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Medical cyber-physical systems (MCPS) are life-critical, context-aware, networked 
systems of medical devices that are collectively involved in treating a patient. These 
systems are increasingly used in hospitals to provide high-quality continuous care for 
patients in complex clinical scenarios.. The need to design complex MCPS that are 
both safe and effective has presented numerous challenges.  These challenges include 
achieving high levels of assurance in system software, interoperability, context-
aware decision support, autonomy, security and privacy, and certification. This 
chapter discusses these challenges in developing MCPS, case studies that illustrate 
these challenges and suggest ways to address them, and highlights several open 
research and development issues. This chapter concludes with discussion on 
implications of MCPS on stakeholders and practitioners. 

1 Introduction and Motivation 
The two most significant recent transformations in the field of medical devices are 
the high degree of reliance on software-defined functionality and the wide 
availability of network connectivity.  The former transformation means that software 
plays the ever more significant role in the overall device safety.  The latter implies 
that, instead of stand-alone devices that can be designed, certified, and used 
independently of each other to treat patients, networked medical devices will work as 
distributed systems that simultaneously monitor and control multiple aspects of the 
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patient's physiology. The combination of embedded software controlling the devices, 
networking capabilities, and complicated physical dynamics exhibited by patient 
bodies makes modern medical device systems a distinct class of cyber-physical 
systems (CPS). We refer to these as medical cyber-physical systems (MCPS). 

The goal of MCPS is to improve the effectiveness of patient care by providing 
personalized treatment through sensing and patient model matching while ensuring 
safety.  However, the increased scope and complexity of MCPS relative to traditional 
medical systems present numerous developmental challenges. These challenges need 
to be systematically addressed through the development of new design, composition, 
verification, and validation techniques. The need for these techniques presents new 
opportunities for researchers in MCPS and more broadly in general embedded and 
CPS systems. One of the primary concerns in MCPS development is the assurance of 
patient safety.  We believe that new capabilities of future medical devices and new 
techniques for developing MCPS with these devices will require new regulatory 
procedures to approve their use for treating patients. The traditional process-based 
regulatory regime used by the U.S. Food and Drug Administration (FDA) to approve 
medical devices is becoming too lengthy and prohibitively expensive with the 
increased MCPS complexity and there is an urgent need to ease this process without 
compromising the level of safety it delivers. 

In this chapter, we advocate a systematic analysis and design of MCPS for coping 
with their inherent complexity. Consequently, model-based design techniques should 
play a larger role in MCPS design. Models should cover not only devices and 
communications between them, but also, of equal importance, patients and 
caregivers. The use of models will allow developers to assess system properties early 
in the development process and build confidence in the safety and effectiveness of 
the system design, before the system is built. Analysis of system safety and 
effectiveness performed at the modeling level needs to be complemented by 
generative implementation techniques that preserve properties of the model in the 
implementation. Results of model analysis, combined with the guarantees of the 
generation process, can form the basis for evidence-based regulatory approval.  The 
ultimate goal is to use model-based development as the foundation for building safe 
and effective MCPS.  Below, we describe some of the research directions that we are 
taking toward addressing some of the challenges involved in building MCPS.  

We view MCPS in a bottom-up manner, first describing issues associated with 
individual devices and then progressively increasing its complexity by adding 
communication, intelligence, and feedback-control. The chapter is organized as 
follows: (1) Stand-Alone Device: model-based high assurance software development 
scheme is described for stand-alone medical devices such as PCA pumps and 
pacemakers; (2)  Device Interconnection: a medical device interoperability 
framework is presented for describing, instantiating, and validating clinical 
interaction scenarios; (3)  Adding Intelligence: a smart alarm system is presented that 



takes vital signs data from various interacting devices to inform caregivers of 
potential patient emergencies and non-operational issues about the devices; (4)  
Automated Actuation/Delivery: a model-based closed-loop care delivery system is 
presented, which can autonomously deliver care to the patients based on the current 
state of the patient; and (5)  Assurance Cases: the use of assurance cases is described 
for organizing collections of claims, arguments, and evidence to establish the safety 
of a medical device system. Preliminary discussion of some of these challenges have 
appeared in [Lee12]. 

2 System Description and 
Operational Scenarios 

 

An Overview of MCPS. 
MCPS are  safety-critical, smart systems of  interconnected medical devices that are 
collectively involved in treating a patient within a specific clinical scenario The 
clinical scenario determines treatment options that can be chosed and adjustments of 
treatment settings that need to be made in response to changing patient state.  
Traditionally, decisions about the treatment options and settings are made by an 
attending caregiver, who makes them by monitoring patient state using individual 
devices and performs manual adjustments. Thus, clinical scenarios can be viewed as 
closed-loop systems where caregivers are the controllers, medical devices act as 
sensors and actuators, and patients are the "plants." MCPS alter this view by 
introducing additional computational entities that aid the caregiver in controlling the 
"plant." Figure 1 shows the conceptual overview of MCPS. Devices used in MCPS 
can be categorized into two large groups based on their primary functionality:  
monitoring devices, such as bedside heart-rate and oxygen-level monitors and 
sensors, which provide different kinds of clinic-relevant information about patients; 
and  delivery devices, such as infusion pumps and ventilators, which actuate therapy 
capable of changing the patient's physiological state. In MCPS, interconnected 
monitoring devices can feed collected data to a decision support or administrative 
support entities, each of which serves a different, albeit complementary, purpose. For 
example, caregivers can analyze that information and can use delivery devices to 
initiate treatment, thus bringing the caregiver into the control loop around the patient. 
Alternatively, the decision support entities can utilize a smart controller to analyze 
the data received from the monitoring devices, estimate the state of the patient's 
health, and automatically initiate treatment (e.g., drug infusion) by issuing commands 
to delivery devices, thereby closing the loop 



Most medical devices rely on software components for carrying out their tasks. 
Ensuring safety of the devices and their interoperation is crucial. One of the more 
effective ways of ensuring this is to use model-based development methods, which 
can ensure device safety by enabling medical device verification. This also opens the 
door for eventually certification of the devices to meet certain safety standards. 

 

 
Figure  1: Medical Cyber-Physical Systems: Conceptual Overview 

 
Virtual Medical Devices. 

Given the complexity of MCPS, it has to be user-centric, i.e., easy to setup and use, 
in an largely automated manner. One of the ways of accomplishing this based by 
developing a description of the MCPS workflow and then enforcing it on physical 
devices. MCPS workflow can be described in terms of (1) number and types of 
devices involved, (2) their mutual interconnections, and (3) the clinical supervisory 
algorithm needed for coordination and analysis of data collected. Such description 
defines Virtual Medical Device (VMD). VMD are used by a VMD App and 
instantiated into a setup of actual medical devices called Virtual Medical Device 
Instance (VMD instance). The devices in VMD instance are usually interconnected 
using some form of interoperability middleware, which is responsible for ensuring 
that the inter-device connections are correctly configured. The principal task of the 
VMD App is therefore to find the medical devices in VMD instance  (which may be 
quite large), establish network connections between them and install the clinical 
algorithm into the supervisor module of the middleware for managing the 
interactions of the clinical workflow and reasoning about the data produced. 



Basically, when the VMD App is started, the supervisor reads the VMD App 
specification and tries to couple all involved devices accordingly. Once the workflow 
has run its course, the VMD App can perform the necessary cleanup in order to allow 
another workflow to be specified using different combination of medical devices in 
the VMD instance. 

 
Clinical Scenarios. 

Each VMD is to support a specific clinical scenario with a detailed description of 
how devices and clinical staff work together in a clinical situation or event. Here, we 
describe two such scenarios: one for X-ray & Ventilator coordination and another for 
PCA safety interlock system. 

One example that illustrates how patient safety can be improved by MCPS is by 
developing VMD that coordinates the interaction between an X-ray machine and a 
ventilator. Consider the scenario taken from [Lofsky04]. X-ray images are often 
taken during surgical operations. If the operation is being performed under general 
anesthesia, the patient is breathing with the help of a ventilator. Because the patient 
on ventilator cannot "hold its breath" to let the X-ray image be taken without the blur 
caused by moving lungs, the ventilator has to be paused and later restarted. There 
have been cases where the ventilator was not restarted, leading to the death of the 
patient. Interoperation of the two devices can be used in several ways to ensure that 
patient safety is not compromised, as discussed in [Arney09]. One possibility is to let 
the X-ray machine pause and restart the ventilator automatically. A safer alternative, 
although presenting tighter timing constraints, is to let the ventilator transmit its 
internal state to the X-ray machine. There typically is enough time to take an X-ray 
image at the end of the breathing cycle, when the patient has finished exhaling until 
the start of the next inhalation. This approach requires the X-ray machine to know 
precisely the instance when the air flow rate becomes close enough to zero and the 
time when the next inhalation starts. Then, it can make the decision to take a picture 
if enough time – taking transmission delays into account – is available. 

Another clinical scenario that can easily benefit from the closed-loop approach of 
MCPS is patient-controlled analgesia (PCA). PCA infusion pumps are commonly 
used to deliver opioids for pain management, for instance after surgery. Patients have 
very different reactions to the medications and require very different dosages and 
delivery schedules. PCA pumps give the patient a button to press to request a dose 
when they decide they want it rather than using a schedule fixed by a caregiver. 
Some patients may decide they prefer a higher level of pain to the nausea the drugs 
may cause and can press the button less often, while patients who need a higher dose 
can press it more often. A major problem with opioid medications in general is that 
an excessive dose can cause respiratory failure. A properly programmed PCA system 
should not allow an overdose because it is programmed with limits on how many 



doses it will deliver, regardless of how often the button is pushed. However, this 
safety mechanism is not sufficient to protect all patients. Some patients still receive 
overdoses if the pump is misprogrammed, if the pump programmer overestimates the 
maximum dose a patient can receive, if the wrong concentration of drug is loaded 
into the pump, or if someone other than the patient presses the button (PCA-by-
proxy), among other causes. PCA infusion pumps are currently involved in a large 
number of adverse events, and existing safeguards such as drug libraries and 
programmable limits are not adequate to address all the scenarios seen in clinical 
practice [Nuckols08]. 

3 Key Design Drivers and Quality 
Attributes 
While software-intensive medical devices such as infusion pumps, ventilators, and 
patient monitors have been used for a long time, the field of medical devices is 
currently undergoing a rapid transformation. The changes under way bring new 
challenges to the development of high-confidence medical devices, but at the same 
time they open new opportunities for the research community [Lee06]. This section 
starts with the main trends that have emerged recently, identifies quality attributes 
and challenges, and provide detailed discussion on several MCPS specific topics. 

