
Medical Cyber-
Physical Systems1
(Draft)

Insup Lee, Anaheed Ayoub, Sanjian Chen,

Baekgyu Kim, Andrew King, Alexander Roederer, Oleg Sokolsky

June 2016.

Medical cyber-physical systems (MCPS) are life-critical, context-aware, networked
systems of medical devices that are collectively involved in treating a patient. These
systems are increasingly used in hospitals to provide high-quality continuous care for
patients in complex clinical scenarios.. The need to design complex MCPS that are
both safe and effective has presented numerous challenges. These challenges include
achieving high levels of assurance in system software, interoperability, context-
aware decision support, autonomy, security and privacy, and certification. This
chapter discusses these challenges in developing MCPS, case studies that illustrate
these challenges and suggest ways to address them, and highlights several open
research and development issues. This chapter concludes with discussion on
implications of MCPS on stakeholders and practitioners.

1 Introduction and Motivation
The two most significant recent transformations in the field of medical devices are
the high degree of reliance on software-defined functionality and the wide
availability of network connectivity. The former transformation means that software
plays the ever more significant role in the overall device safety. The latter implies
that, instead of stand-alone devices that can be designed, certified, and used
independently of each other to treat patients, networked medical devices will work as
distributed systems that simultaneously monitor and control multiple aspects of the

1 Research is supported in part by NSF grants CNS-1035715, IIS-1231547, ACI-1239324, and NIH grant
1U01EB012470-01.

The final version of this chapter appears in Cyber-Physical
Systems, Edited by Raj Rajkumar, Dionisio de Niz, and Mark
Klein, Addison-Wesley, 2017

patient's physiology. The combination of embedded software controlling the devices,
networking capabilities, and complicated physical dynamics exhibited by patient
bodies makes modern medical device systems a distinct class of cyber-physical
systems (CPS). We refer to these as medical cyber-physical systems (MCPS).

The goal of MCPS is to improve the effectiveness of patient care by providing
personalized treatment through sensing and patient model matching while ensuring
safety. However, the increased scope and complexity of MCPS relative to traditional
medical systems present numerous developmental challenges. These challenges need
to be systematically addressed through the development of new design, composition,
verification, and validation techniques. The need for these techniques presents new
opportunities for researchers in MCPS and more broadly in general embedded and
CPS systems. One of the primary concerns in MCPS development is the assurance of
patient safety. We believe that new capabilities of future medical devices and new
techniques for developing MCPS with these devices will require new regulatory
procedures to approve their use for treating patients. The traditional process-based
regulatory regime used by the U.S. Food and Drug Administration (FDA) to approve
medical devices is becoming too lengthy and prohibitively expensive with the
increased MCPS complexity and there is an urgent need to ease this process without
compromising the level of safety it delivers.

In this chapter, we advocate a systematic analysis and design of MCPS for coping
with their inherent complexity. Consequently, model-based design techniques should
play a larger role in MCPS design. Models should cover not only devices and
communications between them, but also, of equal importance, patients and
caregivers. The use of models will allow developers to assess system properties early
in the development process and build confidence in the safety and effectiveness of
the system design, before the system is built. Analysis of system safety and
effectiveness performed at the modeling level needs to be complemented by
generative implementation techniques that preserve properties of the model in the
implementation. Results of model analysis, combined with the guarantees of the
generation process, can form the basis for evidence-based regulatory approval. The
ultimate goal is to use model-based development as the foundation for building safe
and effective MCPS. Below, we describe some of the research directions that we are
taking toward addressing some of the challenges involved in building MCPS.

We view MCPS in a bottom-up manner, first describing issues associated with
individual devices and then progressively increasing its complexity by adding
communication, intelligence, and feedback-control. The chapter is organized as
follows: (1) Stand-Alone Device: model-based high assurance software development
scheme is described for stand-alone medical devices such as PCA pumps and
pacemakers; (2) Device Interconnection: a medical device interoperability
framework is presented for describing, instantiating, and validating clinical
interaction scenarios; (3) Adding Intelligence: a smart alarm system is presented that

takes vital signs data from various interacting devices to inform caregivers of
potential patient emergencies and non-operational issues about the devices; (4)
Automated Actuation/Delivery: a model-based closed-loop care delivery system is
presented, which can autonomously deliver care to the patients based on the current
state of the patient; and (5) Assurance Cases: the use of assurance cases is described
for organizing collections of claims, arguments, and evidence to establish the safety
of a medical device system. Preliminary discussion of some of these challenges have
appeared in [Lee12].

2 System Description and
Operational Scenarios

An Overview of MCPS.
MCPS are safety-critical, smart systems of interconnected medical devices that are
collectively involved in treating a patient within a specific clinical scenario The
clinical scenario determines treatment options that can be chosed and adjustments of
treatment settings that need to be made in response to changing patient state.
Traditionally, decisions about the treatment options and settings are made by an
attending caregiver, who makes them by monitoring patient state using individual
devices and performs manual adjustments. Thus, clinical scenarios can be viewed as
closed-loop systems where caregivers are the controllers, medical devices act as
sensors and actuators, and patients are the "plants." MCPS alter this view by
introducing additional computational entities that aid the caregiver in controlling the
"plant." Figure 1 shows the conceptual overview of MCPS. Devices used in MCPS
can be categorized into two large groups based on their primary functionality:
monitoring devices, such as bedside heart-rate and oxygen-level monitors and
sensors, which provide different kinds of clinic-relevant information about patients;
and delivery devices, such as infusion pumps and ventilators, which actuate therapy
capable of changing the patient's physiological state. In MCPS, interconnected
monitoring devices can feed collected data to a decision support or administrative
support entities, each of which serves a different, albeit complementary, purpose. For
example, caregivers can analyze that information and can use delivery devices to
initiate treatment, thus bringing the caregiver into the control loop around the patient.
Alternatively, the decision support entities can utilize a smart controller to analyze
the data received from the monitoring devices, estimate the state of the patient's
health, and automatically initiate treatment (e.g., drug infusion) by issuing commands
to delivery devices, thereby closing the loop

Most medical devices rely on software components for carrying out their tasks.
Ensuring safety of the devices and their interoperation is crucial. One of the more
effective ways of ensuring this is to use model-based development methods, which
can ensure device safety by enabling medical device verification. This also opens the
door for eventually certification of the devices to meet certain safety standards.

Figure 1: Medical Cyber-Physical Systems: Conceptual Overview

Virtual Medical Devices.

Given the complexity of MCPS, it has to be user-centric, i.e., easy to setup and use,
in an largely automated manner. One of the ways of accomplishing this based by
developing a description of the MCPS workflow and then enforcing it on physical
devices. MCPS workflow can be described in terms of (1) number and types of
devices involved, (2) their mutual interconnections, and (3) the clinical supervisory
algorithm needed for coordination and analysis of data collected. Such description
defines Virtual Medical Device (VMD). VMD are used by a VMD App and
instantiated into a setup of actual medical devices called Virtual Medical Device
Instance (VMD instance). The devices in VMD instance are usually interconnected
using some form of interoperability middleware, which is responsible for ensuring
that the inter-device connections are correctly configured. The principal task of the
VMD App is therefore to find the medical devices in VMD instance (which may be
quite large), establish network connections between them and install the clinical
algorithm into the supervisor module of the middleware for managing the
interactions of the clinical workflow and reasoning about the data produced.

Basically, when the VMD App is started, the supervisor reads the VMD App
specification and tries to couple all involved devices accordingly. Once the workflow
has run its course, the VMD App can perform the necessary cleanup in order to allow
another workflow to be specified using different combination of medical devices in
the VMD instance.

Clinical Scenarios.

Each VMD is to support a specific clinical scenario with a detailed description of
how devices and clinical staff work together in a clinical situation or event. Here, we
describe two such scenarios: one for X-ray & Ventilator coordination and another for
PCA safety interlock system.

One example that illustrates how patient safety can be improved by MCPS is by
developing VMD that coordinates the interaction between an X-ray machine and a
ventilator. Consider the scenario taken from [Lofsky04]. X-ray images are often
taken during surgical operations. If the operation is being performed under general
anesthesia, the patient is breathing with the help of a ventilator. Because the patient
on ventilator cannot "hold its breath" to let the X-ray image be taken without the blur
caused by moving lungs, the ventilator has to be paused and later restarted. There
have been cases where the ventilator was not restarted, leading to the death of the
patient. Interoperation of the two devices can be used in several ways to ensure that
patient safety is not compromised, as discussed in [Arney09]. One possibility is to let
the X-ray machine pause and restart the ventilator automatically. A safer alternative,
although presenting tighter timing constraints, is to let the ventilator transmit its
internal state to the X-ray machine. There typically is enough time to take an X-ray
image at the end of the breathing cycle, when the patient has finished exhaling until
the start of the next inhalation. This approach requires the X-ray machine to know
precisely the instance when the air flow rate becomes close enough to zero and the
time when the next inhalation starts. Then, it can make the decision to take a picture
if enough time – taking transmission delays into account – is available.

Another clinical scenario that can easily benefit from the closed-loop approach of
MCPS is patient-controlled analgesia (PCA). PCA infusion pumps are commonly
used to deliver opioids for pain management, for instance after surgery. Patients have
very different reactions to the medications and require very different dosages and
delivery schedules. PCA pumps give the patient a button to press to request a dose
when they decide they want it rather than using a schedule fixed by a caregiver.
Some patients may decide they prefer a higher level of pain to the nausea the drugs
may cause and can press the button less often, while patients who need a higher dose
can press it more often. A major problem with opioid medications in general is that
an excessive dose can cause respiratory failure. A properly programmed PCA system
should not allow an overdose because it is programmed with limits on how many

doses it will deliver, regardless of how often the button is pushed. However, this
safety mechanism is not sufficient to protect all patients. Some patients still receive
overdoses if the pump is misprogrammed, if the pump programmer overestimates the
maximum dose a patient can receive, if the wrong concentration of drug is loaded
into the pump, or if someone other than the patient presses the button (PCA-by-
proxy), among other causes. PCA infusion pumps are currently involved in a large
number of adverse events, and existing safeguards such as drug libraries and
programmable limits are not adequate to address all the scenarios seen in clinical
practice [Nuckols08].

3 Key Design Drivers and Quality
Attributes
While software-intensive medical devices such as infusion pumps, ventilators, and
patient monitors have been used for a long time, the field of medical devices is
currently undergoing a rapid transformation. The changes under way bring new
challenges to the development of high-confidence medical devices, but at the same
time they open new opportunities for the research community [Lee06]. This section
starts with the main trends that have emerged recently, identifies quality attributes
and challenges, and provide detailed discussion on several MCPS specific topics.

3.1 Trends
New software-enabled functionality.
Following the general trend in the field of embedded systems and more broadly
cyber-physical systems, introduction of the new functionality is largely driven by the
new possibilities that software-based development of medical device systems is
offering. A prime example of the new functionality is seen in the area of robotic
surgery, which requires real-time processing of high-resolution images and haptic
feedback. Another example is proton therapy treatment. It is one of the most
technology-intensive procedures and requires one of the largest-scale medical device
systems. Used to deliver precise doses of radiation for cancer patients, the treatment
requires precise guiding of the proton beam from a cyclotron to patients, requiring
adaptation to even minor shifts in position. Higher precision of the treatment,
compared to conventional radiation therapy, allows higher radiation doses to be
applied. This, in turn, places more stringent requirements on patient safety. Control
of proton beams is subject to very tight timing constraints, with much less tolerance
than for most medical devices. To further complicate the problem, the same beam is
applied to multiple patient locations and needs to be switched from location to

location, opening up the possibility of interference between beam scheduling and
beam application. In addition to the proton beam control, a highly critical function of
software in a proton treatment system is real-time image processing to determine
precise position of the patient and detect any patient movement. In [Rae03], the
authors have analyzed the safety of proton therapy machines, however their analysis
concentrates on a single system, the emergency shutdown. In general, proper analysis
and validation of such large and complex systems remains one of the big challenges
facing the medical device industry.

However, even in simpler devices, such as pacemakers and infusion pumps, more
and more software-based features are added, making device software more complex
and error-prone [Jeroeno4]. Rigorous approaches are required to make sure that
software in these devices operates correctly. Because these devices are relatively
simple, they are good candidates for case studies of challenges and experimental
development techniques. Some of these devices, such as pacemakers, are being used
as challenge problems in the formal methods research community [McMaster13].

Increased connectivity of medical devices.
In addition to relying more and more on software, medical devices are increasingly
equipped with network interfaces. Interconnected medical devices, effectively, form
a distributed medical device system of a larger scale and complexity that has to be
properly designed and validated to ensure effectiveness and patient safety. Today, the
networking capabilities of medical devices are primarily used for patient monitoring
(through local connection of individual devices to integrated patient monitors or for
remote monitoring in a tele-ICU [Sapirstein09] setting) and for interaction with
electronic health records to store patient data.

