: v1:String;
v3:Integer;

i1 i2

e1

e2

e1
e3

T FC



 

6

level objects used by a finite-state machine to maintain
auxiliary information that it needs to sustain between
events. These objects can be manipulated by the code
inside transitions and entry and exit actions (described
below). Since actors are fully encapsulated, these objects
are not accessible by other actors so that issues of concur-
rent access to these objects do not arise. The example
shows two sets of variables, one set (

 

v1

 

 and 

 

v2

 

) in the top-
level state machine and another (

 

v1

 

 and 

 

v3

 

) in state 

 

S1

 

.

 

Internal functions

 

 contain common code sequences that
can be shared by event handling code. The example shows
a function 

 

fa()

 

 of type 

 

Integer

 

.
The 

 

initial point

 

 is the source point for the initial transi-
tion. This transition is automatically taken when the
enclosing actor is created. Typically, code in this transition
performs initialization operations. Note that initial point is
not equivalent to a state since it is transient.

 

States

 

The basic statechart formalism allows a state to be
decomposed into substates. This allows complex behavior
to be uncovered gradually as a series of nested behavior
patterns. We have found this feature, in combination with
the concepts of state history and “group” transitions to be
the most useful features of basic statecharts.

A ROOMchart state is composed of the following

 

optional 

 

attributes:

- a set of extended state variables,
- an entry action,
- an exit action,
- a set of (sub)states, 
- a set of transitions.

One of the features that distinguishes ROOMcharts is
that states 

 

encapsulate

 

 their contents. That is, the inside of
a state is not visible from the outside. A major advantage of
this feature is that it allows different refinements of a state
to be captured through inheritance. 

The encapsulation feature of states means that each state
represents a lexical scope. The scoping rules of states fol-
low their nesting hierarchy similar to the scoping rules of
block-structured programming languages such as Pascal.
The extended state variables of the containing states are
accessible to their contained states but not the other way
around. For example, variaable 

 

v2

 

 is available in all state
contexts. On the other hand, variable 

 

v3

 

 is only available in
the context of state 

 

S1

 

. Also, in state 

 

S1

 

 the references to
the variable 

 

v1

 

 pertain to the local variable rather than the
variable with the same name in the enclosing scope.

Another consequence of encapsulation is that transitions
that “cut” across state boundaries (e.g., transition 

 

e2

 

) are
broken into different segments. For a given transition, each
of these segments is in a different scope and, hence, has

access to a different set of variables and functions.

 

Entry actions

 

 are optional code segments that are auto-
matically invoked whenever a transition enters the state
regardless of which transition was taken into the state. In
case of a segmented transition, the entry action is per-
formed between the external and internal segments of the
transition.

 

Exit actions

 

 are similar to entry actions except that they
are activated whenever a transition is taken out of the state.
In case of a segmented transition, the entry action is per-
formed between the internal and external segments.

At execution time, the 

 

history

 

 of a state is the most
recently visited substate of the state. ROOMcharts only
support “deep” history, that is history that extends to the
innermost level. Although we considered “shallow” his-
tory, we have not encountered situations in practice where
it would have been indispensable. 

As a notational convention, a transition that terminates
on the outside border of a state automatically goes to his-
tory (e.g., transition 

 

i1

 

). Hence, there is no special symbol
required for history such as exists in the basic statechart
formalism. If it is desired to bypass history, then the transi-
tion is simply continued (through a new transition seg-
ment) to the desired substate or to the initial point.

Note that we do not make use of the concurrent states
feature of basic statecharts. This point is discussed in detail
in Section 4.

 

Transitions

 

A transition can be triggered by the arrival of a message
(an event). A simple trigger is specified by the 3-tuple:

 

<port, signal, guard>

 

which means that the trigger becomes enabled when the
specified

 

 signal

 

 arrives at the specified 

 

port

 

 (or service
access point) provided that the optional Boolean predicate
guard is true. Complex triggering conditions are also possi-
ble such that the arrival of any of a set of signals on any of
a set of ports can trigger a transition.

A transition can optionally have a code segment associ-
ated with it which captures the Detail-level behavior asso-
ciated with event handling.

Group transitions are transitions that emanate from the
border of a composite state (transition 

 

e1

 

 emanating from
state 

 

S1

 

 in the example). These transitions apply equally to
all substates unless explicitly overridden as explained
below. 