3.1  Trends 
New software-enabled functionality. 
Following the general trend in the field of embedded systems and more broadly 
cyber-physical systems, introduction of the new functionality is largely driven by the 
new possibilities that software-based development of medical device systems is 
offering. A prime example of the new functionality is seen in the area of robotic 
surgery, which requires real-time processing of high-resolution images and haptic 
feedback. Another example is proton therapy treatment. It is one of the most 
technology-intensive procedures and requires one of the largest-scale medical device 
systems. Used to deliver precise doses of radiation for cancer patients, the treatment 
requires precise guiding of the proton beam from a cyclotron to patients, requiring 
adaptation to even minor shifts in position. Higher precision of the treatment, 
compared to conventional radiation therapy, allows higher radiation doses to be 
applied. This, in turn, places more stringent requirements on patient safety. Control 
of proton beams is subject to very tight timing constraints, with much less tolerance 
than for most medical devices. To further complicate the problem, the same beam is 
applied to multiple patient locations and needs to be switched from location to 



location, opening up the possibility of interference between beam scheduling and 
beam application. In addition to the proton beam control, a highly critical function of 
software in a proton treatment system is real-time image processing to determine 
precise position of the patient and detect any patient movement. In [Rae03], the 
authors have analyzed the safety of proton therapy machines, however their analysis 
concentrates on a single system, the emergency shutdown. In general, proper analysis 
and validation of such large and complex systems remains one of the big challenges 
facing the medical device industry. 

However, even in simpler devices, such as pacemakers and infusion pumps, more 
and more software-based features are added, making device software more complex 
and error-prone [Jeroeno4]. Rigorous approaches are required to make sure that 
software in these devices operates correctly. Because these devices are relatively 
simple, they are good candidates for case studies of challenges and experimental 
development techniques. Some of these devices, such as pacemakers, are being used 
as challenge problems in the formal methods research community [McMaster13]. 

Increased connectivity of medical devices. 
In addition to relying more and more on software, medical devices are increasingly 
equipped with network interfaces. Interconnected medical devices, effectively, form 
a distributed medical device system of a larger scale and complexity that has to be 
properly designed and validated to ensure effectiveness and patient safety. Today, the 
networking capabilities of medical devices are primarily used for patient monitoring 
(through local connection of individual devices to integrated patient monitors or for 
remote monitoring in a tele-ICU [Sapirstein09] setting) and for interaction with 
electronic health records to store patient data. 

The networking capabilities of most medical devices today are limited in 
functionality and tend to rely on proprietary communication protocols offered by 
major vendors. There is, however, a growing realization among clinical professionals 
that open interoperability between different medical devices will lead to improved 
patient safety and new treatment procedures. Medical Device Plug-and-Play (MD 
PnP) Interoperability initiative [Goldman05, MDPNP] is a relatively recent effort 
that aims to provide an open standards framework for safe and flexible 
interconnectivity of medical devices, in order to improve patient safety and health 
care efficiency. In addition to developing interoperability standards, MD PnP 
initiative collects and demonstrates clinical scenarios where interoperability leads to 
improvement over the existing practice. 

Physiological closed-loop systems. 
Traditionally, most clinical scenarios have a caregiver – and often more than one – 
controlling the process. For example, an anesthesiologist monitors sedation of a 



patient during an operation and decides when an action to adjust the flow of sedative 
needs to be taken. There is a concern in the medical community that such reliance on 
"human in the loop" may compromise patient safety. Caregivers, who are often 
overworked and operate under severe time pressure, may miss a critical warning 
sign. Nurses typically care for multiple patients at a time and can be distracted at a 
wrong moment. Using an automatic controller to provide continuous monitoring of 
the patient state and handling of routine situations would be a big relief to the 
caregiver and can improve patient care and safety. Although the computer will 
probably never replace the caregiver completely, it can significantly reduce the 
workload, calling the caregiver's attention only when something out of the ordinary 
happens. 

Scenarios based on physiological closed-loop control have been used in the 
medical device industry for some time. However, their application has been mostly 
limited to implantable devices that cover relatively well understood body organs, 
such as the heart in the case of pacemakers and defibrillators. Implementing closed-
loop scenarios in distributed medical device systems is a relatively new idea that has 
not made its way to the mainstream practice. 

Continuous Monitoring and Care. 
Due to a high cost associated with in-hospital care, there has been increasing interest 
in alternatives such as home care, assisted living, telemedicine, and sport-activity 
monitoring. Mobile monitoring and home monitoring of vital signs and physical 
activities allow health to be assessed remotely at all times. Also, there is a growing 
popularity of sophisticated technologies such as body sensor networks to measure 
training effectiveness and athletic performance based on physiological data such as 
heart rate, breathing rate, blood-sugar level, stress level, and skin temperature. 
However, most of the current systems operate in store-and-forward mode, with no 
real-time diagnostic capability. Physiological closed-loop technology will allow 
diagnostic evaluation of vital signs in real-time and make constant care possible. 

3.2  Quality Attributes and Challenges of the 
MCPS domain 
Building MCPS applications requires ensuring the following quality attributes, when 
in turn poses important challenges: 

    •  Safety: Software plays an increasingly important role in medical devices. Many 
functions traditionally implemented in hardware – including safety interlocks – are 
now being implemented in software. Thus high-confidence software development is 
critical to assure the safety and effectiveness of MCPS. We advocate the use of 
model-based development and analysis as means of ensuring safety of MCPS.  



    •  Interoperability: Many modern medical devices are equipped with network 
interfaces, enabling us to build MCPS with new capabilities by combining existing 
devices. Key to this is the concept of interoperability, where individual devices can 
exchange information facilitated by an application deployment platform. It is 
essential to ensure that the MCPS built from interoperable medical devices are safe, 
effective, secure, and can eventually be certified as such.  

    •  Context-Awareness: Integration of patient information from multiple sources can 
provide a better understanding of the state of the patient’s health, and use it to enable 
early detection of ailments and generation of effective alarms in the event of 
emergencies. However, given the complexity of human physiology and variations of 
physiological parameters over patient population, developing such computational 
intelligence is a non-trivial task.  

    •  Autonomy: The computational intelligence that MCPS possess can be used for 
increasing the autonomy of the system by enabling actuation of therapies based on 
the patient's current health state. Closing-the-loop in this manner must be done safely 
and effectively. Safety analysis of autonomous decisions in the resulting closed-loop 
system is a big challenge, primarily due to the complexity and variability of human 
physiology. 

    •  Security and Privacy: Medical data collected and managed by MCPS is very 
sensitive. Unauthorized access or tampering with this information can have severe 
consequences to the patient in the form of privacy-loss, discrimination, abuse and 
physical harm. Network connectivity enables new MCPS functionality through 
exchanging patient data from multiple sources; however, it also increases 
vulnerability of the system to security and privacy violations.   

    •  Certification: A report by the U.S. National Academy of “Science, Software for 
Dependable Systems: Sufficient Evidence?,” recommends evidence-based approach 
to the certification of high-confidence systems such as MCPS using explicit claims, 
evidence and expertise [Jackson07]. The complex and safety-critical nature of MCPS 
requires a cost-effective way to demonstrate medical device software dependability. 
Certification is therefore an essential requirement for the eventual viability of MCPS 
and an important challenge to be addressed. An assurance case is a structured 
argument supported by a documented body of evidence to provide a convincing and 
consistent argument that a system is adequately safe (or secure) [Menon09]. The 
notion of assurance cases hold the promise of providing an objective, evidence based 
approach to software certification. Assurance cases are increasingly used as a means 
for demonstrating safety in industries such as Nuclear Power, transportation, and 
automotive systems, and are mentioned in the recent IEC 62304 development 
standard for medical software. 



3.3  High-Confidence Development of MCPS 
3.3.1  Motivation 
Most new functionality in medical devices is software based, and many functions 
traditionally implemented in hardware – including safety interlocks – are relegated to 
software. Thus, high-confidence software development is very important for the 
safety and effectiveness of MCPS. 

A relatively conventional approach to high-assurance development of safety-
critical systems based on the mitigation of hazards is illustrated in Figure 2. The 
process starts with the identification of desired functionality and hazards associated 
with the system operation. The chosen functionality yield system functional 
requirements, while hazard mitigation strategies yield system safety requirements. 
Functional requirements are used to build detailed behavioral models of the software 
modules, while safety requirements are turned into properties that these models 
should satisfy. Models and their desired properties are the inputs to the model-based 
software development, which is comprised of verification, code generation, and 
validation phases. 

 

  
Figure  2: High-assurance development process for embedded software 

 
Model-based development has emerged as a means of raising the level of 

assurance in software system. In this approach, developers start with declarative 
models of the system perform rigorous model verification with respect to safety and 
functional requirements, and then use systematic code generation techniques to 
derive code that preserves the verified properties of the model. Such a development 
process allows one to detect problems with the design and fix them at the model 
level, early in the design cycle, where changes are easier and cheaper to make. More 
importantly, it holds the promise of improving the safety of the system through 
verification. Model-based techniques currently used in the medical device industry 
rely on semi-formal approaches such as UML and Simulink [Becker09] and thus do 
not allow developers to fully utilize the benefits of model-based design. The use of 
formal modeling enables making mathematically sound conclusions about the 
models and generating code from them.   



3.3.2  Challenges 
There are several challenges in developing the MCPS through the model-driven 
implementation process. The first challenge is choosing the right level of abstraction 
for the modeling effort. A highly abstract model makes the verification step 
relatively easy to perform. However a model that is too abstract is difficult to use in 
the code generation process, since too many implementation decisions have to be 
guessed by the code generator. On the other hand, a very detailed model makes code 
generation relatively straightforward, however, such models push the limits of 
available verification tools. 

Many modeling approaches rely on the separation of platform-independent and 
platform-dependent aspects. From the modeling and verification perspective, there 
are several reasons to separate the platform-independent aspects from the platform-
dependent aspects.  

First, hiding platform-dependent details reduces the modeling and verification 
complexity. Consider, for example, the interaction between a device and its sensors. 
For code generation, one may need to specify the details of how the device retrieves 
data from sensors. A sampling-based mechanism with a particular sampling interval 
will yield a very different generated code, compared to an interrupt based 
mechanism. However, exposing such details in the model adds an additional level of 
complexity to the model, complicating verification time increases too much. 

In addition, abstracting away from a particular platform allows us to use the 
model across different target platforms. Different platforms may have different kinds 
of sensors that supply the same value. For example, consider an empty-reservoir 
alarm that many infusion pumps implement. Some pumps may not have a physical 
sensor for that purpose and estimate the remaining amount of medication based on 
the infusion rate and elapsed time. Other pumps may have a sensor based on syringe 
position or pressure in the tube. Abstracting away these details would allow us to 
implement the same pump control code on different pump hardware. However, such 
separation leads to the integration challenges at the implementation level. The 
generated code from the platform-independent model needs to be integrated with 
different target platforms in a way that preserves the verified properties of the 
platform-independent model. 