The networking capabilities of most medical devices today are limited in
functionality and tend to rely on proprietary communication protocols offered by
major vendors. There is, however, a growing realization among clinical professionals
that open interoperability between different medical devices will lead to improved
patient safety and new treatment procedures. Medical Device Plug-and-Play (MD
PnP) Interoperability initiative [Goldman05, MDPNP] is a relatively recent effort
that aims to provide an open standards framework for safe and flexible
interconnectivity of medical devices, in order to improve patient safety and health
care efficiency. In addition to developing interoperability standards, MD PnP
initiative collects and demonstrates clinical scenarios where interoperability leads to
improvement over the existing practice.

Physiological closed-loop systems.
Traditionally, most clinical scenarios have a caregiver – and often more than one –
controlling the process. For example, an anesthesiologist monitors sedation of a

patient during an operation and decides when an action to adjust the flow of sedative
needs to be taken. There is a concern in the medical community that such reliance on
"human in the loop" may compromise patient safety. Caregivers, who are often
overworked and operate under severe time pressure, may miss a critical warning
sign. Nurses typically care for multiple patients at a time and can be distracted at a
wrong moment. Using an automatic controller to provide continuous monitoring of
the patient state and handling of routine situations would be a big relief to the
caregiver and can improve patient care and safety. Although the computer will
probably never replace the caregiver completely, it can significantly reduce the
workload, calling the caregiver's attention only when something out of the ordinary
happens.

Scenarios based on physiological closed-loop control have been used in the
medical device industry for some time. However, their application has been mostly
limited to implantable devices that cover relatively well understood body organs,
such as the heart in the case of pacemakers and defibrillators. Implementing closed-
loop scenarios in distributed medical device systems is a relatively new idea that has
not made its way to the mainstream practice.

Continuous Monitoring and Care.
Due to a high cost associated with in-hospital care, there has been increasing interest
in alternatives such as home care, assisted living, telemedicine, and sport-activity
monitoring. Mobile monitoring and home monitoring of vital signs and physical
activities allow health to be assessed remotely at all times. Also, there is a growing
popularity of sophisticated technologies such as body sensor networks to measure
training effectiveness and athletic performance based on physiological data such as
heart rate, breathing rate, blood-sugar level, stress level, and skin temperature.
However, most of the current systems operate in store-and-forward mode, with no
real-time diagnostic capability. Physiological closed-loop technology will allow
diagnostic evaluation of vital signs in real-time and make constant care possible.

3.2 Quality Attributes and Challenges of the
MCPS domain
Building MCPS applications requires ensuring the following quality attributes, when
in turn poses important challenges:

 • Safety: Software plays an increasingly important role in medical devices. Many
functions traditionally implemented in hardware – including safety interlocks – are
now being implemented in software. Thus high-confidence software development is
critical to assure the safety and effectiveness of MCPS. We advocate the use of
model-based development and analysis as means of ensuring safety of MCPS.

 • Interoperability: Many modern medical devices are equipped with network
interfaces, enabling us to build MCPS with new capabilities by combining existing
devices. Key to this is the concept of interoperability, where individual devices can
exchange information facilitated by an application deployment platform. It is
essential to ensure that the MCPS built from interoperable medical devices are safe,
effective, secure, and can eventually be certified as such.

 • Context-Awareness: Integration of patient information from multiple sources can
provide a better understanding of the state of the patient’s health, and use it to enable
early detection of ailments and generation of effective alarms in the event of
emergencies. However, given the complexity of human physiology and variations of
physiological parameters over patient population, developing such computational
intelligence is a non-trivial task.

 • Autonomy: The computational intelligence that MCPS possess can be used for
increasing the autonomy of the system by enabling actuation of therapies based on
the patient's current health state. Closing-the-loop in this manner must be done safely
and effectively. Safety analysis of autonomous decisions in the resulting closed-loop
system is a big challenge, primarily due to the complexity and variability of human
physiology.

 • Security and Privacy: Medical data collected and managed by MCPS is very
sensitive. Unauthorized access or tampering with this information can have severe
consequences to the patient in the form of privacy-loss, discrimination, abuse and
physical harm. Network connectivity enables new MCPS functionality through
exchanging patient data from multiple sources; however, it also increases
vulnerability of the system to security and privacy violations.

 • Certification: A report by the U.S. National Academy of “Science, Software for
Dependable Systems: Sufficient Evidence?,” recommends evidence-based approach
to the certification of high-confidence systems such as MCPS using explicit claims,
evidence and expertise [Jackson07]. The complex and safety-critical nature of MCPS
requires a cost-effective way to demonstrate medical device software dependability.
Certification is therefore an essential requirement for the eventual viability of MCPS
and an important challenge to be addressed. An assurance case is a structured
argument supported by a documented body of evidence to provide a convincing and
consistent argument that a system is adequately safe (or secure) [Menon09]. The
notion of assurance cases hold the promise of providing an objective, evidence based
approach to software certification. Assurance cases are increasingly used as a means
for demonstrating safety in industries such as Nuclear Power, transportation, and
automotive systems, and are mentioned in the recent IEC 62304 development
standard for medical software.

3.3 High-Confidence Development of MCPS
3.3.1 Motivation
Most new functionality in medical devices is software based, and many functions
traditionally implemented in hardware – including safety interlocks – are relegated to
software. Thus, high-confidence software development is very important for the
safety and effectiveness of MCPS.

A relatively conventional approach to high-assurance development of safety-
critical systems based on the mitigation of hazards is illustrated in Figure 2. The
process starts with the identification of desired functionality and hazards associated
with the system operation. The chosen functionality yield system functional
requirements, while hazard mitigation strategies yield system safety requirements.
Functional requirements are used to build detailed behavioral models of the software
modules, while safety requirements are turned into properties that these models
should satisfy. Models and their desired properties are the inputs to the model-based
software development, which is comprised of verification, code generation, and
validation phases.

Figure 2: High-assurance development process for embedded software

Model-based development has emerged as a means of raising the level of

assurance in software system. In this approach, developers start with declarative
models of the system perform rigorous model verification with respect to safety and
functional requirements, and then use systematic code generation techniques to
derive code that preserves the verified properties of the model. Such a development
process allows one to detect problems with the design and fix them at the model
level, early in the design cycle, where changes are easier and cheaper to make. More
importantly, it holds the promise of improving the safety of the system through
verification. Model-based techniques currently used in the medical device industry
rely on semi-formal approaches such as UML and Simulink [Becker09] and thus do
not allow developers to fully utilize the benefits of model-based design. The use of
formal modeling enables making mathematically sound conclusions about the
models and generating code from them.

3.3.2 Challenges
There are several challenges in developing the MCPS through the model-driven
implementation process. The first challenge is choosing the right level of abstraction
for the modeling effort. A highly abstract model makes the verification step
relatively easy to perform. However a model that is too abstract is difficult to use in
the code generation process, since too many implementation decisions have to be
guessed by the code generator. On the other hand, a very detailed model makes code
generation relatively straightforward, however, such models push the limits of
available verification tools.

Many modeling approaches rely on the separation of platform-independent and
platform-dependent aspects. From the modeling and verification perspective, there
are several reasons to separate the platform-independent aspects from the platform-
dependent aspects.

First, hiding platform-dependent details reduces the modeling and verification
complexity. Consider, for example, the interaction between a device and its sensors.
For code generation, one may need to specify the details of how the device retrieves
data from sensors. A sampling-based mechanism with a particular sampling interval
will yield a very different generated code, compared to an interrupt based
mechanism. However, exposing such details in the model adds an additional level of
complexity to the model, complicating verification time increases too much.

In addition, abstracting away from a particular platform allows us to use the
model across different target platforms. Different platforms may have different kinds
of sensors that supply the same value. For example, consider an empty-reservoir
alarm that many infusion pumps implement. Some pumps may not have a physical
sensor for that purpose and estimate the remaining amount of medication based on
the infusion rate and elapsed time. Other pumps may have a sensor based on syringe
position or pressure in the tube. Abstracting away these details would allow us to
implement the same pump control code on different pump hardware. However, such
separation leads to the integration challenges at the implementation level. The
generated code from the platform-independent model needs to be integrated with
different target platforms in a way that preserves the verified properties of the
platform-independent model.

Second, there is often a semantic gap between the model and implementation. A
system is modeled using the formal semantics provided by the chosen modeling
language. However, some of the model semantics may not match well with that of
implementation. For example, in UPPAAL and Stateflow, the interaction between
the PCA pump and the environment (e.g, user or pump hardware) can be modeled
using instantaneous channel synchronization or event-broadcasting that takes zero-
time delay. Such semantics simplifies modeling input and output of the system so
that the modeling/verification complexity is reduced. However, the correct
implementation of such semantics is hardly realizable at the implementation level

since execution of those actions requires interaction among components that take
non-zero time-delay.

A case study presented below concentrates on developing a PCA (Patient-
Controlled Analgesic) infusion pump system and considers several approaches to
address these challenges.

3.3.3 Case study

PCA infusion pumps.
A Patient-Controlled Analgesic (PCA) infusion pump is a type of infusion pump that
primarily delivers pain relievers, and is equipped with a feature that allows for
additional limited delivery of medication, called bolus, upon patient demand. This
type of infusion pumps are widely used for pain control of post-operative patients. In
case the pump overdoses such opioid drugs, the patient can be at risk of respiratory
depression and death. Therefore, it is subject to stringent safety requirements that aim
to prevent overdose.

According to FDA’s Infusion Pump Improvement Initiative [FDA10a], the FDA
has received over 56,000 reports of adverse events associated with the use of infusion
pumps from 2005 through 2009. In the same period, 87 recalls of infusion pumps
were conducted by the FDA, affecting all major pump manufacturers. The
prevalence of the problems clearly indicates the need for better development
techniques.

The GPCA Project.
 The Generic PCA project, a joint effort between PRECISE Center at the University
of Pennsylvania and researchers at the U.S. Food and Drug Administration, aims to
develop a series of publicly available artifacts that can be used as guidance for
manufacturers. In the first phase of the project, a collection of documents has been
developed, including a hazard analysis report [UPenn-b], a set of safety requirements
[UPenn-a], and a reference model of PCA infusion pump systems [UPenn]. Based on
these documents, one can develop PCA infusion pump controller software following
a model-driven implementation.

In the case study, software for the PCA pump controller is developed by using the
model-driven implementation approach starting from the reference model and the
safety requirements. A detailed account of the effort is presented in [Kim11].

The development approach follows the process outlined in Figure 2. The detailed
steps are shown in Figure 3. In addition, the case study included the construction of
an assurance case, a structured argument based on the evidence collected during the
development process, which aims to convince evaluators that the GPCA-reference

implementation complies to its safety requirements. The assurance case development
is discussed in more detail in Section 3.7.

Figure 3: The Model-Driven Development for the GPCA prototype.

Figure 4: The System Architecture of the GPCA Model.

Modeling.
 The reference model of the GPCA pump implemented in Simulink/STATEFLOW is
used as the source of functional requirements and converted in via a manual but
systematic translation to UPPAAL [Behrmann04]. The model structure follows the
overall architecture of the reference model, which is shown in Figure 4. The software
is organized into two state machines, the state controller and the alarm detecting
component. The user interface has been considered in a follow-up case study
[Masci13]. Both state machines interact with sensors and actuators on the pump
platform.

The state machines are organized as a set of modes, with each mode captured as a
separate sub-machine. In particular, the state controller contains four modes: (1)
POST (Power-On Self Test) mode is the initial mode that checks system components
on start-up; (2) The check-drug mode represents a series of checks that the caregiver
performs to validate the drug loaded into the pump; (3) The infusion configuration
mode represents interactions with the caregiver to configure infusion parameters such
as infusion rate and VTBI (volume to be infused) and validate them against the limits
encoded in the drug library; (4) the infusion session, where the pump controls
delivery of the drug according to the configuration and patient's bolus requests.