The scoping rules enforced by the nesting of states
apply to transitions and their triggers as well. For example,
the guard condition has access to any extended state vari-
ables or functions in its scope (recall that ports and service
access points occur at the top level and are available in any



 

7

scope).
In keeping with the nested scoping, transition triggers

are also scoped in such a way that triggers on the innermost
current state take precedence over equivalent triggers in
higher scopes. In the example, if the actor is in state 

 

S11

 

,
then the transition 

 

e1

 

 originating from that state will take
precedence over the group transition 

 

e1

 

 that emanates from
state 

 

S1

 

. This allows the overriding of group transitions
and is a commonly used feature.

Finally, a transition can be split into multiple transition
segments at a choice point (transition 

 

e1

 

 in the example).

 

3.3. Inheritance

 

In considering how best to apply inheritance to ROOM-
charts we chose to combine it with the structural inherit-
ance scheme. That is, we view behavior as just another
attribute of an actor class (albeit a complex one). Although
it would have been possible to have separate class hierar-
chies for structure and behavior we decided against it since
the structural attributes of an actor provide a context for
behavior (through ports and service access points).

In ROOMcharts, a subclass automatically inherits all the
behavioral attributes of its parent class. In choosing an
inheritance scheme we decided against strict inheritance

 

1

 

.
This means that not only can new behavioral attributes be
added (e.g., new states, transitions, variables) but also that
any inherited attributes can be overridden or deleted. It is
our view that strict inheritance, which can be severely lim-
iting in practical applications, does not always guarantee
behavioral equivalence of the parent class and the subclass.
For example, if a subclass adds just one extra transition
that is triggered by a timing signal, then we can no longer
claim that its behavior is equivalent, even if it is used in the
exact same circumstances as the parent class. 

One of the most common ways in which inheritance is
used with ROOMcharts is to refine the “leaf” states of a
parent class by decomposing them into substates in the
subclass. The superclass captures the “gross” behavior
common to all subclasses and variants then inherit that
behavior but refine the detailed behavior. An example of
this is a set of functionally diverse components all of which
respond to a common control protocol. In this case, the
control protocol would be captured by a single ROOM-
chart in a common superclass. Subclasses would then add
their idiosyncratic behavior as decompositions of the “leaf”
states of their parent.

Graphically, we use a grey rendering to indicate inher-

 

1. 

 

Strict inheritance

 

 disallows the deletion or modification of inherited
attributes in a subclass on the assumption that the subclass will retain the
behavior of its parent (since nothing was removed). Only addition of new
attributes is allowed. Hence, it is postulated, it is possible to substitute a
subclass in place of a superclass with no adverse effect.

 

ited attributes whereas local attributes are drawn with a
black pen.

 

4. Related Work

 

4.1. Statecharts

 

While statecharts were the basic inspiration for ROOM-
charts, there are certain key differences between the two.

First of all , we have placed ROOMcharts in a very spe-
cific structural framework which is based on the object par-
adigm. Behavior descriptions are fully encapsulated within
objects (actors) which have explicit multiple interfaces.
Statecharts, on the other hand, do not have any formal
structural boundaries or interfaces.

Related to this is the underlying event model. In state-
charts, the mechanism for the generation of events is
implicit and is achieved through something called “broad-
cast” communication which, in principle, can convey any
change of state to any other component instantaneously.
This vaguely-defined model is most likely intended to free
the modeler from being concerned with implementation
issues. However, in distributed real-time systems, commu-
nication constraints represent one of the dominant aspects
of a design and it may be quite dangerous to ignore them.
For example, various impossibility results [7] have demon-
strated the fundamental impact that communication has on
the way systems are designed and not just on the way in
which they are implemented. In contrast, ROOM bases its
event and communication models on a message-passing
paradigm which is one of the most common paradigms
found in distributed systems practice.

For the same reasons, ROOMcharts do not incorporate
the concept of orthogonal concurrent states in the same
object. Although this is considered as one of the principal
features of basic statecharts, we have discovered that in the
great majority of cases, concurrent states can be replaced

I I

I

S1

S2
S22

S21
S2

S1

Parent class Subclass



 

8

by concurrent communicating actors: 

Furthermore, in the latter case, the communication rela-
tionship between the concurrent components is explicit.
One of the potential difficulties of the implicit communica-
tion between concurrent states is that it is possible to inad-
vertently create undesireable couplings between the states.