Second, there is often a semantic gap between the model and implementation. A 
system is modeled using the formal semantics provided by the chosen modeling 
language. However, some of the model semantics may not match well with that of 
implementation. For example, in UPPAAL and Stateflow, the interaction between 
the PCA pump and the environment (e.g, user or pump hardware) can be modeled 
using instantaneous channel synchronization or event-broadcasting that takes zero-
time delay. Such semantics simplifies modeling input and output of the system so 
that the modeling/verification complexity is reduced. However, the correct 
implementation of such semantics is hardly realizable at the implementation level 



since execution of those actions requires interaction among components that take 
non-zero time-delay. 

A case study presented below concentrates on developing a PCA (Patient-
Controlled Analgesic) infusion pump system and considers several approaches to 
address these challenges. 

3.3.3  Case study 

PCA infusion pumps. 
A Patient-Controlled Analgesic (PCA) infusion pump is a type of infusion pump that 
primarily delivers pain relievers, and is equipped with a feature that allows for 
additional limited delivery of medication, called bolus, upon patient demand. This 
type of infusion pumps are widely used for pain control of post-operative patients. In 
case the pump overdoses such opioid drugs, the patient can be at risk of respiratory 
depression and death. Therefore, it is subject to stringent safety requirements that aim 
to prevent overdose. 

According to FDA’s Infusion Pump Improvement Initiative [FDA10a], the FDA 
has received over 56,000 reports of adverse events associated with the use of infusion 
pumps from 2005 through 2009. In the same period, 87 recalls of infusion pumps 
were conducted by the FDA, affecting all major pump manufacturers. The 
prevalence of the problems clearly indicates the need for better development 
techniques. 

 

The GPCA Project. 
 The Generic PCA project, a joint effort between PRECISE Center at the University 
of Pennsylvania and researchers at the U.S. Food and Drug Administration, aims to 
develop a series of publicly available artifacts that can be used as guidance for 
manufacturers. In the first phase of the project, a collection of documents has been 
developed, including a hazard analysis report [UPenn-b], a set of safety requirements 
[UPenn-a], and a reference model of PCA infusion pump systems [UPenn]. Based on 
these documents, one can develop PCA infusion pump controller software following 
a model-driven implementation. 

In the case study, software for the PCA pump controller is developed by using the 
model-driven implementation approach starting from the reference model and the 
safety requirements. A detailed account of the effort is presented in [Kim11]. 

The development approach follows the process outlined in Figure 2. The detailed 
steps are shown in Figure 3. In addition, the case study included the construction of 
an assurance case, a structured argument based on the evidence collected during the 
development process, which aims to convince evaluators that the GPCA-reference 



implementation complies to its safety requirements. The assurance case development 
is discussed in more detail in Section 3.7. 

 

   
Figure  3: The Model-Driven Development for the GPCA prototype. 

   
 



   
Figure  4: The System Architecture of the GPCA Model. 

   

Modeling. 
 The reference model of the GPCA pump implemented in Simulink/STATEFLOW is 
used as the source of functional requirements and converted in via a manual but 
systematic translation to UPPAAL [Behrmann04]. The model structure follows the 
overall architecture of the reference model, which is shown in Figure 4. The software 
is organized into two state machines, the state controller and the alarm detecting 
component. The user interface has been considered in a follow-up case study 
[Masci13]. Both state machines interact with sensors and actuators on the pump 
platform. 

The state machines are organized as a set of modes, with each mode captured as a 
separate sub-machine. In particular, the state controller contains four modes: (1) 
POST (Power-On Self Test) mode is the initial mode that checks system components 
on start-up; (2) The check-drug mode represents a series of checks that the caregiver 
performs to validate the drug loaded into the pump; (3) The infusion configuration 
mode represents interactions with the caregiver to configure infusion parameters such 
as infusion rate and VTBI (volume to be infused) and validate them against the limits 
encoded in the drug library; (4) the infusion session, where the pump controls 
delivery of the drug according to the configuration and patient's bolus requests. 
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Model verification. 
GPCA safety requirements are expressed in English as "shall" statements. 
Representative requirements are "No normal bolus doses shall be administered when 
the pump is alarming" and “The pump shall issue an alert if paused for more than t 
minutes". 

Before verification could be performed, requirements need to be formalized as 
properties to be checked. One can categorize the requirements according to their 
precision and level of abstraction: (A) requirements that are detailed enough to be 
formalized and verified on the model; (B) requirements that are beyond the scope of 
the model; (C) requirements that are too imprecise to be formalized. Only 
requirements in category A can be readily used in verification, however, just 20 out 
of 97 GPCA requirements fell into this category. 

Most of the requirements in Category B concern the functional aspects of the 
system that are abstracted away at the modeling level. For example, consider the 
requirement "If the suspend occurs due to a fault condition, the pump shall be 
stopped immediately without completing the current pump stroke". There is another 
requirement to complete the current stroke under other kinds of alarms. That is, the 
motor needs to be stopped in different ways in different circumstances. These 
requirements fall into Category B, since the model does not detail the behavior of the 
pump stroke. Handling of properties in this category can be done in several ways. 

One way is to introduce additional platform-specific details into the model, 
increasing complexity of the model. However, this would blur the distinction 
between platform-independent and platform-specific models, which is useful in the 
model-based development. An alternative approach is to handle these requirements 
outside of the model-based process, e.g., validating by testing. In this case, however, 
the benefits of formal modeling are lost. 

A better approach is to match the levels of detail by further decomposing the 
requirements. At the platform-independent level, one can check that the property that 
the system performs two different stop actions in response to different alarm 
conditions (which would be a Category A requirement). Then, at the platform-
specific level, one needs to check that one stop action corresponds to immediate 
stopping of the motor, while the other stop action lets the motor complete the current 
stroke. 

An example from the third category is "Flow discontinuity at low flows should be 
minimal," which does not specify what is a low flow or what discontinuity can be 
accepted as minimal. This is a simple example of a deficiency in the requirement 
specification uncovered during formalization. 

Once the categorization of the requirements is complete, requirements in Category 
A are formalized and verified using a model checker. In the case study, the 
requirements were converted into UPPAAL queries. Queries in UPPAAL use a 



subset of Timed CTL temporal logic and can be verified using the UPPAAL model 
checker. 

 

Code generation and system integration. 
 Once the model is verified, a code generation tool is used to produce the code in 
property-reserving manner. An example of such tool is TIMES [Amnell03] for 
UPPAAL timed automata. Since the model is platform-independent, the resulting 
code is also platform-independent. For example, the model does not specify how the 
actual infusion pump interacts with sensors and actuators attached to the specific 
target platform. Input and output actions (e.g., a bolus request by a patient or an 
occurrence of the occlusion alarm from the pump hardware) are abstracted as 
instantaneous transitions associated with input/output synchronization with the their 
environment. On a particular platform, the underlying operating system is scheduling 
the interactions, affecting the timing of the execution. 

There are several approaches to address this issue at the integration stage. In 
[Henzinger07], the higher-level programming abstraction is proposed so that timing 
aspects can be modeled and generated into code that is independent from scheduling 
algorithms of a particular platform. Then, the platform integration is performed by 
verifying time-safety to check if the platform-independent code can be scheduled on 
the particular platform. Another approach is to systematically generate an I/O 
interface that helps the platform-independent and dependent code to be integrated in 
a traceable manner [Kim12]. From the code generation perspective, [Lublinerman09] 
proposed a way to generate code for a given composite block of the model 
independently from context and using minimal information about the internals of the 
block. 

Validation of the implementation. 
 Unless the operation of an actual platform is completely formalized, there will 
invariably be assumptions made during the verification and code generation phases 
that cannot be formally guaranteed. The validation phase is meant to check that these 
assumptions do not break the behavior of the implementation. In the case study, a test 
harness that systematically exercises the code using test cases derived from the 
model. There is a rich literature on model-based test generation, see [Dias07] for a 
survey of the area. The goal of such testing-based validation is to systematically 
detect deviations of the system behavior from that of the verified model. 

3.3.4  Remarks and Discussion 
Extreme market pressures faced by the medical device industry force companies to 
reduce development cycles as much as possible. The challenge is to find a develop-
ment process that will deliver a high degree of safety assurance under these 



conditions. We believe that model-based development can be a significant part of 
such development process. The case study discussed in this section illustrates the 
steps of the high-assurance development process using a simple medical device. Each 
of the steps can be implemented in a variety of ways. The choice of modeling, verifi-
cation, and code generation technologies depends on factors such as complexity and 
criticality level of the application. However, the process itself is general enough to 
accommodate a wide variety of rigorous development technologies. 

3.4 On-Demand Medical Devices and Assured 
Safety 
Historically, medical devices have been used as individual tools for patient therapy. 
In order to provide complex therapy caregivers (i.e., physicians and nurses) must 
coordinate the activities of the various medical devices manually. This is burdensome 
for the caregiver, error and accident prone. 

One example of manual device coordination in current practice is the X-ray & 
Ventilator coordination mentioned in Section 2 and another example is trachea or 
larynx surgery performed with a laser scalpel. In this type of surgery, the patient is 
under general anesthesia while the surgeon makes cuts on the throat using a high 
intensity laser. Because the patient is under anesthesia, their breathing is supported 
by an anesthesia ventilator which supplies a high concentration of oxygen to the 
patient. This situation presents a serious hazard: if the surgeon accidentally cuts into 
the breathing tube using the laser, the increased concentration of oxygen can lead to a 
rapid combustion, burning the patient from the inside out. In order to mitigate this 
hazard, the surgeon and anesthesiologist must constantly communicate: When the 
surgeon needs to cut, he or she signals the anesthesiologist who reduces or stops the 
oxygen being supplied to the patient. If the patient's oxygenation levels drop too low, 
the anesthesiologist will signal the surgeon to stop cutting so oxygen can be supplied 
again. 

If medical devices could coordinate with one another, then the surgeon and 
anesthesiologist would not have to expend concentration and effort to ensure that the 
activity of the medical devices are safely synchronized. Furthermore, the patient 
would not be exposed to the potential for human error. There are many clinical 
scenarios which would benefit from automated medical device coordination. These 
scenarios involve at least one of device synchronization, data fusion, or closed-loop 
control. The laser scalpel ventilator safety interlock epitomizes device 
synchronization: each device must always been in a correct state relative to other 
devices. In data-fusion physiologic readings from multiple separate devices are 
considered together. Examples of such applications include smart alarms and clinical 
decision support systems (see Section 3.5). Additionally, closed-loop control of 
therapy can be achieved by collecting data from devices that sense patient's 



physiological state and then using that data to control actuators such as infusion 
pumps (see Section 3.6). 

 

3.4.1  Definition - Virtual Medical Devices 
A collection of devices working in unison to implement a given clinical scenario is, 
in essence, a new medical device. Such collections have been referred to as virtual 
medical devices (VMDs) because no single manufacturer is producing this device 
and delivering it fully formed to the clinician. A VMD does not exist until assembled 
at the patient's bedside. A VMD instance is created each time the clinician assembles 
a set of devices for the VMD and connects them together. 