User Interface

System Model

Alarm Detecting
Component

Current Failure Condition

Alarm/Warning Notification

Pump Ready / Not Ready

Infusion In Progress

Clear Alarm

Failure/Anomaly
Flags

Dr
ug

 Li
br

ar
y

In
fo

rm
at

io
n

Bo
lu

s S
ta

tu
s

Ba
sa

l I
nf

us
io

n
St

at
us

In
fu

sio
n

Co
nt

ro
l

Si
gn

al
s

In
fu

sio
n

Pr
og

ra
m

Dr
ug

 Li
br

ar
y

In
fo

rm
at

io
n

Bo
lu

s S
ta

tu
s

Ba
sa

l I
nf

us
io

n
St

at
us

Cu
rr

en
t S

ta
te

Al
ar

m
/W

ar
ni

ng
N

ot
ifi

ca
tio

n

U
se

r D
at

a
In

pu
t

U
se

r A
ct

io
n

Ve
ct

or

GPCA Model

POST

Check Drug
Routine

Infusion
Configuration

Routine

Infusion
Session

Submachine

State Controller

Model verification.
GPCA safety requirements are expressed in English as "shall" statements.
Representative requirements are "No normal bolus doses shall be administered when
the pump is alarming" and “The pump shall issue an alert if paused for more than t
minutes".

Before verification could be performed, requirements need to be formalized as
properties to be checked. One can categorize the requirements according to their
precision and level of abstraction: (A) requirements that are detailed enough to be
formalized and verified on the model; (B) requirements that are beyond the scope of
the model; (C) requirements that are too imprecise to be formalized. Only
requirements in category A can be readily used in verification, however, just 20 out
of 97 GPCA requirements fell into this category.

Most of the requirements in Category B concern the functional aspects of the
system that are abstracted away at the modeling level. For example, consider the
requirement "If the suspend occurs due to a fault condition, the pump shall be
stopped immediately without completing the current pump stroke". There is another
requirement to complete the current stroke under other kinds of alarms. That is, the
motor needs to be stopped in different ways in different circumstances. These
requirements fall into Category B, since the model does not detail the behavior of the
pump stroke. Handling of properties in this category can be done in several ways.

One way is to introduce additional platform-specific details into the model,
increasing complexity of the model. However, this would blur the distinction
between platform-independent and platform-specific models, which is useful in the
model-based development. An alternative approach is to handle these requirements
outside of the model-based process, e.g., validating by testing. In this case, however,
the benefits of formal modeling are lost.

A better approach is to match the levels of detail by further decomposing the
requirements. At the platform-independent level, one can check that the property that
the system performs two different stop actions in response to different alarm
conditions (which would be a Category A requirement). Then, at the platform-
specific level, one needs to check that one stop action corresponds to immediate
stopping of the motor, while the other stop action lets the motor complete the current
stroke.

An example from the third category is "Flow discontinuity at low flows should be
minimal," which does not specify what is a low flow or what discontinuity can be
accepted as minimal. This is a simple example of a deficiency in the requirement
specification uncovered during formalization.

Once the categorization of the requirements is complete, requirements in Category
A are formalized and verified using a model checker. In the case study, the
requirements were converted into UPPAAL queries. Queries in UPPAAL use a

subset of Timed CTL temporal logic and can be verified using the UPPAAL model
checker.

Code generation and system integration.
 Once the model is verified, a code generation tool is used to produce the code in
property-reserving manner. An example of such tool is TIMES [Amnell03] for
UPPAAL timed automata. Since the model is platform-independent, the resulting
code is also platform-independent. For example, the model does not specify how the
actual infusion pump interacts with sensors and actuators attached to the specific
target platform. Input and output actions (e.g., a bolus request by a patient or an
occurrence of the occlusion alarm from the pump hardware) are abstracted as
instantaneous transitions associated with input/output synchronization with the their
environment. On a particular platform, the underlying operating system is scheduling
the interactions, affecting the timing of the execution.

There are several approaches to address this issue at the integration stage. In
[Henzinger07], the higher-level programming abstraction is proposed so that timing
aspects can be modeled and generated into code that is independent from scheduling
algorithms of a particular platform. Then, the platform integration is performed by
verifying time-safety to check if the platform-independent code can be scheduled on
the particular platform. Another approach is to systematically generate an I/O
interface that helps the platform-independent and dependent code to be integrated in
a traceable manner [Kim12]. From the code generation perspective, [Lublinerman09]
proposed a way to generate code for a given composite block of the model
independently from context and using minimal information about the internals of the
block.

Validation of the implementation.
 Unless the operation of an actual platform is completely formalized, there will
invariably be assumptions made during the verification and code generation phases
that cannot be formally guaranteed. The validation phase is meant to check that these
assumptions do not break the behavior of the implementation. In the case study, a test
harness that systematically exercises the code using test cases derived from the
model. There is a rich literature on model-based test generation, see [Dias07] for a
survey of the area. The goal of such testing-based validation is to systematically
detect deviations of the system behavior from that of the verified model.

3.3.4 Remarks and Discussion
Extreme market pressures faced by the medical device industry force companies to
reduce development cycles as much as possible. The challenge is to find a develop-
ment process that will deliver a high degree of safety assurance under these

conditions. We believe that model-based development can be a significant part of
such development process. The case study discussed in this section illustrates the
steps of the high-assurance development process using a simple medical device. Each
of the steps can be implemented in a variety of ways. The choice of modeling, verifi-
cation, and code generation technologies depends on factors such as complexity and
criticality level of the application. However, the process itself is general enough to
accommodate a wide variety of rigorous development technologies.

3.4 On-Demand Medical Devices and Assured
Safety
Historically, medical devices have been used as individual tools for patient therapy.
In order to provide complex therapy caregivers (i.e., physicians and nurses) must
coordinate the activities of the various medical devices manually. This is burdensome
for the caregiver, error and accident prone.

One example of manual device coordination in current practice is the X-ray &
Ventilator coordination mentioned in Section 2 and another example is trachea or
larynx surgery performed with a laser scalpel. In this type of surgery, the patient is
under general anesthesia while the surgeon makes cuts on the throat using a high
intensity laser. Because the patient is under anesthesia, their breathing is supported
by an anesthesia ventilator which supplies a high concentration of oxygen to the
patient. This situation presents a serious hazard: if the surgeon accidentally cuts into
the breathing tube using the laser, the increased concentration of oxygen can lead to a
rapid combustion, burning the patient from the inside out. In order to mitigate this
hazard, the surgeon and anesthesiologist must constantly communicate: When the
surgeon needs to cut, he or she signals the anesthesiologist who reduces or stops the
oxygen being supplied to the patient. If the patient's oxygenation levels drop too low,
the anesthesiologist will signal the surgeon to stop cutting so oxygen can be supplied
again.

If medical devices could coordinate with one another, then the surgeon and
anesthesiologist would not have to expend concentration and effort to ensure that the
activity of the medical devices are safely synchronized. Furthermore, the patient
would not be exposed to the potential for human error. There are many clinical
scenarios which would benefit from automated medical device coordination. These
scenarios involve at least one of device synchronization, data fusion, or closed-loop
control. The laser scalpel ventilator safety interlock epitomizes device
synchronization: each device must always been in a correct state relative to other
devices. In data-fusion physiologic readings from multiple separate devices are
considered together. Examples of such applications include smart alarms and clinical
decision support systems (see Section 3.5). Additionally, closed-loop control of
therapy can be achieved by collecting data from devices that sense patient's

physiological state and then using that data to control actuators such as infusion
pumps (see Section 3.6).

3.4.1 Definition - Virtual Medical Devices
A collection of devices working in unison to implement a given clinical scenario is,
in essence, a new medical device. Such collections have been referred to as virtual
medical devices (VMDs) because no single manufacturer is producing this device
and delivering it fully formed to the clinician. A VMD does not exist until assembled
at the patient's bedside. A VMD instance is created each time the clinician assembles
a set of devices for the VMD and connects them together.

3.4.2 Challenges
There are several existing standards designed to enable medical device
interconnectivity and interoperability. These standards include the Health Level 7
standards [Dolin06], IEEE-11073 [Iso/ieee11073, Clarke07], and the IHE profiles
[Carr03]. While these standards enable medical devices to exchange and interpret
data, they do not adequately address more complex interactions between medical
devices such as inter-device coordination and control such as with the laser scalpel
and ventilator. The notion of a VMD poses one major fundamental question: How
does one assure safety in systems that are assembled by their users? Traditionally,
most safety-critical cyber-physical systems, such as aircraft, nuclear power plants,
and medical devices, are evaluated for safety by regulators before they can be used.
The state of the art in safety assessment is to consider the complete system. This is
possible because the complete system is manufactured by a single systems integrator.
However, as mentioned before, virtual medical devices are constructed at bedside,
based on the needs of an individual patient and from available devices. This means
that a caregiver may instantiate a VMD from a combination of medical devices (i.e.,
varying in terms of make, model, feature set) that have never been combined into an
integrated system for that particular clinical scenario. Finally, "on-demand"
instantiation of the VMD confounds the regulatory pathways for medical devices that
are currently available. In particular, there is no consensus on the role of the regulator
when it comes to VMD. Should regulators mandate specific standards? Do regulators
need to adopt component wise certification regimes? What is the role, if any, of third
part certifiers?

3.4.3 Case Studies - The Integrated Clinical Environment (ICE)
and Medical Device Coordination Framework (MDCF)
The subject of safety assessment of on-demand medical systems has been the focus
of a number of research projects. These projects have explored different aspects of

on-demand medical systems, their safety, and possible mechanisms for regulatory
oversight. The Medical Device Plug & Play project articulated the need for on-
demand medical systems, documented specific clinical scenarios that would benefit,
and developed the Integrated Clinical Environment (ICE) architecture, which has
been codified as an ASTM standard (ASTM F2761-2009) [ASTM09]. ICE proposes
to approach the engineering and regulatory challenges by building medical systems
around a system architecture that supports compositional certification. In such an
architecture (Figure 5), each medical system would be composed out of a variety of
components (clinical applications, a medical application platform, and medical
devices), which would be regulated, certified, and then obtained by the health-care
organization separately [Hatcliff12].

ICE.
Figure 5 shows the primary components of the ICE architecture. The rest of this
section summarizes the intended functionality and goals for each of these
components. It is important to note that ASTM F2761-2009 does not provide detailed
requirements for these as it is purely an architectural standard. However the roles of
each of the components in the architecture imply certain informal requirements:

 • Apps. Applications are software programs that provide the coordination
algorithm for a specific clinical scenario (i.e., smart alarms, closed-loop control of
devices, etc.). In addition to executable code, these applications contain device
requirements declarations: a description of the medical devices they need to operate
correctly. These apps would be validated and verified against their requirements
specification before they are marketed.

 • Devices. Symmetrical to the applications, medical devices would implement an
interoperability standard and carry a self-descriptive model, known as a capabilities
specification. Each medical device would be certified that it conforms to its
specification before it is marketed and sold to end users.

 • Supervisor. The supervisor provides a secure isolation kernel and virtual
machine (VM) execution environment for clinical applications. It would be
responsible for ensuring that apps are partitioned in both data and time from each
other.

 • Network Controller. The network controller is the primary conduit for
physiologic signal data streams and device control messages. The network controller
would be responsible for maintaining a list of connected devices and ensuring proper
quality of service guarantees in terms of time and data partitioning of data streams, as
well as security services for device authentication and data encryption.

 • ICE Interface Description Language. The description language is the primary
mechanism for ICE-compliant devices to export their capabilities to the network
controller. These capabilities may include what sensors and actuators are present on
the device, and the command set it supports.

Figure 5: ICE Architecture

MDCF.
The Medical Device Coordination Framework (MDCF) [King09, MDCF] is an open-
source project that aims to provide a software implementation of a medical
application platform that conforms to the ICE standard. The purpose of the MDCF is
to provide a modular framework that enables researchers to rapidly prototype
systems and explore implementation and engineering issues associated with on-
demand medical systems.

Figure 6: MDCF services decomposed along ICE architectural boundaries
 The MDCF is implemented as a collection of services which work together to
provide some of the capabilities required by ICE as essential for a medical
application platform. The functionality of these services also decompose along the
architectural boundaries defined in the ICE architecture (see Figure 6), thus the
MDCF consists of "network controller" services, "supervisor" services and a global
resource management service.

Network controller services are as follows:

 • Message Bus. Abstracts the low level networking implementation (e.g.,
TCP/IP) and provides a publish/subscribe messaging service. All communication
between medical devices and the MDCF occurs via the message bus, including
protocol control messages, patient physiologic data, and commands sent from apps to
devices. The Message Bus also provides basic real-time guarantees (e.g., bounded
end-to-end message transmission delays) that apps can take as assumptions.
Additionally, the Message Bus supports various fine-grained message and stream
access control and isolation policies. While the current implementation of the
message bus encodes messages using XML, the actual encoding strategy is
abstracted away from the apps and devices by the message bus API which exposes
messages as structured objects in memory.

 • Device Manager. Maintains a registry of all medical devices currently connected
with the MDCF. The Device Manager implements the server side of the MDCF
device connection protocol (medical devices implement the client side) and tracks
the connectivity of those devices, notifying the appropriate apps if a device goes
offline unexpectedly. The Device Manager serves another important role: it validates
the trustworthiness of any connecting device by determining if the connecting device
has a valid certificate.