 

4.2. Object Modeling Technique (Rumbaugh et al.)

 

Object Modeling Technique (OMT) is a general system
development methodology which incorporates basic state-
charts as one of the techniques for specifying behavior [8].
While that work discusses inheritance for statecharts, that
model of inheritance is quite different than the one given
here. In OMT a substate is viewed as a “subclass” of its
containing state. Hence, when a substate “inherits” a transi-
tion from its containing state, this is equivalent to saying
that the transition is a group transition in ROOMchart ter-
minology. Using this interpretation, for our example, transi-
tion 

 

e1

 

 emanating from state 

 

S1

 

 is inherited by substates

 

S11

 

 and 

 

S12

 

.

 

4.3. Objectcharts

 

A recently published work [9] introduces an object-ori-
ented variant of statecharts, called 

 

objectcharts

 

, that is
closer to our model than basic statecharts. Similar to
ROOMcharts, objectcharts are encapsulated by an object
with explicit interfaces. However, there is no distinction
between concurrent and non-concurrent objects. This was
probably motivated by the desire to stay clear of implemen-
tation concerns. As in the case of the communication
model, when dealing with distributed systems we feel that
the identification of concurrency is a primary design issue
and should be faced early in the development cycle. 

Objectcharts, like statecharts, make use of orthogonal
concurrent states although they have a more explicit com-
munication model. However, in order to accommodate this
model, they enforce restrictions in which communication
cannot be chained. Finally, objectcharts do not deal with
dynamic structures.

S1

S2

Sa

Sb

S1

S2

Sa

Sb

 

5. Experience with ROOMcharts

 

ROOMcharts have now been in use for over four years.
In the last two years, they have been made available to a
broader public through a commercial toolset called Objec-
Time which supports the ROOM methodology. As of this
writing over fifty different projects have used it and close to
500 people have been trained in applying them. ROOM-
charts have been used on a wide variety of real-time projects
including the specification of protocol standards, the high-
level design of distributed systems architectures, modeling
of hybrid hardware/software systems, performance model-
ing, and the design 

 

and implementation

 

 of industrial com-
munication switching equipment. 

The general feedback from the user base has been quite
positive and there have been very few requests for modifica-
tions to or the addition of new concepts to the ROOMchart
formalism In particular, there has been no outcry for the
statechart features that we had eliminated.

However, one commonly-reported difficulty is that the
partitioning of behavior into objects with embedded state
machines makes the tracking of event flows which span
multiple objects over time quite difficult to follow. In our
view this is a significant shortcoming of the object paradigm
which should be rectified in the future. One promising
development in this direction can be found in the work of
Prof. Buhr at Carleton University [10].

 

 References

 

[1] D. Harel, “Statecharts: a visual formalism for complex sys-
tems,”

 

 Sci. Computer Program., 

 

vol. 8, 1987.

[2] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman, “On the for-
mal semantics of statecharts,” in Proc. 2nd IEEE Symp. on Logic of
Computer Sci., 1987.

[3] G. Booch, Object-Oriented Design with Applications, Red-
wood City, CA: Benjamin Cummings, 1991.

[4] B. Selic, G. Gullekson, J. McGee, and I. Engelberg, “ROOM:
An Object-Oriented Methodology for Developing Real-Time Sys-
tems,” in Proc. 5th Internantional Workshop on CASE, Montreal,
Canada, 1992.

[5] ISO, IS 8807, Information Processing Systems - Open System
Interconnection - LOTOS - A Formal Description Technique based
on the Temporal Ordering of Observational Behaviour, May 1989.

[6] R. Milner, Communication and Concurrency, Prentice-Hall,
1985.

[7] M. Fischer, N. Lynch, and M. Patterson, “Impossibility of Dis-
tributed Concensus with One faulty Process,” Journal of the ACM,
April 1985.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen,
Object-Oriented Modeling and Design, Prentice-Hall, 1991.

[9] D. Coleman, F. Hayes, S. Bear, “Introducing Objectcharts or
How to Use Statecharts in Object-Oriented Design,” IEEE Trans.
on Soft. Eng. , vol.18, January 1992.

[10] R. Buhr, “Pictures that ‘Play’ for Designing Concurrent, Real-
Time Systems,”, SCE-91-08 Dept. of Systems and Computer Engi-
neering , Carleton University, July 1991.