3.4.2  Challenges 
There are several existing standards designed to enable medical device 
interconnectivity and interoperability. These standards include the Health Level 7 
standards [Dolin06], IEEE-11073 [Iso/ieee11073, Clarke07], and the IHE profiles 
[Carr03]. While these standards enable medical devices to exchange and interpret 
data, they do not adequately address more complex interactions between medical 
devices such as inter-device coordination and control such as with the laser scalpel 
and ventilator. The notion of a VMD poses one major fundamental question: How 
does one assure safety in systems that are assembled by their users? Traditionally, 
most safety-critical cyber-physical systems, such as aircraft, nuclear power plants, 
and medical devices, are evaluated for safety by regulators before they can be used. 
The state of the art in safety assessment is to consider the complete system. This is 
possible because the complete system is manufactured by a single systems integrator. 
However, as mentioned before, virtual medical devices are constructed at bedside, 
based on the needs of an individual patient and from available devices. This means 
that a caregiver may instantiate a VMD from a combination of medical devices (i.e., 
varying in terms of make, model, feature set) that have never been combined into an 
integrated system for that particular clinical scenario. Finally, "on-demand" 
instantiation of the VMD confounds the regulatory pathways for medical devices that 
are currently available. In particular, there is no consensus on the role of the regulator 
when it comes to VMD. Should regulators mandate specific standards? Do regulators 
need to adopt component wise certification regimes? What is the role, if any, of third 
part certifiers? 

3.4.3  Case Studies - The Integrated Clinical Environment (ICE) 
and Medical Device Coordination Framework (MDCF) 
The subject of safety assessment of on-demand medical systems has been the focus 
of a number of research projects. These projects have explored different aspects of 



on-demand medical systems, their safety, and possible mechanisms for regulatory 
oversight. The Medical Device Plug & Play project articulated the need for on-
demand medical systems, documented specific clinical scenarios that would benefit, 
and developed the Integrated Clinical Environment (ICE) architecture, which has 
been codified as an ASTM standard (ASTM F2761-2009) [ASTM09]. ICE proposes 
to approach the engineering and regulatory challenges by building medical systems 
around a system architecture that supports compositional certification. In such an 
architecture (Figure 5), each medical system would be composed out of a variety of 
components (clinical applications, a medical application platform, and medical 
devices), which would be regulated, certified, and then obtained by the health-care 
organization separately [Hatcliff12]. 

ICE. 
Figure 5 shows the primary components of the ICE architecture. The rest of this 
section summarizes the intended functionality and goals for each of these 
components. It is important to note that ASTM F2761-2009 does not provide detailed 
requirements for these as it is purely an architectural standard. However the roles of 
each of the components in the architecture imply certain informal requirements: 

    •  Apps. Applications are software programs that provide the coordination 
algorithm for a specific clinical scenario (i.e., smart alarms, closed-loop control of 
devices, etc.). In addition to executable code, these applications contain device 
requirements declarations: a description of the medical devices they need to operate 
correctly. These apps would be validated and verified against their requirements 
specification before they are marketed.  

    •  Devices. Symmetrical to the applications, medical devices would implement an 
interoperability standard and carry a self-descriptive model, known as a capabilities 
specification. Each medical device would be certified that it conforms to its 
specification before it is marketed and sold to end users.  

    •  Supervisor. The supervisor provides a secure isolation kernel and virtual 
machine (VM) execution environment for clinical applications. It would be 
responsible for ensuring that apps are partitioned in both data and time from each 
other. 

    •  Network Controller. The network controller is the primary conduit for 
physiologic signal data streams and device control messages. The network controller 
would be responsible for maintaining a list of connected devices and ensuring proper 
quality of service guarantees in terms of time and data partitioning of data streams, as 
well as security services for device authentication and data encryption. 



    •  ICE Interface Description Language. The description language is the primary 
mechanism for ICE-compliant devices to export their capabilities to the network 
controller. These capabilities may include what sensors and actuators are present on 
the device, and the command set it supports. 

 
 
 

   
Figure  5: ICE Architecture 

MDCF. 
The Medical Device Coordination Framework (MDCF) [King09, MDCF] is an open-
source project that aims to provide a software implementation of a medical 
application platform that conforms to the ICE standard. The purpose of the MDCF is 
to provide a modular framework that enables researchers to rapidly prototype 
systems and explore implementation and engineering issues associated with on-
demand medical systems.   

 



 
Figure  6: MDCF services decomposed along ICE architectural boundaries 
  The MDCF is implemented as a collection of services which work together to 
provide some of the capabilities required by ICE as essential for a medical 
application platform. The functionality of these services also decompose along the 
architectural boundaries defined in the ICE architecture (see Figure 6), thus the 
MDCF consists of "network controller" services, "supervisor" services and a global 
resource management service. 

Network controller services are as follows: 

     •  Message Bus. Abstracts the low level networking implementation (e.g.,   
TCP/IP) and provides a publish/subscribe messaging service. All communication 
between medical devices and the MDCF occurs via the message bus, including 
protocol control messages, patient physiologic data, and commands sent from apps to 
devices. The Message Bus also provides basic real-time guarantees (e.g., bounded 
end-to-end message transmission delays) that apps can take as assumptions. 
Additionally, the Message Bus supports various fine-grained message and stream 
access control and isolation policies. While the current implementation of the 
message bus encodes messages using XML, the actual encoding strategy is 
abstracted away from the apps and devices by the message bus API which exposes 
messages as structured objects in memory. 



    •  Device Manager. Maintains a registry of all medical devices currently connected 
with the MDCF. The Device Manager implements the server side of the MDCF 
device connection protocol (medical devices implement the client side) and tracks 
the connectivity of those devices, notifying the appropriate apps if a device goes 
offline unexpectedly. The Device Manager serves another important role: it validates 
the trustworthiness of any connecting device by determining if the connecting device 
has a valid certificate.  

    •  Device Database. Maintains a list of all specific medical devices that the 
healthcare provider's bioengineering staff has approved for use. In particular, the 
database lists each allowed device's unique identifier (like an Ethernet MAC 
address), the manufacturer of the device, and any security keys or certificates that the 
Device Manager will use to authenticate connecting devices against.  

    •  Data Logger. Taps into the flows of messages moving across the message bus 
and selectively logs them. The logger can be configured with a policy specifying 
which messages should be recorded. Because the message bus carries every message 
in the system, the logger can be configured to record any message or event that 
propagates through the MDCF. Logs must be tamper resistant, tamper evident, and 
access to logs must itself be logged, and be physically and electronically controlled 
by a security policy.  

Supervisor Services are as follows: 

    •  Application Manager. Provides a virtual machine for apps to execute in. In 
addition to simply executing program code, the Application Manager checks that the 
MDCF can guarantee the app's requirements at runtime and provides resource and 
data isolation, as well as access control and other security services. If the app 
requires a certain medical device, communications latency, or response time from 
app tasks but the MDCF cannot currently make those guarantees (e.g., due to system 
load or the appropriate medical device has not been connected), then the App 
Manager will not let the clinician start the app in question. If the resources are 
available, the application manager will reserve those resources in order to guarantee 
the required performance to the app. The application manager further detects and 
flags potential medically meaningful app interactions, since individual apps are 
isolated and may not be aware what other apps are associated with a given patient.  

    •  Application Database. Stores the applications installed in the MDCF. Each 
application contains executable code and requirement metadata used by the 
application manager to allocate the appropriate resources for app execution.  

    •  Clinician Service. Provides an interface for the clinician console GUI to check 
the status of the system, start apps, and display app graphical user interface elements. 
Since this interface is exposed as a service, the clinician console can be run locally 



(on the same machine) that is running the supervisor, or remotely (e.g., at a nurse's 
station).  

    •  Administrator Service. Provides an interface for the administrator's console. 
System administrators can use the administrator's console to install new applications, 
remove applications, add devices to the device database and monitor the performance 
of the system. 

3.4.4 Remarks 
On-demand medical systems represent a new paradigm for safety-critical systems: 
the final system is assembled by the user instead of the manufacturer. Research into 
the safety assessment of these systems is an active topic. The projects described in 
this section represent a first step towards understanding the engineering and 
regulatory challenges associated with such systems. The success and safety of these 
systems will not only depend on new engineering techniques, but also new 
approaches to regulation and a willingness in industry to adopt appropriate 
interoperability standards. 

3.5 Smart Alarms and Clinical Decision 
Support Systems 
3.5.1 Motivation: The Noisy Intensive Care Environment 
Hospital Intensive Care Units (ICUs) utilize a wide array of medical devices to care 
for patients. A subset of these medical devices acts as sensors which detect the 
intensity of various physical and chemical signals in the body. These sensors allow 
clinicians (doctors, nurses, and other clinical caretakers) to better understand the 
patient's current state. Examples of such sensors include automatic blood pressure 
cuffs, thermometers, heart rate monitors, pulse oximeters, electroencephalogram 
meters, automatic glucometers, electrocardiogram meters, etc. These sensors range 
from very simple to very complex. Additionally, along with traditional techniques, 
digital technologies have enabled new sensors to be developed and evaluated for 
clinical use. 

The vast majority of these medical devices acts in isolation, reading a particular 
signal, and outputting the result of that signal to some form of visualization 
technology so it may be accessed by clinicians. Some devices stream data to a 
centralized visualization system (such as a bedside monitor or nursing station 
[Phillips10, Harris13]) for ease of use. However, each of the signals is still displayed 
independently. It is up to the clinician to synthesize the presented information to 
determine the patient's state. 



Many of these devices can be configured to alert clinicians to a deterioration in 
patient state. Most devices currently in use can only be configured with threshold 
alarms, which activate when the particular vital sign being measured crosses a 
predefined threshold. While threshold alarms can be vital in the timely detection of 
emergency states, they have been shown to be not scientifically derived [Lynn11] 
and have a high rate of false alarms [Clinical07], which can be caused by 
insignificant random fluctuations in the patient's vital signs or noise caused by 
external stimuli (the most common example is patient movement, which can cause 
sensors to move, get compressed, or fall off). This large number of erroneous alarms 
causes alarm fatigue, a desensitization to the presence of these alarms which causes 
clinicians to ignore them [Commission13]. Alternately, in an effort to reduce the 
number of alarms, clinicians may improperly readjust settings on the monitor or turn 
off alarms entirely [Edworthy06]. Both of these can lead to miss true alarms and a 
decrease in quality of care [Clinical07, Donchin02, Imhoff06]. Various efforts have 
been made to reduce alarm fatigue. These usually focus on improving workflow, 
establishing appropriate patient-customized thresholds, and identifying situations 
where alarms are not clinically relevant [Clifford09, EBMWG92, Oberli99, 
Shortliffe79]. However, isolated threshold alarms cannot capture sufficient nuance in 
patient state to completely eliminate false alarms. Also, these alarms only alert 
clinicians to the fact that some threshold was crossed; they fail to provide any 
physiologic or diagnostic information about the current state of the patient that might 
help reveal the underlying cause of the patient's distress. 