 • Device Database. Maintains a list of all specific medical devices that the
healthcare provider's bioengineering staff has approved for use. In particular, the
database lists each allowed device's unique identifier (like an Ethernet MAC
address), the manufacturer of the device, and any security keys or certificates that the
Device Manager will use to authenticate connecting devices against.

 • Data Logger. Taps into the flows of messages moving across the message bus
and selectively logs them. The logger can be configured with a policy specifying
which messages should be recorded. Because the message bus carries every message
in the system, the logger can be configured to record any message or event that
propagates through the MDCF. Logs must be tamper resistant, tamper evident, and
access to logs must itself be logged, and be physically and electronically controlled
by a security policy.

Supervisor Services are as follows:

 • Application Manager. Provides a virtual machine for apps to execute in. In
addition to simply executing program code, the Application Manager checks that the
MDCF can guarantee the app's requirements at runtime and provides resource and
data isolation, as well as access control and other security services. If the app
requires a certain medical device, communications latency, or response time from
app tasks but the MDCF cannot currently make those guarantees (e.g., due to system
load or the appropriate medical device has not been connected), then the App
Manager will not let the clinician start the app in question. If the resources are
available, the application manager will reserve those resources in order to guarantee
the required performance to the app. The application manager further detects and
flags potential medically meaningful app interactions, since individual apps are
isolated and may not be aware what other apps are associated with a given patient.

 • Application Database. Stores the applications installed in the MDCF. Each
application contains executable code and requirement metadata used by the
application manager to allocate the appropriate resources for app execution.

 • Clinician Service. Provides an interface for the clinician console GUI to check
the status of the system, start apps, and display app graphical user interface elements.
Since this interface is exposed as a service, the clinician console can be run locally

(on the same machine) that is running the supervisor, or remotely (e.g., at a nurse's
station).

 • Administrator Service. Provides an interface for the administrator's console.
System administrators can use the administrator's console to install new applications,
remove applications, add devices to the device database and monitor the performance
of the system.

3.4.4 Remarks
On-demand medical systems represent a new paradigm for safety-critical systems:
the final system is assembled by the user instead of the manufacturer. Research into
the safety assessment of these systems is an active topic. The projects described in
this section represent a first step towards understanding the engineering and
regulatory challenges associated with such systems. The success and safety of these
systems will not only depend on new engineering techniques, but also new
approaches to regulation and a willingness in industry to adopt appropriate
interoperability standards.

3.5 Smart Alarms and Clinical Decision
Support Systems
3.5.1 Motivation: The Noisy Intensive Care Environment
Hospital Intensive Care Units (ICUs) utilize a wide array of medical devices to care
for patients. A subset of these medical devices acts as sensors which detect the
intensity of various physical and chemical signals in the body. These sensors allow
clinicians (doctors, nurses, and other clinical caretakers) to better understand the
patient's current state. Examples of such sensors include automatic blood pressure
cuffs, thermometers, heart rate monitors, pulse oximeters, electroencephalogram
meters, automatic glucometers, electrocardiogram meters, etc. These sensors range
from very simple to very complex. Additionally, along with traditional techniques,
digital technologies have enabled new sensors to be developed and evaluated for
clinical use.

The vast majority of these medical devices acts in isolation, reading a particular
signal, and outputting the result of that signal to some form of visualization
technology so it may be accessed by clinicians. Some devices stream data to a
centralized visualization system (such as a bedside monitor or nursing station
[Phillips10, Harris13]) for ease of use. However, each of the signals is still displayed
independently. It is up to the clinician to synthesize the presented information to
determine the patient's state.

Many of these devices can be configured to alert clinicians to a deterioration in
patient state. Most devices currently in use can only be configured with threshold
alarms, which activate when the particular vital sign being measured crosses a
predefined threshold. While threshold alarms can be vital in the timely detection of
emergency states, they have been shown to be not scientifically derived [Lynn11]
and have a high rate of false alarms [Clinical07], which can be caused by
insignificant random fluctuations in the patient's vital signs or noise caused by
external stimuli (the most common example is patient movement, which can cause
sensors to move, get compressed, or fall off). This large number of erroneous alarms
causes alarm fatigue, a desensitization to the presence of these alarms which causes
clinicians to ignore them [Commission13]. Alternately, in an effort to reduce the
number of alarms, clinicians may improperly readjust settings on the monitor or turn
off alarms entirely [Edworthy06]. Both of these can lead to miss true alarms and a
decrease in quality of care [Clinical07, Donchin02, Imhoff06]. Various efforts have
been made to reduce alarm fatigue. These usually focus on improving workflow,
establishing appropriate patient-customized thresholds, and identifying situations
where alarms are not clinically relevant [Clifford09, EBMWG92, Oberli99,
Shortliffe79]. However, isolated threshold alarms cannot capture sufficient nuance in
patient state to completely eliminate false alarms. Also, these alarms only alert
clinicians to the fact that some threshold was crossed; they fail to provide any
physiologic or diagnostic information about the current state of the patient that might
help reveal the underlying cause of the patient's distress.

Clinicians most often use multiple vital signs in concert to understand the patient's
state. For example, a low heart rate (bradycardia) can be normal and healthy.
However, if a low heart rate occurs in conjunction with an abnormal blood pressure
or a low blood oxygen level, this can be cause for concern. Thus, it seems pertinent
to develop smart alarm systems, systems that consider multiple vital signs in concert
before raising an alarm. This would reduce false alarms, improving the alarm
precision and reducing alarm fatigue, leading to improved care. Such a smart alarm
system would be a simple version of what is in general known as a Clinical Decision
Support system (CDS system) [Garg05]. Clinical decision support systems combine
multiple sources of patient information with preexisting health knowledge to help
clinicians make more informed decisions. It has repeatedly been shown that well
designed clinical decision support systems have the potential to dramatically improve
patient care, not just by reducing alarm fatigue, but by allowing clinicians to better
utilize data to assess patient state.

3.5.2 Definition: Clinical Decision Support Systems
Fundamentally, CDS systems are a specialized form of MCPS with physical
actuation limited to visualization. They take as inputs multiple data streams, such as
vital signs, lab values, and patient history, subject them to some form of analysis, and

output the results of that analysis to a clinician. A smart alarm is the simplest form of
decision support system, in which multiple data streams are analyzed to produce a
single alarm for the clinician. More complex systems may use trending, signal
analysis, online statistical analysis, or previously constructed patient models, and
may produce detailed visualizations.

3.5.3 Challenges
As CDS systems are a specialized form of MCPS, the development of CDS systems
thus requires satisfying the core features of cyber-physical system development. In
fact, without these features, CDS system development is impossible. The current lack
of widespread use of CDS systems is in part due to the difficulty that has been
encountered in establishing these features in a hospital setting.

One of the most fundamental of these requirements is the achievement of device
interoperability. Even the simplest CDS system (such as a smart alarm system) must
obtain access to real-time vital sign data being collected by a number of different
medical devices attached to the patient. To obtain this data, the devices collecting the
required vital signs must be able to inter-operate, if not with each other, then with a
central data repository. At this repository, data could be collected, time-
synchronized, analyzed, and visualized.

However, achieving interoperability in medical devices has previously been a
major hurtle. Due to increased costs, the exponential blowup in regulatory difficulty,
and the lucrative potential of selling a suite of devices with limited interoperability,
individual device manufacturers currently have little incentive to make their devices
inter-operate. Development of an inter-operable platform for device communication
would enable MCPS to stream real-time medical information from different devices.

Many other challenges exist. For example, the safety and effectiveness of CDS
systems is dependent on other factors, such as network reliability and real-time
guarantees on message delivery. As networks in current hospital systems are often
ad-hoc, highly complex, and built over many decades, such reliability is rare.

Another challenge is that of data storage. To achieve high accuracy, the
parameters of the computational intelligence at the heart of a CDS system must often
be tuned using large quantities of retrospective data. Dealing with big data is thus a
vital component of the development of CDS systems. Addressing this problem will
require hospitals to recognize the value in capturing and storing patients' data, along
with adoption of dedicated hospital infrastructure to store and access data as part of
routine workflow.

CDS systems require some level of context-aware computational intelligence.
Information from multiple medical device data streams must be extracted and
filtered, and used in concert with a patient model to create a context-aware clinical
picture of the patient. There are three major ways in which context-aware
computational intelligence can be achieved: by encoding hospital guidelines, by

capturing clinician mental models, or by learning models statistically through
machine learning on medical data.

While the majority of hospital guidelines can usually be encoded as a series of
simple rules, they are often vague and/or incomplete, so while they may serve as a
useful baseline, they are often insufficient on their own. Capturing clinician mental
models involves interviewing a large number of clinicians about their decision
making process to hand-build an algorithm. This process can be laborious, clinician
thinking can be difficult to quantify in software, and the results from different
clinicians can be difficult to reconcile. Creating models using machine learning is
often the most straightforward approach. However, training such models requires
large amounts of retrospective patient data and clear outcome labels, both of which
can be difficult to acquire. When such data is available, it is often noisy, and filled
with missing values. Choice of learning technique can be a difficult question, and
while algorithm transparency is a good metric (to empower clinicians to understand
the underlying process and avoid opaque black-box algorithms) there is no single
choice of learning technique that is most appropriate for all scenarios.

3.5.4 Case Study: A Smart Alarm system for post-CABG
surgery patients
Post-operative Coronary Artery Bypass Graft (CABG) patients are at particular risk
of physiologic instability. Thus these patients are routinely subject to continuous
monitoring of a combination of common vital signs. The hope is that detection of
physiologic changes will allow practitioners to intervene in a timely manner and
prevent post-surgery complications. As previously discussed, however, these
continuous vital sign monitors are equipped only with simple threshold-based alarms,
which, coupled with the rapidly-evolving post-surgical state, can lead to a large
number of erroneous false positive alarms. For example, it is common for the finger
clip sensors employed by pulse oximeters to fall of the patients as they get situated in
their ICU bed, or for changes in the artificial lighting of the care environment to
produce erroneous readings.

To reduce these and other erroneous alarms, a smart alarm system was developed
which combines four main vital signs routinely collected in the Surgical ICS (SICU):
blood pressure (BP), heart rate (HR), respiratory rate (RR) and blood oxygen
saturation (SpO2). ICU nurses were interviewed to determine appropriate ranges for
binning each vital sign into a number of ordinal sets (e.g., "Low," "Normal," "High,"
"Very High", leading to classifying, for example, a blood pressure above 107 as
"High"). Binning vital signs in this way helped overcome the difficulty of
establishing a ruleset customized to each patient's baseline vital signs. The binning
criteria can be modified to address a specific patient with, for example, a very low
"Normal" resting heart rate, without rewriting the entire rule set.

Afterward, a set of rules were developed in conjunction with these nurses to
identify combinations of these vital sign statuses which would be cause for concern.
The "smart" alarm monitors a patient's four vitals, categorizes which ordinal set they
belong to, and searches the rule table for the corresponding alarm level to output. To
deal with missing data (due to network or sensor faults), rapid drops to zero are
conservatively classified as "Low" for the duration of the signal drop.

This smart alarm avoided many of the challenges that normally face CDS systems
in the clinical environment. The set of vital signs employed was very limited and
included only vital signs which are commonly collected and synchronized by the
same medical device. As the "intelligence" of the smart alarm system was a simple
rule table based on clinician mental models, it did not require large amounts of
retrospective data to calibrate, and was transparent and easy for clinicians to
understand. While network reliability would be a concern for such a system running
in the ICU, the classification of missing values as "Low" provides a conservative
fallback in case of a brief network failure. Additionally, running the system on a real-
time middleware would provide the necessary data delivery guarantees to ensure
system safety.

To evaluate the performance of the system, 27 CABG patients were observed
while they convalesced in the ICU immediately after the CABG procedure. Of these
27 patients, nine had the requisite vital sign samples stored in the hospital IT system
during the time period of the observation. Each of these patients was observed for
between 26 and 127 minutes, totaling 751 minutes of observation. In order to
compare monitor alarm performance with the CABG smart alarm, the minute by
minute samples of these patients physiologic state were retroactively retrieved (after
the observations) from the UPHS datastore. The smart alarm algorithm was applied
to the retrieved data streams, resulting in a trace of the smart alarm outputs that
would have been produced if the smart alarm were active at the patient's bed side.

Because of the relatively slow rate at which a patient can deteriorate and the
expected response time of the care staff, an intervention alarm was considered to be
covered by a smart alarm if the alarm occurred within 10 minutes of the intervention.

Overall, the smart alarm system produced fewer alarms. During the study, the
smart alarm was active 55% of the time that the standard monitor alarms were active,
and of the ten interventions during the observation time period, nine were covered by
the smart alarm. The significant alarm was likely deemed significant not due to the
absolute values of the vital signs being observed, but by their trend. An improved
version of this smart alarm system would thus include rules concerning the trend of
each of the vital signs.

3.5.5 Remarks
As more medical devices become capable of recording continuous vital sign systems,
and as medical systems become increasingly interoperable, CDS systems will

become essential tools to allow clinicians to process, interpret, and analyze patient
data. While there are challenges facing widespread adoption of CDS systems in
clinical environments, beginning to build these systems will expose their clinical
utility and provide impetus for overcoming said challenges.

3.6 Closed-loop System
3.6.1 Background/Motivation
A clinical scenario can be viewed as a control loop: the patient is the plant, the
controller collects information from sensors (e.g., bedside monitors) and sends
configuration commands to actuators (e.g., infusion pumps) [Lee12]. Traditionally,
caregivers act as the controller in most scenarios, which imposes significant decision
making burden on them as one caregiver is usually caring for several patients and can
check on each patient only sporadically. Continuous monitoring, where patient
condition is under constant supervision, is an active area of research [Maddox08].
However, to improve patient safety further, the system should be able to also
continuously react to changes in patient condition.

The smart alarm systems and decision support systems, discussed in the previous
section, facilitate the integration and interpretation of clinical information, helping
caregivers make decision more efficiently. Closed-loop systems aim to achieve a
higher level of intelligence: in such systems, a software-based controller
automatically collects and interprets physiological data, and controls the therapeutic
delivery devices. Many safety critical systems utilize automatic controllers, e.g.,
autopilots in airplanes and adaptive cruise control in vehicles. In patient care, the
controller can continuously monitor the patient's states and automatically reconfigure
the actuators when the patient's condition stays within a pre-defined operation region.
It will alert and hand over the control back to caregivers if a patient's state starts
diverting from the safe range. Physiological closed-loop systems can take part of
caregivers’ workload so they can better focus on handling critical events, which
would ultimately improve patient safety. In addition, software controllers can run
advanced decision making algorithms (e.g., model-predictive control in blood
glucose regulation [Hovorka04]) that are too computationally complicated for human
caregivers, and this may improve both safety and effectiveness of patient care.

The concept of closed-loop control has been introduced to medical applications,
e.g., implantable devices such as cardioverter defibrillators and other special-purpose
standalone devices. A physiological closed-loop system can also be built by
networking multiple existing devices, such as infusion pumps and vital sign
monitors. The networked physiological closed-loop system can be modeled as a
VMD.

3.6.2 Challenges
The networked closed-loop setting introduces new hazards that could compromise
patient safety. The hazards need to be identified and mitigated in a systematic way.
Closed-loop MCPS raise several unique challenges for safety engineering.

First, the plant, i.e., the patient, is an extremely complex system that usually
exhibits significant variability and uncertainty. Physiological modeling has been a
decade long challenge for bio-medical engineers and medical experts, and the area is
still at the frontier of science. Unlike in many other engineering disciplines such as
mechanical engineering or electronic circuit design, where high-fidelity first-
principle models are usually directly applicable to theoretical controller design, the
physiological models are usually non-linear and contain parameters that are highly
individual-dependent, time-varying, and not easily identifiable given the technologies
available. This imposes a major challenge on control design as well as system level
safety reasoning.

Second, in the closed-loop medical device system, there is a complex interaction
between the continuous physiology of the patient and the discrete behavior of the
control software and network. Since most closed-loop systems require supervision
from users (either caregivers or patients themselves), the human behavior has to be
considered in the safety arguments.

Third, the control loop is subject to uncertainties caused by sensors, actuators, and
communication network. For example, some body sensors are very sensitive to
patient movements; vital sign monitors may alert faulty readings due to a dropped
finger-clip; due to technological constraints, some bio-sensors have non-negligible
error even when they are used correctly, e.g., the continuous glucose monitor
[Ginsberg09]. The network behavior also has a critical impact on patient safety:
patients can be harmed by the actuators if packets that carry critical control
commands are dropped in the network.

3.6.3 Case Study
One way to systematically address the challenges listed above is to consider a model-
based approach similar to the one outlined in Section 3.3, extending the high-
confidence approach based on hazard identification and mitigation from individual
devices to the system composed of a collection of devices and a patient.

This section briefly describes a case study of the use of physiological closed loop
in pain control using a patient-controlled analgesia (PCA) infusion pump, introduced
in Section 3.3.3. The biggest safety concern about the use of PCA pumps for pain
control is that an overdose of an opioid analgesic can cause respiratory failure.
Existing safety mechanisms built into PCA pumps include limits on bolus amounts,
which are programmed by a caregiver before the start of the infusion, and minimum
time intervals between consecutive bolus doses. In addition, nursing manuals

prescribe periodic checks of the patient condition by a nurse. However, these
mechanisms are considered insufficient to cover all possible scenarios [Nuckols08].

The case study [Pajic12] presents a safety interlock design for PCA infusion,
implemented as an on-demand MCPS as described in Section 3.4 and illustrated in
Figure 3.6.3. The pulse oximeter continuously monitors heart rate (HR) and blood
oxygen saturation (SpO2). The controller receives measurements from the pulse
oximeter and it may stop the PCA infusion if the HR/SpO2 readings indicate a
dangerous decrease in respiratory activity, thereby preventing overdosing.

Safety requirements for the system are based on two regions in the space of
possible patient states as reported by the two sensors, as illustrated in Figure 7. The
critical region represents imminent danger to the patient and must be avoided at all
times; the alarming region is not immediately dangerous but raises clinical concerns.

The control policy for the safety interlock may be to stop infusion as soon as the
patient state enters the alarming region. The immediate challenge is to define the
alarming region to be large enough so that the pump can always be stopped before
the patient enters the critical region. At the same time, the region should not be too
large to avoid false alarms which decrease the effectiveness of pain control
unnecessarily. Finding the right balance and defining exact boundaries of the two
regions was beyond the scope of the case study.

Figure 7. Design of a PCA safety interlock.

The goal of the case study was to verify that the closed-loop system satisfies its
patient requirements. To achieve this goal, one needs models of the infusion pump,
pulse oximeter, control algorithm, and physiology of the patient.

Patient modeling is the critical aspect of the case study. Both pharmacokinetic and
pharmacodynamics aspects of physiology should be considered [Mazoit07].
Pharmacokinetics specify how the internal state of the patient, represented by the
drug concentration in the blood, is affected by the rate of infusion.

(a) Closed-loop PCA System. (b) Regions of Patient's
conditions.

Pharmacodynamics specify how the internal state affects observable outputs of the
model, that is, the relationship between the drug concentration and oxygen saturation
levels measured by the pulse oximeter. The proof-of-concept approach taken in the
case study relies on the simplified pharmacokinetic model of [Bequette03]. To make
the model applicable to a diverse patient population, parameters of the model were
taken to be ranges, rather than fixed values. To avoid the complexity of
pharmacodynamics, a linear relationship between the drug concentration and patient
vital signs is assumed.

Verification efforts concentrated on the timing of the control loop. After the
patient enters the alarming region, it takes time for the controller to detect the danger
and act on it. There are delays involved in obtaining sensor readings, delivering the
readings from the pulse oximeter to the controller, calculating the control signal,
delivering to the pump, and finally stopping the pump motor. In order to make
verification results sound, the continuous dynamics of the patient model is used to
derive , the minimum time over all combinations of parameter values in the
patient model that can pass from the moment the patient state enters the alarming
region to the moment it enters the critical region. The verification can now abstract
away from the continuous dynamics, significantly simplifying the problem. Using a
timing model of the components in the system, one can verify that the time it takes to
stop the pump is always smaller than .

3.6.4 Remarks
The PCA system is a relatively simple but useful use case of closed-loop medical
devices. It is worth noting that other types of closed-loop systems may introduce new
engineering challenges due to their functionalities and requirements. For example,
blood glucose control for diabetes has garnered a lot of attention from both
engineering and clinical communities, and various concepts of closed-loop or semi-
closed-loop systems have been proposed [Cobelli09, Kovatchev09, Hovorka04].
Compared to the PCA system, the closed-loop glucose control system is substantially
more complex and opens many opportunities for new research.

The fail-safe mode in the PCA system is closely related to the clinical objective:
overdosing is the major concern; while the patient may suffer from more pain when
PCA is stopped, it is considered a safe action, at least for a reasonably time duration.
Such kind of fail-safe mode may not exist in other clinical scenarios: for example, in
the glucose control system, the goal is to keep the glucose level within a target range,
i.e., stopping the insulin pump is not a default safe action since high glucose level is
also harmful.

The safety criteria in the PCA system is defined by delineating a region in the
state space of the patient model (such as the critical region in the case study above).
Safety violations are then detected as threshold crossings in the stream of patient

critt

critt

vital signs. Such crisp, threshold-based rules are often crude simplifications.
Physiological systems have certain level of resilience and the true relation between
health risks and physiological variables is still not completely understood. Time of
exposure is also important: a short spike in the drug concentration may be less
harmful than a longer interval of a lower-level concentration.

The sensor, pulse oximeter, used in the PCA system is relatively accurate with
respect to the ranges that clinicians would concern. In some other scenarios, sensor
accuracy is a non-negligible factor. For example, a glucose sensor can have a relative
error of up to 15% [Ginsberg09], and given that the target range is relatively narrow,
such error may significantly impact system operation and must be explicitly
considered in the safety arguments.

Even if the sensor is perfectly accurate, it may not be predictive enough. While
oxygen saturation can be used to detect respiratory failure, the effects could appear
too late, that is, after harm to the patient is already done. Capnography data, which
measures levels of carbon dioxide exhaled by the patient, can be used to detect the
problem much sooner, but it is more expensive and invasive technology compared to
pulse oximetry. This example shows the need to include more accurate
pharmacodynamics data into the patient model, which can be used to account for the
detection delay.

Another important factor in the closed-loop medical system is the human user's
behavior. In the PCA system, the user behavior is relatively simple: the clinicians
will be alerted in certain conditions, and most of the times they do not need to
intervene in the operation of the control loop. In other applications with more
complicated requirements, the user may demand a more involving role in the control.
For example, in the glucose control application, a user will need to take back the
control authority when the glucose level is significantly out of range, or even when
the automatic controller is running, the user may choose to disapprove certain control
actions for various reasons (e.g., the patient is not comfortable with a large insulin
dose). The more complicated user interaction pattern introduces new challenges to
the model-based validation and verification.

3.7 Assurance Cases
The safety of medical systems is of great public concern which is reflected in the fact
that many such systems much adhere to government regulations and/or be certified
by licensing bodies [Isaksen97]. For example, medical devices sold in the United
States are regulated by the U.S. Food and Drug Administration (FDA). Some of these
medical devices, such as infusion pumps, cannot be commercially distributed before
receiving an approval from the FDA. There is a need to communicate, review and
debate the trustworthiness of systems with a range of stakeholders (e.g., medical
device manufacturers, and regulatory authorities). Assurance cases can be used to
justify the adequacy of medical device systems. The assurance case is a method for

arguing that a "body" of evidence justifies a claim. An assurance case addressing
safety is called a safety case. A safety assurance case presents an argument,
supported by a body of evidence, that a system is acceptably safe to be used in a
given context [Menon09]. The notion of safety cases is currently embraced by
several European industry sectors (e.g., aircraft, train, nuclear). More recently in the
United States, the FDA issued draft guidance for medical infusion pump
manufacturers to provide a safety case with their pre-market submissions [FDA10].
Infusion pump manufacturers are expected not only to achieve safety but also to
convince regulators that it has been achieved [Ye05] through the submitted safety
case. The manufacturer's role is to develop and submit a safety case to regulators to
show that their product is acceptably safe to operate in the intended context
[Kelly98]. The regulator's role is to assess the submitted safety case and make sure
that the system is really safe.

There are many different approaches to the organization and presentation of safety
cases. Goal Structuring Notation (GSN) is one description technique that has proven
useful for constructing safety cases [Kelly04]. GSN is a graphical argumentation
notation developed at the University of York. A GSN diagram includes elements that
represent goals, argument strategies, contexts, assumptions, justifications, and
evidence. The principal purpose of any goal structure in GSN is to show how goals,
claims about the system specified with text within rectangular elements, are
supported by a valid and convincing argument. To this end, goals are successively
decomposed into sub-goals through implicit or explicit strategies. Strategies,
specified with text within parallelograms, explicitly define how goals are
decomposed into sub-goals. The decomposition continues until a point is reached
where claims are supported by direct reference to available evidence, and the
solution specified with text within circles. Assumptions/justifications, which define
the rationale of the decomposition approach, are represented with ellipses. The
context in which goals are stated is given in rectangle with rounded sides.