Clinicians most often use multiple vital signs in concert to understand the patient's 
state. For example, a low heart rate (bradycardia) can be normal and healthy. 
However, if a low heart rate occurs in conjunction with an abnormal blood pressure 
or a low blood oxygen level, this can be cause for concern. Thus, it seems pertinent 
to develop smart alarm systems, systems that consider multiple vital signs in concert 
before raising an alarm. This would reduce false alarms, improving the alarm 
precision and reducing alarm fatigue, leading to improved care. Such a smart alarm 
system would be a simple version of what is in general known as a Clinical Decision 
Support system (CDS system) [Garg05]. Clinical decision support systems combine 
multiple sources of patient information with preexisting health knowledge to help 
clinicians make more informed decisions. It has repeatedly been shown that well 
designed clinical decision support systems have the potential to dramatically improve 
patient care, not just by reducing alarm fatigue, but by allowing clinicians to better 
utilize data to assess patient state. 

3.5.2  Definition: Clinical Decision Support Systems 
Fundamentally, CDS systems are a specialized form of MCPS with physical 
actuation limited to visualization. They take as inputs multiple data streams, such as 
vital signs, lab values, and patient history, subject them to some form of analysis, and 



output the results of that analysis to a clinician. A smart alarm is the simplest form of 
decision support system, in which multiple data streams are analyzed to produce a 
single alarm for the clinician. More complex systems may use trending, signal 
analysis, online statistical analysis, or previously constructed patient models, and 
may produce detailed visualizations. 

3.5.3  Challenges 
As CDS systems are a specialized form of MCPS, the development of CDS systems 
thus requires satisfying the core features of cyber-physical system development. In 
fact, without these features, CDS system development is impossible. The current lack 
of widespread use of CDS systems is in part due to the difficulty that has been 
encountered in establishing these features in a hospital setting. 

One of the most fundamental of these requirements is the achievement of device 
interoperability. Even the simplest CDS system (such as a smart alarm system) must 
obtain access to real-time vital sign data being collected by a number of different 
medical devices attached to the patient. To obtain this data, the devices collecting the 
required vital signs must be able to inter-operate, if not with each other, then with a 
central data repository. At this repository, data could be collected, time-
synchronized, analyzed, and visualized. 

However, achieving interoperability in medical devices has previously been a 
major hurtle. Due to increased costs, the exponential blowup in regulatory difficulty, 
and the lucrative potential of selling a suite of devices with limited interoperability, 
individual device manufacturers currently have little incentive to make their devices 
inter-operate. Development of an inter-operable platform for device communication 
would enable MCPS to stream real-time medical information from different devices. 

Many other challenges exist. For example, the safety and effectiveness of CDS 
systems is dependent on other factors, such as network reliability and real-time 
guarantees on message delivery. As networks in current hospital systems are often 
ad-hoc, highly complex, and built over many decades, such reliability is rare. 

Another challenge is that of data storage. To achieve high accuracy, the 
parameters of the computational intelligence at the heart of a CDS system must often 
be tuned using large quantities of retrospective data. Dealing with big data is thus a 
vital component of the development of CDS systems. Addressing this problem will 
require hospitals to recognize the value in capturing and storing patients' data, along 
with adoption of dedicated hospital infrastructure to store and access data as part of 
routine workflow. 

CDS systems require some level of context-aware computational intelligence. 
Information from multiple medical device data streams must be extracted and 
filtered, and used in concert with a patient model to create a context-aware clinical 
picture of the patient. There are three major ways in which context-aware 
computational intelligence can be achieved: by encoding hospital guidelines, by 



capturing clinician mental models, or by learning models statistically through 
machine learning on medical data. 

While the majority of hospital guidelines can usually be encoded as a series of 
simple rules, they are often vague and/or incomplete, so while they may serve as a 
useful baseline, they are often insufficient on their own. Capturing clinician mental 
models involves interviewing a large number of clinicians about their decision 
making process to hand-build an algorithm. This process can be laborious, clinician 
thinking can be difficult to quantify in software, and the results from different 
clinicians can be difficult to reconcile. Creating models using machine learning is 
often the most straightforward approach. However, training such models requires 
large amounts of retrospective patient data and clear outcome labels, both of which 
can be difficult to acquire. When such data is available, it is often noisy, and filled 
with missing values. Choice of learning technique can be a difficult question, and 
while algorithm transparency is a good metric (to empower clinicians to understand 
the underlying process and avoid opaque black-box algorithms) there is no single 
choice of learning technique that is most appropriate for all scenarios. 

3.5.4  Case Study: A Smart Alarm system for post-CABG 
surgery patients 
Post-operative Coronary Artery Bypass Graft (CABG) patients are at particular risk 
of physiologic instability. Thus these patients are routinely subject to continuous 
monitoring of a combination of common vital signs. The hope is that detection of 
physiologic changes will allow practitioners to intervene in a timely manner and 
prevent post-surgery complications. As previously discussed, however, these 
continuous vital sign monitors are equipped only with simple threshold-based alarms, 
which, coupled with the rapidly-evolving post-surgical state, can lead to a large 
number of erroneous false positive alarms. For example, it is common for the finger 
clip sensors employed by pulse oximeters to fall of the patients as they get situated in 
their ICU bed, or for changes in the artificial lighting of the care environment to 
produce erroneous readings. 

To reduce these and other erroneous alarms, a smart alarm system was developed 
which combines four main vital signs routinely collected in the Surgical ICS (SICU): 
blood pressure (BP), heart rate (HR), respiratory rate (RR) and blood oxygen 
saturation (SpO2). ICU nurses were interviewed to determine appropriate ranges for 
binning each vital sign into a number of ordinal sets (e.g., "Low," "Normal," "High," 
"Very High", leading to classifying, for example, a blood pressure above 107 as 
"High"). Binning vital signs in this way helped overcome the difficulty of 
establishing a ruleset customized to each patient's baseline vital signs. The binning 
criteria can be modified to address a specific patient with, for example, a very low 
"Normal" resting heart rate, without rewriting the entire rule set. 



Afterward, a set of rules were developed in conjunction with these nurses to 
identify combinations of these vital sign statuses which would be cause for concern. 
The "smart" alarm monitors a patient's four vitals, categorizes which ordinal set they 
belong to, and searches the rule table for the corresponding alarm level to output. To 
deal with missing data (due to network or sensor faults), rapid drops to zero are 
conservatively classified as "Low" for the duration of the signal drop. 

This smart alarm avoided many of the challenges that normally face CDS systems 
in the clinical environment. The set of vital signs employed was very limited and 
included only vital signs which are commonly collected and synchronized by the 
same medical device. As the "intelligence" of the smart alarm system was a simple 
rule table based on clinician mental models, it did not require large amounts of 
retrospective data to calibrate, and was transparent and easy for clinicians to 
understand. While network reliability would be a concern for such a system running 
in the ICU, the classification of missing values as "Low" provides a conservative 
fallback in case of a brief network failure. Additionally, running the system on a real-
time middleware would provide the necessary data delivery guarantees to ensure 
system safety. 

To evaluate the performance of the system, 27 CABG patients were observed 
while they convalesced in the ICU immediately after the CABG procedure. Of these 
27 patients, nine had the requisite vital sign samples stored in the hospital IT system 
during the time period of the observation. Each of these patients was observed for 
between 26 and 127 minutes, totaling 751 minutes of observation. In order to 
compare monitor alarm performance with the CABG smart alarm, the minute by 
minute samples of these patients physiologic state were retroactively retrieved (after 
the observations) from the UPHS datastore. The smart alarm algorithm was applied 
to the retrieved data streams, resulting in a trace of the smart alarm outputs that 
would have been produced if the smart alarm were active at the patient's bed side. 

Because of the relatively slow rate at which a patient can deteriorate and the 
expected response time of the care staff, an intervention alarm was considered to be 
covered by a smart alarm if the alarm occurred within 10 minutes of the intervention. 

Overall, the smart alarm system produced fewer alarms. During the study, the 
smart alarm was active 55% of the time that the standard monitor alarms were active, 
and of the ten interventions during the observation time period, nine were covered by 
the smart alarm. The significant alarm was likely deemed significant not due to the 
absolute values of the vital signs being observed, but by their trend. An improved 
version of this smart alarm system would thus include rules concerning the trend of 
each of the vital signs. 

3.5.5  Remarks 
As more medical devices become capable of recording continuous vital sign systems, 
and as medical systems become increasingly interoperable, CDS systems will 



become essential tools to allow clinicians to process, interpret, and analyze patient 
data. While there are challenges facing widespread adoption of CDS systems in 
clinical environments, beginning to build these systems will expose their clinical 
utility and provide impetus for overcoming said challenges. 

3.6  Closed-loop System 
3.6.1  Background/Motivation 
A clinical scenario can be viewed as a control loop: the patient is the plant, the 
controller collects information from sensors (e.g., bedside monitors) and sends 
configuration commands to actuators (e.g., infusion pumps) [Lee12]. Traditionally, 
caregivers act as the controller in most scenarios, which imposes significant decision 
making burden on them as one caregiver is usually caring for several patients and can 
check on each patient only sporadically. Continuous monitoring, where patient 
condition is under constant supervision, is an active area of research [Maddox08]. 
However, to improve patient safety further, the system should be able to also 
continuously react to changes in patient condition. 

The smart alarm systems and decision support systems, discussed in the previous 
section, facilitate the integration and interpretation of clinical information, helping 
caregivers make decision more efficiently. Closed-loop systems aim to achieve a 
higher level of intelligence: in such systems, a software-based controller 
automatically collects and interprets physiological data, and controls the therapeutic 
delivery devices. Many safety critical systems utilize automatic controllers, e.g., 
autopilots in airplanes and adaptive cruise control in vehicles. In patient care, the 
controller can continuously monitor the patient's states and automatically reconfigure 
the actuators when the patient's condition stays within a pre-defined operation region. 
It will alert and hand over the control back to caregivers if a patient's state starts 
diverting from the safe range. Physiological closed-loop systems can take part of 
caregivers’ workload so they can better focus on handling critical events, which 
would ultimately improve patient safety. In addition, software controllers can run 
advanced decision making algorithms (e.g., model-predictive control in blood 
glucose regulation [Hovorka04]) that are too computationally complicated for human 
caregivers, and this may improve both safety and effectiveness of patient care. 

The concept of closed-loop control has been introduced to medical applications, 
e.g., implantable devices such as cardioverter defibrillators and other special-purpose 
standalone devices. A physiological closed-loop system can also be built by 
networking multiple existing devices, such as infusion pumps and vital sign 
monitors. The networked physiological closed-loop system can be modeled as a 
VMD.  