Another popular description technique is called Claims, Arguments, Evidence
(CAE) notation [Adelard13]. While its notation is less standardized than GSN, it
shares the same element types as GSN. The primary difference is that strategy
elements are replaced with argument elements. In this work, we use GSN notation in
presenting safety cases.

3.7.1 Challenges
The objective of a safety case development process is to provide justifiable rationale
for design and engineering decisions and to instill confidence in those design
decisions (in the context of system behavior) with stakeholders (e.g., manufacturers,
and regulatory authorities). Adopting assurance cases necessarily requires the

existence of proper reviewing mechanisms. These form the main aspects of assurance
cases, i.e., building, trusting, and reviewing assurance cases.

There are challenges attached to the three aspects of assurance cases. These
challenges need to be addressed to make safety cases practically useful:

 • Building assurance cases. There exists a widely used method for

systematically constructing safety cases. This method is often referred to as the "Six-
Step" method [Kelly98a]. Following the "Six-Step" or any other method does not
prevent mistakes that are commonly made by safety case developers, e.g., leaps from
claims to evidence. Capturing successful (convincing, sound, etc.) arguments used in
safety cases and reusing them in constructing new safety cases would minimize
mistakes that may be made during the safety case development. The need for
argument reusability motivates the use of the pattern concept (pattern means model
or original used as archetypes) in the safety case constructions. Predefined patterns
provide an inspiration or a starting point for new safety case developments. Using
patterns would help improving safety cases maturity and completeness.
Consequently, patterns can help device manufacturers to construct safety cases in a
more efficient way in terms of completeness and development period. The concept of
safety case patterns is defined in [Kelly97] to provide a way of capturing and reusing
"best practice" in safety cases. "Best practice" captures company expertise,
successfully certified approaches, etc. For example, patterns extracted from a safety
case built for a specific product can be reused in constructing safety cases for other
products that are developed via similar processes. Many safety case patterns were
introduced in [Alexander07, Kelly98, Weaver03, Hawkins09, Wagner10, Ayoub12]
to capture best practices.

 • Trusting assurance cases. Although creating a structured safety case explicitly

explains how the available evidence supports the overall claim of acceptable safety,
it cannot ensure that the argument itself is 'good' (i.e., sufficient for its purpose) or
the evidence is sufficient. Safety arguments typically have some weaknesses and so it
cannot be fully trusted on its own. In other words, there is always a question about
the trust in safety arguments and cited evidence, and so a justification for the
sufficiency of confidence in safety cases is essential. There are attempts to
quantitatively measure of confidence in safety cases such as [Bloomfield07,
Denney11]. A new approach for creating clear safety cases was introduced in
[Hawkins11] to facilitate the development process for safety cases and increase
confidence in the constructed cases. This approach basically separates the major
components of safety cases into safety argument and confidence argument. A safety
argument is limited to give arguments and evidence that directly target the system
safety. For example, claiming why a specific hazard is sufficiently unlikely to occur
and arguing this claim by testing results as evidence. A confidence argument is given

separately to justify the sufficiency of confidence in this safety argument. For
example, questioning about the confidence in the given testing result evidence (e.g.,
is that testing exhaustive?) should be addressed in the confidence argument. These
two components are given explicitly and separately. They are interlinked so that
justification for having sufficient confidence in individual aspects of the safety
component is clear and readily available but not confused with the safety component
itself.

Any gap that prohibits perfect confidence in safety arguments is referred to as an
assurance deficit [Hawkins11]. Argument patterns for confidence arguments are
given in [Hawkins11]. Those patterns are defined based on identifying and managing
the assurance deficits to show sufficient confidence in the safety argument. To this
end, it is necessary to identify the assurance deficits as completely as practicable.
Following a systematic approach (such as the one proposed in [Ayoub12a]) would
help in effectively identifying assurance deficits. In [Menon09, Weaver03], lists of
major factors that should be considered in determining the confidence in arguments
are defined. Questions to be considered when determining the sufficiency of each
factor are also given. To show sufficient confidence in a safety argument, a
confidence argument developer first explores all concerns about the confidence in
this argument, and then makes claims that these concerns are addressed. If a claim
cannot be supported by convincing evidence, then a deficit is identified. The list of
the recognized assurance deficits can be then used in instantiating the confidence
pattern given in [Hawkins11] to show that the residual deficits are acceptable.

 • Reviewing assurance cases. Safety case arguments are rarely provable

deductive arguments. Instead they are more commonly inductive. And so safety
cases are, by their nature, often subjective [Kelly07]. The objective of safety case
evaluation, therefore, is to assess if there is a mutual acceptance of the subjective
position. The human mind does not deal well with complex inferences based on
uncertain sources of knowledge [Cyra08], which is common in safety arguments.
Therefore, reviewers should only be required to express their opinions about the
basic elements in the safety case. Then, a mechanism should provide a way to
aggregate the reviewer opinions about the basic elements in the safety case to
communicate a message about the overall sufficiency of it.

There are several approaches that have proposed. The work in [Kelly07] present a
structured approach to assurance case review by focusing primarily on helping to
assess the level of assurance offered by the assurance case argument. The work in
[Goodenough12] outlines a framework for justifying confidence in the truth of
assurance case claims. The framework is based on the notion of eliminative
induction– the principle that confidence in the truth of a claim increases as reasons of
doubting its truth are identified and eliminated. Defeaters offer possible reasons for
doubting. Then the notion of Baconian probability is used to provide a measure for

confidence in assurance cases based on how many defeaters have been identified and
eliminated. In [Ayoub13] a structured method for assessing the level of sufficiency
and insufficiency of safety arguments was outlined. The reviewer assessments and
the results of their aggregation are represented in the Dempster-Shafer model
[Sentz02]. The assessing mechanism given in [Ayoub13] can be used in conjunction
with the step-by-step review approach proposed in [Kelly07] to answer the question
given in the last-step of this reviewing approach, which is about the overall
sufficiency of the safety argument. In other words, the approach in [Kelly07]
provides a skeleton for a systematic review process; however, the mechanism in
[Ayoub13] provides a systematic procedure to measure the sufficiency and
insufficiency of the safety arguments. An appraisal mechanism is proposed in
[Cyra08] to assess the trust cases using the Dempster-Shaffer model. Additionally,
linguistic scales are introduced in [Cyra08] to express the expert opinions and the
aggregation results. Linguistic scales are appealing as they are closer to human
nature than numbers. They are based on qualitative values such as "high," "low," and
"very low" and are mapped into the interval for evaluation.

3.7.2 Case Study: The GPCA safety case
This section builds on the case study of the GPCA infusion pump, presented in
Section 3.3.3. Assurance cases for medical devices have been discussed in
[Weinstock09]. The work in [Weinstock09] can be used as staring point for the
GPCA safety case construction. A safety case given in [Jee10] is constructed for a
pacemaker that is developed following a model-based approach similar to the one
used in the GPCA case study.

Safety case patterns.
 Similarities in the development approach are likely to lead to similarities in the
safety argument. Safety case patterns [Kelly97] have been proposed as means of
capturing similarities between arguments. Patterns allow the common argument
structure be elaborated with device-specific details. To capture the common
argument structure for systems developed in a model-based fashion, a safety case
pattern, called the from_to pattern, has been proposed in [Ayoub12]. Below, the
from_to pattern is illustrated and instantiated for the GPCA reference
implementation.

A safety case for the GPCA reference implementation would claim that the PCA
implementation software does not contribute to the system hazards when used in the
intended environment. To address this claim, one needs to show that the PCA
implementation software satisfies the GPCA safety requirements in the intended

environment. This is the starting point for the pattern (see claim G1 in Figure 9). The
context for this claim is that GPCA safety requirements are defined to mitigate the
GPCA hazards, which would be argued separately in another part of the safety case.

Figure 8 shows the GSN structure of the proposed from_to pattern. Here, {to}
refers to the system implementation and {from} refers to a model of this system. The
claim (G1) about the implementation correctness (i.e., satisfaction of some property
(referenced in C1.3)) is justified not only by validation (G4 through S1.2) but also by
arguing over the model correctness (G2 through S1.1), and the consistency between
the model and the implementation created based on it (G3 through S1.1). The model
correctness (i.e., further development for G2) is guaranteed through the model
verification (i.e., the second step of the model-based approach). The consistency
between the model and the implementation (i.e., further development for G3) is
supported by the code generation from the verified model (i.e., the third step of the
model-based approach). Only part of the property of concern (referenced in C2.1)
can be verified at the model level due to the different abstraction levels between the
model and the implementation. However, the validation argument (S1.2) covers the
entire property of concern (referenced in C1.3). The additional justification given in
(S1.1) increases the assurance in the top-level claim (G1).

Figure 8: The proposed from_to pattern

Figure 9: An instance of the from_to pattern

Figure 9 shows an instantiation of this pattern that is part of the PCA safety case.

Based on [Kim11], for this pattern instance, the {to} part is the PCA implementation
software (referenced in C1.1), the {from} part is the GPCA timed automata model
(referenced in C1.1.1) and the GPCA safety requirements (referenced in C1.3)
represent the concerned property. In this case, correct PCA implementation means it
satisfies the GPCA safety requirements that defined to guarantee the PCA safety. The
satisfaction of the GPCA safety requirements in the implementation level (G1) is
decomposed by two strategies (S1.1) and (S1.2). The argument in (S1.1) is supported
by the correctness of the GPCA timed automata model (G2), and the consistency
between the model and the implementation (G3). The correctness of the GPCA timed
automata model (i.e., further development for G2) has been proved using the
UPPAAL model-checker against the GPCA safety requirements that can be
formalized (referenced in C2.1). The consistency between the model and the
implementation (i.e., further development for G3) is supported by the code-synthesis
from the verified GPCA timed automata model. Not all the GPCA safety
requirements (referenced in C1.3) can be verified against the GPCA timed automata
model [Kim11]. Only the part referenced in C2.1 can be formalized and verified in
the model level (e.g., "no bolus dose shall be possible during the Power-On Self-
Test"). Other requirements cannot be formalized and/or verified against the model
given its level of details (e.g., "the flow rate for the bolus dose shall be
programmable" cannot be formalized meaningfully and then verified in the model
level).

Note.

 Generally, using safety case patterns does not necessarily guarantee that the
constructed safety case will be sufficiently compelling. So when instantiating the
from_to pattern, it is necessary to be able to provide justification for each
instantiation decision to guarantee that the constructed safety case is sufficiently
compelling. Assurance deficits should be identified throughout the construction of a
safety argument. Where an assurance deficit is identified, it is necessary to
demonstrate that the deficit is either acceptable, or addressed such that it becomes
acceptable. An explicit justification should be provided as to why the residual
assurance deficit is considered acceptable. This can be done by adopting appropriate
approaches such as ACARP (As Confidence As Reasonably Practical)
[Hawkins09a].

Assurance deficit example.
 As discussed in Section 3.3.3 and showed in Figure 3, the GPCA Simulink/Stateflow
model was transformed into an equivalent GPCA timed automata model. Although it
is relatively straight forward to translate the original GPCA model written in
Simulink/Stateflow into a UPPAAL timed automata model, there is no explicit
evidence to show the equivalence between the two models at the semantic level. A
potential assurance deficit associated with the GPCA timed automata model (context
C1.1.1, Figure 9) can be formed as "there are semantic differences between the
Simulink/Stateflow and the UPPAAL timed automata model." For this residual
assurance deficit, exhaustive conformance testing between the GPCA
Simulink/Stateflow model and the GPCA timed automata model may be a reasonable
mitigation.

3.7.3 Remarks
 Recently, safety cases have become popular and acceptable ways for communicating
ideas and information about the safety-critical systems among the system
stakeholders. In the medical device domain, the FDA issued draft guidance for
medical infusion pump manufacturers to provide a safety case with their pre-market
submissions [FDA10]. In this section, a brief introduction about safety cases and
notations used to describe them are discussed. Three aspects of safety cases to make
them practically useful are listed and discussed, which are facilitating safety cases
construction, justifying the existence of sufficient trust in safety arguments and cited
evidence, and providing a framework for safety case assessment for regulation and
certification.

Safety case patterns can help both device manufacturers and regulators to
construct and review the safety cases more efficiently while improving confidence
and shortening an approval period. The qualitative reasoning about the confidence
existence is believed to be more consistent with the inherited subjectivity in safety

cases than the quantitatively reasoning. The separation between safety and
confidence arguments reduces the size of the core safety argument. Consequently,
this structure is believed to facilitate the development and reviewing processes for
safety cases. The constructed confidence arguments should be used in the appraisal
process for assurance arguments as illustrated in [Cyra08, Kelly07, Ayoub13].

Given the subjectivity nature of safety case, the review methods cannot replace
the reviewer; instead they form frameworks to lead safety case reviewers through the
evaluation process. Consequently, the result of the safety case review process is
always subjective.

4 Practitioner's Implications
One can distinguish the following groups of stakeholders in MCPS: (1) MCPS
developers, including manufacturers of medical devices and integrators of medical
information technologies; (2) MCPS administrators, typically clinical engineers in
hospitals, who are tasked with deploying and maintaining MCPS; (3) MCPS users,
clinicians who perform treatment using MCPS; (4) MCPS subjects, that is, patients;
and (5) MCPS regulators, who hold the mandate for certifying the safety of MCPS or
approving their use for clinical purposes. In the United States, the Food and Drug
Administration is the regulatory agency charged with assessing safety and
effectiveness of medical devices and their approval for specific uses. All of these
groups have a vested interest in MCPS safety. However, each group has additional
drivers that need to be taken into account when designing or deploying MCPS in a
clinical setting. Below, we consider each group of stakeholders and identify specific
concerns that apply to them, and additional challenges they pose.

4.1 MCPS Developer Perspective
Dependence of MCPS on software, as well as complexity of software used in
medical devices, has been steadily increasing over the past three decades. In recent
years, medical device industry has been plagued with software-related recalls, with
19% of all recalls of medical devices in the U.S. being related to software problems
[Simone13].

Many other safety-regulated industries, such as avionics and nuclear power,
operate on relatively long design cycles. By contrast, medical device companies are
under heavy market pressure to quickly introduce additional features into their
products. At the same time, medical devices are often developed by relatively small
companies that lack the resources for extensive validation and verification of each
new feature they introduce. Model-based development techniques, such as the ones

described in Section 3.3, hold the promise of more efficient verification and
validation, leading to shorter development cycles.

At the same time, many companies complain about heavy regulatory burden
imposed by the FDA and similar regulatory agencies in other countries. Formal
models and verification results, introduced by the model-based development
approaches, provide evidence that MCPS is safe. Combined with the assurance cases
that organize this evidence into a safety argument, these rigorous development
methods may help reduce the regulatory burden for MCPS developers.

4.2 MCPS Administrator Perspective
Clinical engineers in hospitals are charged with maintaining a wide variety of
medical devices that comprise the MCPS used in patient treatment. Most clinical
scenarios today involve multiple medical devices. A clinical engineer needs to ensure
that the devices used in treating a patient can all work together. If an incompatibility
is discovered after treatment commences, the patient may be harmed. Interoperability
techniques, described in Section 3.4, may help to ensure that more devices are
compatible with each other, making the job of maintaining the inventory and
assembly of clinical scenarios easier. This, in turn, reduces treatment errors and
improves patient outcomes and, at the same time, saves hospital money.

4.3 MCPS User Perspective
Clinicians use MCPS to perform patient treatment. A specific treatment can, in most
cases, be performed using different MCPS implementations using similar devices
from different vendors. A primary concern, then, is ensuring that clinicians are
equally familiar with the different implementations. The concepts of a clinical
scenarios and virtual medical devices, introduced in Section 3.4 can help establish a
common user interface for the MCPS, regardless of which devices are used to
implement it. Such an interface would help to reduce clinical errors in using the
devices. Furthermore, the user interface can be verified as part of the analysis of the
MCPS model, as suggested by [Masci13].

MCPS development must take existing standards of care into consideration.
Clinical personnel needs to be involved in the analysis of the scenario models to
ensure that they are consistent with extant clinical guidelines for the respective
treatment and are intuitive for caregivers to use.

A particular challenge in modern healthcare is the high workload faced by
caregivers. Each caregiver is caring for multiple patients and has to keep track of
multiple sources of information about each patient. On-demand MCPS have the
potential to control cognitive overload in caregivers by offering virtual devices that
offer intelligent presentation of clinical information or smart alarm functionality.

Smart alarms, which can correlate or prioritize alarms from individual devices, can
be of great help to caregivers, by giving a more accurate picture of patient state and
reducing the rate of false alarms [Imhoff09].

4.4 Patient Perspective
Arguably, of all stakeholder groups, patients stand to gain the most from the
introduction of MCPS. In addition to the expected improvements in the safety of
treatments through higher reliability of individual devices and their bedside
assemblies, patients would get the benefit of improvements in treatments themselves.
These improvements may come from several sources.

On the one hand, MCPS can offer continuous monitoring that caregivers, who
normally attend multiple patients, cannot provide by themselves. Clinical guidelines
often require caregivers to obtain patient data at fixed intervals; for example, every
15 minutes. An MCPS may collect patient data as frequently as allowed by each
sensor and alert caregivers to changes in the patient's condition earlier and let them
interfere before the change leads to a serious problem. Furthermore, continuous
monitoring, combined with support for predictive decision making, similar to the one
discussed in Section 3.5, will allow treatment to be proactive rather than reactive.

Probably the biggest improvement in the quality of care for patients may come
with the transition from general guidelines meant to apply to all patients within a
certain population to personalized approaches, where treatment is customized to
individual needs of the patient and takes into account personalized characteristics.
Personalized treatments, however, cannot be effected without detailed patient
models. Such models can be stored in patient records and interpreted by the MCPS
during treatment.

4.5 MCPS Regulatory Perspective
Regulators of medical device industry are tasked with assessing safety and
effectiveness of MCPS. The two main concerns that the regulators face are
improving the quality of the assessment and making the best use of limited resources
that agencies have for performing the assessment. These two concerns are not
independent, because more efficient ways of performing assessments allow
regulators more time to explore deeper in their evaluation. Safety case technologies
discussed in Section 3.7 may help address both. The move towards evidence-based
assessment may allow regulators to perform more accurate and reliable assessment.
At the same time, organizing evidence into a coherent argument helps to perform the
assessment more efficiently.

5 Summary and Open Challenges
We presented a broad overview of trends in MCPS and design challenges that these
trends present. We also discussed possible approaches to address these challenges,
based on recent results in MCPS research.

The first challenge is related to the prevalence of software-enabled functionality in
modern MCPS, which makes assurance of patient safety a much harder task. Model-
based development techniques provide one way to ensure safety of the system.
Increasingly, model-based development is embraced by medical device industry.
Still, numerous recent recalls demonstrate that the problem of device safety is far
from being solved.

The next-level challenge arises from the need to compose individual device into a
system of interconnected devices that collectively treat the patient in a complex
clinical scenario. Such multi-device MCPS can provide new modes of treatment,
give enhanced feedback to the clinician, and improve patient safety. However,
additional hazards can arise from communication failures and lack of interoperability
between devices. Reasoning about safety of such on-demand MCPS, which are
assembled at bedside from available devices, creates new regulatory challenges and
requires medical application platforms, trusted middleware that will ensure correct
interactions between the devices. Research prototypes of such middleware are
currently being developed, but their effectiveness needs to be further evaluated.
Furthermore, interoperability standards for on-demand MCPS need to be further
improved and gain wider acceptance.

In order to fully utilize the promise of multi-device MCPS, new algorithms need be
developed to process and fuse patient data from multiple sensors, provide better
decision support for clinicians, more accurate and informative alarms, etc. This need
gives rise to two kinds of open challenges. On the one hand, additional clinical as
well as data analysis research needs to be performed, to determine the best ways to
utilize the new information made available through combining multiple rich data
sources. On the other hand, there is a need for new software tools to facilitate fast
prototyping and deployment of new decision support and visualization algorithms.

MCPS promises to enable a wide array of physiological closed-loop systems, where
the information about the patient state, collected from multiple sensors, can be used
to adjust the treatment process or its parameters. Research on such closed-loop
control algorithms is gaining prominence, especially for glycemic control for
diabetes patients. However, much research needs to be performed to better
understand patient physiology and develop adaptive control algorithms that can
deliver personalized treatment to each patient.

In all of these applications, patient safety and effectiveness of treatment are the two
paramount concerns. MCPS manufacturers need to convince regulators that systems
they build are safe and effective. The growing complexity of MCPS, high
connectivity, and prevalence of software-enabled functionality make evaluation of
system safety quite difficult. Construction of effective assurance cases for MCPS, as
well as for CPS in general, remains a challenge in need of further research.

References
[Adelard13]. Adelard. Claims, Arguments and Evidence (CAE).

http://plato.stanford.edu/entries/reasoning-defeasible/, 2013.

[Alexander07]. R. Alexander, T. Kelly, Z. Kurd, and J. Mcdermid. Safety Cases for
Advanced Control Software: Safety Case Patterns. Technical report, University of
York, 2007.

[Amnell03]. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: a
tool for schedulability analysis and code generation of real-time systems. In
FORMATS, 2003.

[Arney09]. D. Arney, J. M. Goldman, S. F. Whitehead, and I. Lee. Synchronizing an x-
ray and anesthesia machine ventilator: A medical device interoperability case study.
In BIODEVICES 2009, pages 52 – 60, January 2009.

[ASTM09]. ASTM International. ASTM F2761-2009. Medical Devices and Medical
Systems — Essential Safety Requirements for Equipment Comprising the Patient-
Centric Integrated Clinical Environment (ICE), Part 1: General Requirements and
Conceptual Model, 2009.

[Ayoub13]. A. Ayoub, J. Chang, O. Sokolsky, and I. Lee. Assessing the Overall
Sufficiency of Safety Arguments. In Safety Critical System Symposium (SSS'13),
2013.

[Ayoub12]. A. Ayoub, B. Kim, I. Lee, and O. Sokolsky. A Safety Case Pattern for
Model-Based Development Approach. In NFM2012, pages 223–243, Virginia, USA,
2012.

[Ayoub12a]. A. Ayoub, B. Kim, I. Lee, and O. Sokolsky. A Systematic Approach to
Justifying Sufficient Confidence in Software Safety Arguments. In International
Conference on Computer Safety, Reliability and Security (SAFECOMP 2012),
Magdeburg, Germany, 2012.

[Becker09]. U. Becker. Model-based development of medical devices. In Proceedings
of the Workshop on Computer Safety, Reliability, and Security (SAFECERT '09),
volume 5775 of LNCS, pages 4–17, 2009.

[Behrmann04] .G. Behrmann, A. David, and K. Larsen. A tutorial on UPPAAL. In
Formal Methods for the Design of Real-Time Systems, LNCS, pages 200–237, 2004.

[Bequette03].B. Bequette. Process control: modeling, design, and simulation. Prentice
Hall Press, 2003.

[Bloomfield07].R. Bloomfield, B. Littlewood, and D. Wright. Confidence: Its Role in
Dependability Cases for Risk Assessment. In Dependable Systems and Networks,
2007. DSN '07. 37th Annual IEEE/IFIP International Conference on, pages 338 –346,
2007.

[Carr03].C. D. Carr and S. M. Moore. Ihe: a model for driving adoption of standards.
Computerized Medical Imaging and Graphics, 27(2â€“3):137 – 146, 2003.
<ce:title>Picture Archiving and Communication Systems 20 Years Later</ce:title>.

[Clarke07]. M. Clarke, D. Bogia, K. Hassing, L. Steubesand, T. Chan, and D. Ayyagari.
Developing a standard for personal health devices based on 11073. In Engineering in
Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International
Conference of the IEEE, pages 6174–6176, 2007.

[Clifford09].G. Clifford, W. Long, G. Moody, and P. Szolovits. Robust parameter
extraction for decision support using multimodal intensive care data. Philosophical
Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences,
367:411–429, 2009.

[Clinical07].Clinical Alarms Task Force. Impact of clinical alarms on patient safety.
Journal of Clinical Engineering, 32(1):22–33, 2007.

[Cobelli09].C. Cobelli, C. D. Man, G. Sparacino, L. Magni, G. D. Nicolao, , and B. P.
Kovatchev. Diabetes: Models, signals, and control. Biomedical Engineering, IEEE
Reviews in, 2, 2009.

[Commission13].J. Commission. Sentinel event alert issue 50: Medical device alarm
safety in hospitals. 50, April 2013.

[Cyra08].L. Cyra and J. Górski. Expert Assessment of Arguments: A Method and Its
Experimental Evaluation. In SAFECOMP, 2008.

[Denney11].E. Denney, G. Pai, and I. Habli. Towards Measurement of Confidence in
Safety Cases. In International Symposium on Empirical Software Engineering and
Measurement (ESEM'11), Washington, DC, USA, 2011. IEEE Computer Society.

[Dias07].A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. A survey on
model-based testing approaches: a systematic review. In Proceedings of the 1 ACM

international workshop on Empirical assessment of software engineering languages
and technologies, pages 31–36, 2007.

[Dolin06].R. H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. M. Behlen, P. V. Biron, and
A. S. Shvo. Hl7 clinical document architecture, release 2. Journal of the American
Medical Informatics Association, 13(1):30–39, 2006.