3.6.2  Challenges 
The networked closed-loop setting introduces new hazards that could compromise 
patient safety. The hazards need to be identified and mitigated in a systematic way. 
Closed-loop MCPS raise several unique challenges for safety engineering. 

First, the plant, i.e., the patient, is an extremely complex system that usually 
exhibits significant variability and uncertainty. Physiological modeling has been a 
decade long challenge for bio-medical engineers and medical experts, and the area is 
still at the frontier of science. Unlike in many other engineering disciplines such as 
mechanical engineering or electronic circuit design, where high-fidelity first-
principle models are usually directly applicable to theoretical controller design, the 
physiological models are usually non-linear and contain parameters that are highly 
individual-dependent, time-varying, and not easily identifiable given the technologies 
available. This imposes a major challenge on control design as well as system level 
safety reasoning. 

Second, in the closed-loop medical device system, there is a complex interaction 
between the continuous physiology of the patient and the discrete behavior of the 
control software and network. Since most closed-loop systems require supervision 
from users (either caregivers or patients themselves), the human behavior has to be 
considered in the safety arguments. 

Third, the control loop is subject to uncertainties caused by sensors, actuators, and 
communication network. For example, some body sensors are very sensitive to 
patient movements; vital sign monitors may alert faulty readings due to a dropped 
finger-clip; due to technological constraints, some bio-sensors have non-negligible 
error even when they are used correctly, e.g., the continuous glucose monitor 
[Ginsberg09]. The network behavior also has a critical impact on patient safety: 
patients can be harmed by the actuators if packets that carry critical control 
commands are dropped in the network. 

3.6.3  Case Study 
One way to systematically address the challenges listed above is to consider a model-
based approach similar to the one outlined in Section 3.3, extending the high-
confidence approach based on hazard identification and mitigation from individual 
devices to the system composed of a collection of devices and a patient. 

This section briefly describes a case study of the use of physiological closed loop 
in pain control using a patient-controlled analgesia (PCA) infusion pump, introduced 
in Section 3.3.3. The biggest safety concern about the use of PCA pumps for pain 
control is that an overdose of an opioid analgesic can cause respiratory failure. 
Existing safety mechanisms built into PCA pumps include limits on bolus amounts, 
which are programmed by a caregiver before the start of the infusion, and minimum 
time intervals between consecutive bolus doses. In addition, nursing manuals 



prescribe periodic checks of the patient condition by a nurse. However, these 
mechanisms are considered insufficient to cover all possible scenarios [Nuckols08]. 

The case study [Pajic12] presents a safety interlock design for PCA infusion, 
implemented as an on-demand MCPS as described in Section 3.4 and illustrated in 
Figure 3.6.3. The pulse oximeter continuously monitors heart rate (HR) and blood 
oxygen saturation (SpO2). The controller receives measurements from the pulse 
oximeter and it may stop the PCA infusion if the HR/SpO2 readings indicate a 
dangerous decrease in respiratory activity, thereby preventing overdosing. 

Safety requirements for the system are based on two regions in the space of 
possible patient states as reported by the two sensors, as illustrated in Figure 7. The 
critical region represents imminent danger to the patient and must be avoided at all 
times; the alarming region is not immediately dangerous but raises clinical concerns. 

The control policy for the safety interlock may be to stop infusion as soon as the 
patient state enters the alarming region. The immediate challenge is to define the 
alarming region to be large enough so that the pump can always be stopped before 
the patient enters the critical region. At the same time, the region should not be too 
large to avoid false alarms which decrease the effectiveness of pain control 
unnecessarily. Finding the right balance and defining exact boundaries of the two 
regions was beyond the scope of the case study. 

 

 
 

 
 

Figure 7. Design of a PCA safety interlock. 
 

The goal of the case study was to verify that the closed-loop system satisfies its 
patient requirements. To achieve this goal, one needs models of the infusion pump, 
pulse oximeter, control algorithm, and physiology of the patient. 

Patient modeling is the critical aspect of the case study. Both pharmacokinetic and 
pharmacodynamics aspects of physiology should be considered [Mazoit07]. 
Pharmacokinetics specify how the internal state of the patient, represented by the 
drug concentration in the blood, is affected by the rate of infusion. 

(a) Closed-loop PCA System. (b) Regions of Patient's 
conditions. 



Pharmacodynamics specify how the internal state affects observable outputs of the 
model, that is, the relationship between the drug concentration and oxygen saturation 
levels measured by the pulse oximeter. The proof-of-concept approach taken in the 
case study relies on the simplified pharmacokinetic model of [Bequette03]. To make 
the model applicable to a diverse patient population, parameters of the model were 
taken to be ranges, rather than fixed values. To avoid the complexity of 
pharmacodynamics, a linear relationship between the drug concentration and patient 
vital signs is assumed. 

Verification efforts concentrated on the timing of the control loop. After the 
patient enters the alarming region, it takes time for the controller to detect the danger 
and act on it. There are delays involved in obtaining sensor readings, delivering the 
readings from the pulse oximeter to the controller, calculating the control signal, 
delivering to the pump, and finally stopping the pump motor. In order to make 
verification results sound, the continuous dynamics of the patient model is used to 
derive , the minimum time over all combinations of parameter values in the 
patient model that can pass from the moment the patient state enters the alarming 
region to the moment it enters the critical region. The verification can now abstract 
away from the continuous dynamics, significantly simplifying the problem. Using a 
timing model of the components in the system, one can verify that the time it takes to 
stop the pump is always smaller than . 

3.6.4  Remarks 
The PCA system is a relatively simple but useful use case of closed-loop medical 
devices. It is worth noting that other types of closed-loop systems may introduce new 
engineering challenges due to their functionalities and requirements. For example, 
blood glucose control for diabetes has garnered a lot of attention from both 
engineering and clinical communities, and various concepts of closed-loop or semi-
closed-loop systems have been proposed [Cobelli09, Kovatchev09, Hovorka04]. 
Compared to the PCA system, the closed-loop glucose control system is substantially 
more complex and opens many opportunities for new research. 

The fail-safe mode in the PCA system is closely related to the clinical objective: 
overdosing is the major concern; while the patient may suffer from more pain when 
PCA is stopped, it is considered a safe action, at least for a reasonably time duration. 
Such kind of fail-safe mode may not exist in other clinical scenarios: for example, in 
the glucose control system, the goal is to keep the glucose level within a target range, 
i.e., stopping the insulin pump is not a default safe action since high glucose level is 
also harmful. 

The safety criteria in the PCA system is defined by delineating a region in the 
state space of the patient model (such as the critical region in the case study above). 
Safety violations are then detected as threshold crossings in the stream of patient 
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vital signs. Such crisp, threshold-based rules are often crude simplifications. 
Physiological systems have certain level of resilience and the true relation between 
health risks and physiological variables is still not completely understood. Time of 
exposure is also important: a short spike in the drug concentration may be less 
harmful than a longer interval of a lower-level concentration. 

The sensor, pulse oximeter, used in the PCA system is relatively accurate with 
respect to the ranges that clinicians would concern. In some other scenarios, sensor 
accuracy is a non-negligible factor. For example, a glucose sensor can have a relative 
error of up to 15% [Ginsberg09], and given that the target range is relatively narrow, 
such error may significantly impact system operation and must be explicitly 
considered in the safety arguments. 

Even if the sensor is perfectly accurate, it may not be predictive enough. While 
oxygen saturation can be used to detect respiratory failure, the effects could appear 
too late, that is, after harm to the patient is already done. Capnography data, which 
measures levels of carbon dioxide exhaled by the patient, can be used to detect the 
problem much sooner, but it is more expensive and invasive technology compared to 
pulse oximetry. This example shows the need to include more accurate 
pharmacodynamics data into the patient model, which can be used to account for the 
detection delay. 

Another important factor in the closed-loop medical system is the human user's 
behavior. In the PCA system, the user behavior is relatively simple: the clinicians 
will be alerted in certain conditions, and most of the times they do not need to 
intervene in the operation of the control loop. In other applications with more 
complicated requirements, the user may demand a more involving role in the control. 
For example, in the glucose control application, a user will need to take back the 
control authority when the glucose level is significantly out of range, or even when 
the automatic controller is running, the user may choose to disapprove certain control 
actions for various reasons (e.g., the patient is not comfortable with a large insulin 
dose). The more complicated user interaction pattern introduces new challenges to 
the model-based validation and verification. 

3.7  Assurance Cases 
The safety of medical systems is of great public concern which is reflected in the fact 
that many such systems much adhere to government regulations and/or be certified 
by licensing bodies [Isaksen97]. For example, medical devices sold in the United 
States are regulated by the U.S. Food and Drug Administration (FDA). Some of these 
medical devices, such as infusion pumps, cannot be commercially distributed before 
receiving an approval from the FDA. There is a need to communicate, review and 
debate the trustworthiness of systems with a range of stakeholders (e.g., medical 
device manufacturers, and regulatory authorities). Assurance cases can be used to 
justify the adequacy of medical device systems. The assurance case is a method for 



arguing that a "body" of evidence justifies a claim. An assurance case addressing 
safety is called a safety case. A safety assurance case presents an argument, 
supported by a body of evidence, that a system is acceptably safe to be used in a 
given context [Menon09]. The notion of safety cases is currently embraced by 
several European industry sectors (e.g., aircraft, train, nuclear). More recently in the 
United States, the FDA issued draft guidance for medical infusion pump 
manufacturers to provide a safety case with their pre-market submissions [FDA10]. 
Infusion pump manufacturers are expected not only to achieve safety but also to 
convince regulators that it has been achieved [Ye05] through the submitted safety 
case. The manufacturer's role is to develop and submit a safety case to regulators to 
show that their product is acceptably safe to operate in the intended context 
[Kelly98]. The regulator's role is to assess the submitted safety case and make sure 
that the system is really safe. 

There are many different approaches to the organization and presentation of safety 
cases. Goal Structuring Notation (GSN) is one description technique that has proven 
useful for constructing safety cases [Kelly04]. GSN is a graphical argumentation 
notation developed at the University of York. A GSN diagram includes elements that 
represent goals, argument strategies, contexts, assumptions, justifications, and 
evidence. The principal purpose of any goal structure in GSN is to show how goals, 
claims about the system specified with text within rectangular elements, are 
supported by a valid and convincing argument. To this end, goals are successively 
decomposed into sub-goals through implicit or explicit strategies. Strategies, 
specified with text within parallelograms, explicitly define how goals are 
decomposed into sub-goals. The decomposition continues until a point is reached 
where claims are supported by direct reference to available evidence, and the 
solution specified with text within circles. Assumptions/justifications, which define 
the rationale of the decomposition approach, are represented with ellipses. The  
context in which goals are stated is given in rectangle with rounded sides. 

Another popular description technique is called Claims, Arguments, Evidence 
(CAE) notation [Adelard13]. While its notation is less standardized than GSN, it 
shares the same element types as GSN. The primary difference is that strategy 
elements are replaced with argument elements. In this work, we use GSN notation in 
presenting safety cases. 