[Donchin02].Y. Donchin and F. J. Seagull. The hostile environment of the intensive care
unit. Current Opinion in Critical Care, 8:316–320, 2002.

[Edworthy06].J. Edworthy and E. Hellier. Alarms and human behaviour: implications
for medical alarms. British Journal of Anaesthesia, 97:12–17, 2006.

[EBMWG92].Evidence-Based Medicine Working Group. Evidence-based medicine: A
new approach to teaching the practice of medicine. Journal of the American Medical
Association, 268:2420–2425, 1992.

[Harris13].Harris healthcare (formerly careFX).
http://healthcare.harris.com/solutions/default.aspx, 2013.

[Garg05].A. X. Garg, N. K. J. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. J.
Devereaux, J. Beyene, J. Sam, and R. B. Haynes. Effects of computerized clinical
decision support systems on practitioner performance and patient outcomes: A
systematic review. Journal of the American Medical Association, 293:1223–1238,
2005.

[Ginsberg09].B. H. Ginsberg. Factors affecting blood glucose monitoring: Sources of
errors in measurement. Journal of Diabetes Science and Technology, 3(4):903–913,
2009.

[Goldman05].J. Goldman, R. Schrenker, J. Jackson, and S. Whitehead. Plug-and-play in
the operating room of the future. Biomedical Instrumentation and Technology,
39(3):194–199, 2005.

[Goodenough12]. J. Goodenough, C. Weinstock, and A. Klein. Toward a Theory of
Assurance Case Confidence. Technical report, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Technical Report CMU/SEI-2012-TR-
002, 2012.

[Hatcliff12]. J. Hatcliff, A. King, I. Lee, A. Macdonald, A. Fernando, M. Robkin, E.
Vasserman, S. Weininger, and J. M. Goldman. Rationale and architecture principles
for medical application platforms. In Proceedings of the 2012 IEEE/ACM Third
International Conference on Cyber-Physical Systems, ICCPS '12, pages 3–12,
Washington, DC, USA, 2012. IEEE Computer Society.

[Hawkins11].R. Hawkins, T. Kelly, J. Knight, and P. Graydon. A New Approach to
creating Clear Safety Arguments. In SSS'11, pages 3–23. Springer London, 2011.

[Hawkins09].R. Hawkins and T. Kelly. A Systematic Approach for Developing Software
Safety Arguments. Journal of System Safety, 46:25–33, 2009.

[Hawkins09a].R. Hawkins and T. Kelly. Software Safety Assurance – What Is
Sufficient? In 4th IET International Conference of System Safety, 2009.

[Henzinger07].T. A. Henzinger and C. M. Kirsch. The embedded machine: Predictable,
portable real-time code. ACM Transactions on Programming Languages and
Systems (TOPLAS), 29(6):33, 2007.

[Hovorka04].R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti,
M. O. Federici, T. R. Pieber, H. C. Schaller, L. Schaupp, T. Vering, and M. E.
Wilinska. Nonlinear model predictive control of glucose concentration in subjects
with type 1 diabetes. Physiological Measurement, 25(4):905, 2004.

[Imhoff09]. M. Imhoff, S. Kuhls, U. Gather, and R. Fried. Smart alarms from medical
devices in the OR and ICU. Best Practice and Research in Clinical Anaesthesiology,
23(1):39–50, 2009.

[Imhoff06].M. Imhoff and S. Kuhls. Alarm algorithms in critical care monitoring.
Anesthesia and Analgesia, 102(5):1525–1536, 2006.

[Isaksen97].U. Isaksen, J. P. Bowen, and N. Nissanke. System and Software Safety in
Critical Systems. Technical Report RUCS/97/TR/062/A, The University of Reading,
UK, 1997.

[Iso/ieee11073].Iso/ieee 11073 committee.
http://standards.ieee.org/findstds/standard/11073-10103-2012.html.

[Jackson07].D. Jackson, M. Thomas, and L. I. Millett, editors. Software for Dependable
Systems: Sufficient Evidence? National Academies Press, May 2007. Committee on
Certifiably Dependable Software Systems, National Research Council.

[Jee10].E. Jee, I. Lee, and O. Sokolsky. Assurance cases in model-driven development of
the pacemaker software. In 4th international conference on Leveraging applications
of formal methods, verification, and validation - Volume Part II, ISoLA'10, pages
343–356, Berlin, Heidelberg, 2010. Springer-Verlag.

[Jeroeno4]. J. C. H. JEROEN V. LEVERT. Runaway pacemaker due to software-based
programming error. Pacing and Clinical Electrophysiology, 27(12):1689–1690, Dec.
2004.

[Kelly97].T. Kelly and J. McDermid. Safety Case Construction and Reuse using
Patterns. In SAFECOMP, pages 55–96. Springer-Verlag, 1997.

[Kelly04].T. Kelly and R. Weaver. The goal structuring notation – a safety argument
notation. In DSN 2004 Workshop on Assurance Cases, 2004.

[Kelly98].T. Kelly. Arguing safety – a systematic approach to managing safety cases.
PhD thesis, Department of Computer Science, University of York, 1998.

[Kelly98a].T. Kelly. A six-step Method for Developing Arguments in the Goal
Structuring Notation (GSN). Technical report, York Software Engineering, UK,
1998.

[Kelly07].T. Kelly. Reviewing Assurance Arguments – A Step-by-Step Approach. In
Workshop on Assurance Cases for Security - The Metrics Challenge, Dependable
Systems and Networks (DSN), 2007.

[Kim12]. B. G. Kim, L. T. Phan, I. Lee, and O. Sokolsky. A model-based i/o interface
synthesis framework for the cross-platform software modeling. In Rapid System
Prototyping (RSP), 2012 23rd IEEE International Symposium on, pages 16–22. IEEE,
2012.

[Kim11].B. Kim, A. Ayoub, O. Sokolsky, P. Jones, Y. Zhang, R. Jetley, and I. Lee.
Safety-Assured Development of the GPCA Infusion Pump Software. In EMSOFT,
pages 155–164, Taipei, Taiwan, 2011.

[King09].A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees, R. Jetley, P.
Jones, and S. Weininger. An open test bed for medical device integration and
coordination. In Proceedings of the 31st International Conference on Software
Engineering, 2009.

[Kovatchev09].B. P. Kovatchev, M. Breton, C. D. Man, and C. Cobelli. In silico
preclinical trials: A proof of concept in closed-loop control of type 1 diabetes.
Diabetes Sci Technol, 3(1):44–55, 2009.

[Lee06].I. Lee, G. J. Pappas, R. Cleaveland, J. Hatcliff, B. H. Krogh, P. Lee, H. Rubin,
and L. Sha. High-confidence medical device software and systems. Computer,
39(4):33–38, April 2006.

[Lee12].I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King, M. Mullen-
Fortino, S. Park, A. Roederer, and K. Venkatasubramanian. Challenges and research
directions in medical cyber-physical systems. Proceedings of the IEEE, 100(1):75–
90, Jan 2012.

[Lofsky04].A. S. Lofsky. Turn Your Alarms On. APSF Newsletter, 19(4):43, 2004.

[Lublinerman09].R. Lublinerman, C. Szegedy, and S. Tripakis. Modular code generation
from synchronous block diagrams: modularity vs. code size. In Proceedings of the
36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL '09, pages 78–89, New York, NY, USA, 2009. ACM.

[Lynn11].L. A. Lynn and J. P. Curry. Patterns of unexpected in-hospital deaths: a root
cause analysis. Patient Safety in Surgery, 5, 2011.

[Maddox08].R. Maddox, H. Oglesby, C. Williams, M. Fields, and S. Danello.
Continuous respiratory monitoring and a "smart" infusion system improve safety of
patient-controlled analgesia in the postoperative period. In K. Henriksen, J. Battles,
M. Keyes, and M. Grady, editors, Advances in Patient Safety: New Directions and
Alternative Approaches, volume 4 of Advances in Patient Safety. Agency for
Healthcare Research and Quality, Aug. 2008.

[Masci13].P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby.
Model-based development of the generic PCA infusion pump user interface within
PVS. In Proceedings of the 32 International Conference on Computer Safety,
Reliability and Security (SAFECOMP '13), 2013. To appear.

[Mazoit07].J. X. Mazoit, K. Butscher, and K. Samii. Morphine in postoperative patients:
Pharmacokinetics and pharmacodynamics of metabolites. Anesthesia and Analgesia,
105(1):70–78, 2007.

[MDCF].Medical Device Coordination Framework (MDCF) website.
http://mdcf.santos.cis.ksu.edu.

[MDPNP].MD PnP: Medical Device "Plug-and-Play" Interoperability Program website.
http://www.mdpnp.org.

[Menon09].C. Menon, R. Hawkins, and J. McDermid. Defence standard 00-56 issue 4:
Towards evidence-based safety standards. In Safety-Critical Systems: Problems,
Process and Practice, pages 223–243. Springer London, 2009.

[Nuckols08].T. K. Nuckols, A. G. Bower, S. M. Paddock, L. H. Hilborne, P. Wallace, J.
M. Rothschild, A. Griffin, R. J. Fairbanks, B. Carlson, R. J. Panzer, and R. H. Brook.
Programmable infusion pumps in ICUs: An analysis of corresponding adverse drug
events. Journal of General Internal Medicine, 23(Supplement 1):41–45, January
2008.

[Oberli99].C. Oberli, C. Saez, A. Cipriano, G. Lema, and C. Sacco. An expert system for
monitor alarm integration. Journal of Clinical Monitoring and Computing, 15:29–35,
1999.

[Pajic12]. M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee.
Model-driven safety analysis of closed-loop medical systems. Industrial Informatics,
IEEE Transactions on, PP(99):1–1, 2012.

[Phillips10].Phillips eICU program.
http://www.healthcare.philips.com/main/products/patient_monitoring/products/eicu/in
dex.wpd, 2010.

[Rae03].A. Rae, P. Ramanan, D. Jackson, and J. Flanz. Critical feature analysis of a
radiotherapy machine. In International Conference of Computer Safety, Reliability
and Security (SAFECOMP), Sept. 2003.

[Sapirstein09].A. Sapirstein, N. Lone, A. Latif, J. Fackler, and P. J. Pronovost. Tele ICU:
paradox or panacea? Best Practice & Research Clinical Anaesthesiology, 23(1):115–
126, Mar. 2009.

[Sentz02].K. Sentz and S. Ferson. Combination of evidence in Dempster-Shafer theory.
Technical report, Sandia National Laboratories, SAND 2002-0835, 2002.

[Shortliffe79].E. H. Shortliffe, B. G. Buchanan, and E. A. Feigenbaum. Knowledge
engineering for medical decision making: A review of computer-based clinical
decision aids. Proceedings of the IEEE, 67:1207–1224, 1979.

[Simone13].L. K. Simone. Software related recalls: A forensic analysis of recall records.
Biomedical Instrumentation & Technology, 2013. In press.

[McMaster13].Software Quality Research Laboratory, McMaster Univeristy. Pacemaker
formal methods challenge. http://sqrl.mcmaster.ca/pacemaker.htm, accessed August
10, 2013.

[FDA10].U.S. Food and Drug Administration, Center for Devices and Radiological
Health. Guidance for Industry and FDA Staff - Total Product Life Cycle: Infusion
Pump - Premarket Notification [510(k)] Submissions, Apr. 2010.

[FDA10a].U.S. Food and Drug Administration, Center for Devices and Radiological
Health. White Paper: Infusion Pump Improvement Initiative, Apr. 2010.

[Wagner10].S. Wagner, B. SchÃ¤tz, S. Puchner, and P. Kock. A Case Study on Safety
Cases in the Automotive Domain: Modules, Patterns, and Models. In ISSRE, pages
269–278, 2010.

[Weaver03].R. Weaver. The Safety of Software - Constructing and Assuring
Arguments. PhD thesis, Department of Computer Science, University of York, 2003.

[Weinstock09].C. Weinstock and J. Goodenough. Towards an Assurance Case Practice
for Medical Device. Technical report, CMU/SEI-2009-TN-018, 2009.

[Ye05].F. Ye. Contract-based justification for COTS component within safety-critical
applications. PhD thesis, Department of Computer Science, University of York,
2005.

[UPenn].The generic patient controlled analgesia pump model.
http://rtg.cis.upenn.edu/gip.php3.

[UPenn-a].Safety Requirements for the Generic Patient Controlled Analgesia Pump.
http://rtg.cis.upenn.edu/gip.php3.

[UPenn-b].The Generic Patient Controlled Analgesia Pump Hazard Analysis.
http://rtg.cis.upenn.edu/gip.php3.