 

3.7.1  Challenges 
The objective of a safety case development process is to provide justifiable rationale 
for design and engineering decisions and to instill confidence in those design 
decisions (in the context of system behavior) with stakeholders (e.g., manufacturers, 
and regulatory authorities). Adopting assurance cases necessarily requires the 



existence of proper reviewing mechanisms. These form the main aspects of assurance 
cases, i.e., building, trusting, and reviewing assurance cases. 

There are challenges attached to the three aspects of assurance cases. These 
challenges need to be addressed to make safety cases practically useful:  

 
    • Building assurance cases. There exists a widely used method for 

systematically constructing safety cases. This method is often referred to as the "Six-
Step" method [Kelly98a]. Following the "Six-Step" or any other method does not 
prevent mistakes that are commonly made by safety case developers, e.g., leaps from 
claims to evidence. Capturing successful (convincing, sound, etc.) arguments used in 
safety cases and reusing them in constructing new safety cases would minimize 
mistakes that may be made during the safety case development. The need for 
argument reusability motivates the use of the pattern concept (pattern means model 
or original used as archetypes) in the safety case constructions. Predefined patterns 
provide an inspiration or a starting point for new safety case developments. Using 
patterns would help improving safety cases maturity and completeness. 
Consequently, patterns can help device manufacturers to construct safety cases in a 
more efficient way in terms of completeness and development period. The concept of 
safety case patterns is defined in [Kelly97] to provide a way of capturing and reusing 
"best practice" in safety cases. "Best practice" captures company expertise, 
successfully certified approaches, etc. For example, patterns extracted from a safety 
case built for a specific product can be reused in constructing safety cases for other 
products that are developed via similar processes. Many safety case patterns were 
introduced in [Alexander07, Kelly98, Weaver03, Hawkins09, Wagner10, Ayoub12] 
to capture best practices. 

 
    • Trusting assurance cases. Although creating a structured safety case explicitly 

explains how the available evidence supports the overall claim of acceptable safety, 
it cannot ensure that the argument itself is 'good' (i.e., sufficient for its purpose) or 
the evidence is sufficient. Safety arguments typically have some weaknesses and so it 
cannot be fully trusted on its own. In other words, there is always a question about 
the trust in safety arguments and cited evidence, and so a justification for the 
sufficiency of confidence in safety cases is essential. There are attempts to 
quantitatively measure of confidence in safety cases such as [Bloomfield07, 
Denney11]. A new approach for creating clear safety cases was introduced in 
[Hawkins11] to facilitate the development process for safety cases and increase 
confidence in the constructed cases. This approach basically separates the major 
components of safety cases into safety argument and confidence argument. A safety 
argument is limited to give arguments and evidence that directly target the system 
safety. For example, claiming why a specific hazard is sufficiently unlikely to occur 
and arguing this claim by testing results as evidence. A confidence argument is given 



separately to justify the sufficiency of confidence in this safety argument. For 
example, questioning about the confidence in the given testing result evidence (e.g.,  
is that testing exhaustive?) should be addressed in the confidence argument. These 
two components are given explicitly and separately. They are interlinked so that 
justification for having sufficient confidence in individual aspects of the safety 
component is clear and readily available but not confused with the safety component 
itself. 

Any gap that prohibits perfect confidence in safety arguments is referred to as an 
assurance deficit [Hawkins11]. Argument patterns for confidence arguments are 
given in [Hawkins11]. Those patterns are defined based on identifying and managing 
the assurance deficits to show sufficient confidence in the safety argument. To this 
end, it is necessary to identify the assurance deficits as completely as practicable. 
Following a systematic approach (such as the one proposed in [Ayoub12a]) would 
help in effectively identifying assurance deficits. In [Menon09, Weaver03], lists of 
major factors that should be considered in determining the confidence in arguments 
are defined. Questions to be considered when determining the sufficiency of each 
factor are also given. To show sufficient confidence in a safety argument, a 
confidence argument developer first explores all concerns about the confidence in 
this argument, and then makes claims that these concerns are addressed. If a claim 
cannot be supported by convincing evidence, then a deficit is identified. The list of 
the recognized assurance deficits can be then used in instantiating the confidence 
pattern given in [Hawkins11] to show that the residual deficits are acceptable. 

 
    • Reviewing assurance cases. Safety case arguments are rarely provable 

deductive arguments. Instead they are more commonly inductive. And so safety 
cases are, by their nature, often subjective [Kelly07]. The objective of safety case 
evaluation, therefore, is to assess if there is a mutual acceptance of the subjective 
position. The human mind does not deal well with complex inferences based on 
uncertain sources of knowledge [Cyra08], which is common in safety arguments. 
Therefore, reviewers should only be required to express their opinions about the 
basic elements in the safety case. Then, a mechanism should provide a way to 
aggregate the reviewer opinions about the basic elements in the safety case to 
communicate a message about the overall sufficiency of it. 

There are several approaches that have proposed. The work in [Kelly07] present a 
structured approach to assurance case review by focusing primarily on helping to 
assess the level of assurance offered by the assurance case argument. The work in 
[Goodenough12] outlines a framework for justifying confidence in the truth of 
assurance case claims. The framework is based on the notion of eliminative 
induction– the principle that confidence in the truth of a claim increases as reasons of 
doubting its truth are identified and eliminated. Defeaters offer possible reasons for 
doubting. Then the notion of Baconian probability is used to provide a measure for 



confidence in assurance cases based on how many defeaters have been identified and 
eliminated. In [Ayoub13] a structured method for assessing the level of sufficiency 
and insufficiency of safety arguments was outlined. The reviewer assessments and 
the results of their aggregation are represented in the Dempster-Shafer model 
[Sentz02]. The assessing mechanism given in [Ayoub13] can be used in conjunction 
with the step-by-step review approach proposed in [Kelly07] to answer the question 
given in the last-step of this reviewing approach, which is about the overall 
sufficiency of the safety argument. In other words, the approach in [Kelly07] 
provides a skeleton for a systematic review process; however, the mechanism in 
[Ayoub13] provides a systematic procedure to measure the sufficiency and 
insufficiency of the safety arguments. An appraisal mechanism is proposed in 
[Cyra08] to assess the trust cases using the Dempster-Shaffer model. Additionally, 
linguistic scales are introduced in [Cyra08] to express the expert opinions and the 
aggregation results. Linguistic scales are appealing as they are closer to human 
nature than numbers. They are based on qualitative values such as "high," "low," and 
"very low" and are mapped into the interval for evaluation.  

 
 

3.7.2  Case Study: The GPCA safety case 
This section builds on the case study of the GPCA infusion pump, presented in 
Section 3.3.3. Assurance cases for medical devices have been discussed in 
[Weinstock09]. The work in [Weinstock09] can be used as staring point for the 
GPCA safety case construction. A safety case given in [Jee10] is constructed for a 
pacemaker that is developed following a model-based approach similar to the one 
used in the GPCA case study. 

 

Safety case patterns. 
 Similarities in the development approach are likely to lead to similarities in the 
safety argument. Safety case patterns [Kelly97] have been proposed as means of 
capturing similarities between arguments. Patterns allow the common argument 
structure be elaborated with device-specific details. To capture the common 
argument structure for systems developed in a model-based fashion, a safety case 
pattern, called the from_to pattern, has been proposed in [Ayoub12]. Below, the 
from_to pattern is illustrated and instantiated for the GPCA reference 
implementation. 

A safety case for the GPCA reference implementation would claim that the PCA 
implementation software does not contribute to the system hazards when used in the 
intended environment. To address this claim, one needs to show that the PCA 
implementation software satisfies the GPCA safety requirements in the intended 



environment. This is the starting point for the pattern (see claim G1 in Figure 9). The 
context for this claim is that GPCA safety requirements are defined to mitigate the 
GPCA hazards, which would be argued separately in another part of the safety case. 

Figure 8 shows the GSN structure of the proposed from_to pattern. Here, {to} 
refers to the system implementation and {from} refers to a model of this system. The 
claim (G1) about the implementation correctness (i.e., satisfaction of some property 
(referenced in C1.3)) is justified not only by validation (G4 through S1.2) but also by 
arguing over the model correctness (G2 through S1.1), and the consistency between 
the model and the implementation created based on it (G3 through S1.1). The model 
correctness (i.e., further development for G2) is guaranteed through the model 
verification (i.e., the second step of the model-based approach). The consistency 
between the model and the implementation (i.e., further development for G3) is 
supported by the code generation from the verified model (i.e., the third step of the 
model-based approach). Only part of the property of concern (referenced in C2.1) 
can be verified at the model level due to the different abstraction levels between the 
model and the implementation. However, the validation argument (S1.2) covers the 
entire property of concern (referenced in C1.3). The additional justification given in 
(S1.1) increases the assurance in the top-level claim (G1). 

 

 
Figure  8: The proposed from_to pattern 

   
 



 
Figure  9: An instance of the from_to pattern 

 
Figure 9 shows an instantiation of this pattern that is part of the PCA safety case. 

Based on [Kim11], for this pattern instance, the {to} part is the PCA implementation 
software (referenced in C1.1), the {from} part is the GPCA timed automata model 
(referenced in C1.1.1) and the GPCA safety requirements (referenced in C1.3) 
represent the concerned property. In this case, correct PCA implementation means it 
satisfies the GPCA safety requirements that defined to guarantee the PCA safety. The 
satisfaction of the GPCA safety requirements in the implementation level (G1) is 
decomposed by two strategies (S1.1) and (S1.2). The argument in (S1.1) is supported 
by the correctness of the GPCA timed automata model (G2), and the consistency 
between the model and the implementation (G3). The correctness of the GPCA timed 
automata model (i.e., further development for G2) has been proved using the 
UPPAAL model-checker against the GPCA safety requirements that can be 
formalized (referenced in C2.1). The consistency between the model and the 
implementation (i.e., further development for G3) is supported by the code-synthesis 
from the verified GPCA timed automata model. Not all the GPCA safety 
requirements (referenced in C1.3) can be verified against the GPCA timed automata 
model [Kim11]. Only the part referenced in C2.1 can be formalized and verified in 
the model level (e.g., "no bolus dose shall be possible during the Power-On Self-
Test"). Other requirements cannot be formalized and/or verified against the model 
given its level of details (e.g., "the flow rate for the bolus dose shall be 
programmable" cannot be formalized meaningfully and then verified in the model 
level). 

 

Note. 



 Generally, using safety case patterns does not necessarily guarantee that the 
constructed safety case will be sufficiently compelling. So when instantiating the 
from_to pattern, it is necessary to be able to provide justification for each 
instantiation decision to guarantee that the constructed safety case is sufficiently 
compelling. Assurance deficits should be identified throughout the construction of a 
safety argument. Where an assurance deficit is identified, it is necessary to 
demonstrate that the deficit is either acceptable, or addressed such that it becomes 
acceptable. An explicit justification should be provided as to why the residual 
assurance deficit is considered acceptable. This can be done by adopting appropriate 
approaches such as ACARP (As Confidence As Reasonably Practical) 
[Hawkins09a]. 

 

Assurance deficit example. 
 As discussed in Section 3.3.3 and showed in Figure 3, the GPCA Simulink/Stateflow 
model was transformed into an equivalent GPCA timed automata model. Although it 
is relatively straight forward to translate the original GPCA model written in 
Simulink/Stateflow into a UPPAAL timed automata model, there is no explicit 
evidence to show the equivalence between the two models at the semantic level. A 
potential assurance deficit associated with the GPCA timed automata model (context 
C1.1.1, Figure 9) can be formed as "there are semantic differences between the 
Simulink/Stateflow and the UPPAAL timed automata model." For this residual 
assurance deficit, exhaustive conformance testing between the GPCA 
Simulink/Stateflow model and the GPCA timed automata model may be a reasonable 
mitigation. 

3.7.3  Remarks 
 Recently, safety cases have become popular and acceptable ways for communicating 
ideas and information about the safety-critical systems among the system 
stakeholders. In the medical device domain, the FDA issued draft guidance for 
medical infusion pump manufacturers to provide a safety case with their pre-market 
submissions [FDA10]. In this section, a brief introduction about safety cases and 
notations used to describe them are discussed. Three aspects of safety cases to make 
them practically useful are listed and discussed, which are facilitating safety cases 
construction, justifying the existence of sufficient trust in safety arguments and cited 
evidence, and providing a framework for safety case assessment for regulation and 
certification. 

Safety case patterns can help both device manufacturers and regulators to 
construct and review the safety cases more efficiently while improving confidence 
and shortening an approval period. The qualitative reasoning about the confidence 
existence is believed to be more consistent with the inherited subjectivity in safety 



cases than the quantitatively reasoning. The separation between safety and 
confidence arguments reduces the size of the core safety argument. Consequently, 
this structure is believed to facilitate the development and reviewing processes for 
safety cases. The constructed confidence arguments should be used in the appraisal 
process for assurance arguments as illustrated in [Cyra08, Kelly07, Ayoub13]. 

Given the subjectivity nature of safety case, the review methods cannot replace 
the reviewer; instead they form frameworks to lead safety case reviewers through the 
evaluation process. Consequently, the result of the safety case review process is 
always subjective. 

4  Practitioner's Implications 
One can distinguish the following groups of stakeholders in MCPS: (1) MCPS 
developers, including manufacturers of medical devices and integrators of medical 
information technologies; (2) MCPS administrators, typically clinical engineers in 
hospitals, who are tasked with deploying and maintaining MCPS; (3) MCPS users, 
clinicians who perform treatment using MCPS; (4) MCPS subjects, that is, patients; 
and (5) MCPS regulators, who hold the mandate for certifying the safety of MCPS or 
approving their use for clinical purposes. In the United States, the Food and Drug 
Administration is the regulatory agency charged with assessing safety and 
effectiveness of medical devices and their approval for specific uses. All of these 
groups have a vested interest in MCPS safety. However, each group has additional 
drivers that need to be taken into account when designing or deploying MCPS in a 
clinical setting. Below, we consider each group of stakeholders and identify specific 
concerns that apply to them, and additional challenges they pose. 

4.1 MCPS Developer Perspective 
Dependence of MCPS on software, as well as complexity of software used in 
medical devices, has been steadily increasing over the past three decades. In recent 
years, medical device industry has been plagued with software-related recalls, with 
19% of all recalls of medical devices in the U.S. being related to software problems 
[Simone13]. 

Many other safety-regulated industries, such as avionics and nuclear power, 
operate on relatively long design cycles. By contrast, medical device companies are 
under heavy market pressure to quickly introduce additional features into their 
products. At the same time, medical devices are often developed by relatively small 
companies that lack the resources for extensive validation and verification of each 
new feature they introduce. Model-based development techniques, such as the ones 



described in Section 3.3, hold the promise of more efficient verification and 
validation, leading to shorter development cycles. 

At the same time, many companies complain about heavy regulatory burden 
imposed by the FDA and similar regulatory agencies in other countries. Formal 
models and verification results, introduced by the model-based development 
approaches, provide evidence that MCPS is safe. Combined with the assurance cases 
that organize this evidence into a safety argument, these rigorous development 
methods may help reduce the regulatory burden for MCPS developers. 

4.2  MCPS Administrator Perspective 
Clinical engineers in hospitals are charged with maintaining a wide variety of 
medical devices that comprise the MCPS used in patient treatment. Most clinical 
scenarios today involve multiple medical devices. A clinical engineer needs to ensure 
that the devices used in treating a patient can all work together. If an incompatibility 
is discovered after treatment commences, the patient may be harmed. Interoperability 
techniques, described in Section 3.4, may help to ensure that more devices are 
compatible with each other, making the job of maintaining the inventory and 
assembly of clinical scenarios easier. This, in turn, reduces treatment errors and 
improves patient outcomes and, at the same time, saves hospital money. 

4.3 MCPS User Perspective 
Clinicians use MCPS to perform patient treatment. A specific treatment can, in most 
cases, be performed using different MCPS implementations using similar devices 
from different vendors. A primary concern, then, is ensuring that clinicians are 
equally familiar with the different implementations. The concepts of a clinical 
scenarios and virtual medical devices, introduced in Section 3.4 can help establish a 
common user interface for the MCPS, regardless of which devices are used to 
implement it. Such an interface would help to reduce clinical errors in using the 
devices. Furthermore, the user interface can be verified as part of the analysis of the 
MCPS model, as suggested by [Masci13]. 

MCPS development must take existing standards of care into consideration. 
Clinical personnel needs to be involved in the analysis of the scenario models to 
ensure that they are consistent with extant clinical guidelines for the respective 
treatment and are intuitive for caregivers to use. 

A particular challenge in modern healthcare is the high workload faced by 
caregivers. Each caregiver is caring for multiple patients and has to keep track of 
multiple sources of information about each patient. On-demand MCPS have the 
potential to control cognitive overload in caregivers by offering virtual devices that 
offer intelligent presentation of clinical information or smart alarm functionality. 



Smart alarms, which can correlate or prioritize alarms from individual devices, can 
be of great help to caregivers, by giving a more accurate picture of patient state and 
reducing the rate of false alarms [Imhoff09]. 

4.4 Patient Perspective 
Arguably, of all stakeholder groups, patients stand to gain the most from the 
introduction of MCPS. In addition to the expected improvements in the safety of 
treatments through higher reliability of individual devices and their bedside 
assemblies, patients would get the benefit of improvements in treatments themselves. 
These improvements may come from several sources. 

On the one hand, MCPS can offer continuous monitoring that caregivers, who 
normally attend multiple patients, cannot provide by themselves. Clinical guidelines 
often require caregivers to obtain patient data at fixed intervals; for example, every 
15 minutes. An MCPS may collect patient data as frequently as allowed by each 
sensor and alert caregivers to changes in the patient's condition earlier and let them 
interfere before the change leads to a serious problem. Furthermore, continuous 
monitoring, combined with support for predictive decision making, similar to the one 
discussed in Section 3.5, will allow treatment to be proactive rather than reactive. 

Probably the biggest improvement in the quality of care for patients may come 
with the transition from general guidelines meant to apply to all patients within a 
certain population to personalized approaches, where treatment is customized to 
individual needs of the patient and takes into account personalized characteristics. 
Personalized treatments, however, cannot be effected without detailed patient 
models. Such models can be stored in patient records and interpreted by the MCPS 
during treatment. 

4.5 MCPS Regulatory Perspective 
Regulators of medical device industry are tasked with assessing safety and 
effectiveness of MCPS. The two main concerns that the regulators face are 
improving the quality of the assessment and making the best use of limited resources 
that agencies have for performing the assessment. These two concerns are not 
independent, because more efficient ways of performing assessments allow 
regulators more time to explore deeper in their evaluation. Safety case technologies 
discussed in Section 3.7 may help address both. The move towards evidence-based 
assessment may allow regulators to perform more accurate and reliable assessment. 
At the same time, organizing evidence into a coherent argument helps to perform the 
assessment more efficiently. 



5 Summary and Open Challenges 
We presented a broad overview of trends in MCPS and design challenges that these 
trends present. We also discussed possible approaches to address these challenges, 
based on recent results in MCPS research. 

The first challenge is related to the prevalence of software-enabled functionality in 
modern MCPS, which makes assurance of patient safety a much harder task.  Model-
based development techniques provide one way to ensure safety of the system.  
Increasingly, model-based development is embraced by medical device industry.  
Still, numerous recent recalls demonstrate that the problem of device safety is far 
from being solved. 

The next-level challenge arises from the need to compose individual device into a 
system of interconnected devices that collectively treat the patient in a complex 
clinical scenario.  Such multi-device MCPS can provide new modes of treatment, 
give enhanced feedback to the clinician, and improve patient safety.  However, 
additional hazards can arise from communication failures and lack of interoperability 
between devices.  Reasoning about safety of such on-demand MCPS, which are 
assembled at bedside from available devices, creates new regulatory challenges and 
requires medical application platforms, trusted middleware that will ensure correct 
interactions between the devices.  Research prototypes of such middleware are 
currently being developed, but their effectiveness needs to be further evaluated.  
Furthermore, interoperability standards for on-demand MCPS need to be further 
improved and gain wider acceptance. 

In order to fully utilize the promise of multi-device MCPS, new algorithms need be 
developed to process and fuse patient data from multiple sensors, provide better 
decision support for clinicians, more accurate and informative alarms, etc.  This need 
gives rise to two kinds of open challenges.  On the one hand, additional clinical as 
well as data analysis research needs to be performed, to determine the best ways to 
utilize the new information made available through combining multiple rich data 
sources.  On the other hand, there is a need for new software tools to facilitate fast 
prototyping and deployment of new decision support and visualization algorithms. 

MCPS promises to enable a wide array of physiological closed-loop systems, where 
the information about the patient state, collected from multiple sensors, can be used 
to adjust the treatment process or its parameters.  Research on such closed-loop 
control algorithms is gaining prominence, especially for glycemic control for 
diabetes patients.  However, much research needs to be performed to better 
understand patient physiology and develop adaptive control algorithms that can 
deliver personalized treatment to each patient. 



In all of these applications, patient safety and effectiveness of treatment are the two 
paramount concerns.  MCPS manufacturers need to convince regulators that systems 
they build are safe and effective.  The growing complexity of MCPS, high 
connectivity, and prevalence of software-enabled functionality make evaluation of 
system safety quite difficult. Construction of effective assurance cases for MCPS, as 
well as for CPS in general, remains a challenge in need of further research. 
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