
Uppaal Tutorial

Uppaal Tutorial

 What’s inside Uppaal

 The Uppaal input languages

o (i.e., TA and TCTL in Uppaal)

2

Timed Automata in Uppaal

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

Timed Automata in Uppaal

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||::

clock natural number “and”

Location Invariants

Timed Automata in Uppaal

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||::

clock natural number “and”

}!,,,,,{

},,,,{

::

|::

,||::

op

ExpropExprg

nyxnxg

ggggg

d

c

dc

Clock guards

Data guards

Location Invariants

Timed Automata in Uppaal

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||::

clock natural number “and”

}!,,,,,{

},,,,{

::

|::

,||::

op

ExpropExprg

nyxnxg

ggggg

d

c

dc

nx :

Clock guards

Data guards

Clock Assignments Location Invariants

Timed Automata in Uppaal

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||::

clock natural number “and”

}!,,,,,{

},,,,{

::

|::

,||::

op

ExpropExprg

nyxnxg

ggggg

d

c

dc

nx :

Clock guards

Data guards

Clock Assignments

Variable Assignments

):?(

|/

|*

|

|

||

|][|::

:

ExprExprg

ExprExpr

ExprExpr

ExprExpr

ExprExpr

Exprn

ExpriiExpr

Expri

d

Location Invariants

Networks of Timed Automata

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….

Two-way synchronization
on complementary actions.

Closed Systems!

Uppaal modeling language

 Networks of Timed Automata with Invariants

o urgent action channels,

o broadcast channels,

o urgent and committed locations,

o data-variables (with bounded domains),

o arrays of data-variables,

o constants,

o guards and assignments over data-variables and arrays…,

o templates with local clocks, data-variables, and constants

o C subset

 The syntax used for declarations in UPPAAL is

similar to the syntax used in the C programming

language.

 Clocks:

o Syntax:

clock x1, …, xn;

o Example:

o clock x, y; Declares two clocks: x and y.

Declarations in Uppaal

 Data variables

o Syntax:

int n1, … ; Integer with “default” domain.

int[l,u] n1,…; Integer with domain from “l” to “u”.

int n1[m], … ; Integer array w. elements n1[0] to

n1[m-1].

o Example;

o int a, b;

o int[0,1] a, b[5];

Declarations in Uppaal (cont.)

 Actions (or channels):

o Syntax:

chan a, … ; Ordinary channels.

urgent chan b, … ; Urgent actions (described later)

o Example:

o chan a, b[2];

o urgent chan c;

Declarations in Uppaal (cont.)

 Constants

o Syntax:

const int c1 = n1;

o Example:

o const int[0,1] YES = 1;

o const bool NO = false;

Declarations in Uppaal (const.)

Declarations in Uppaal

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

Templates in Uppaal

 Templates may be

parameterised:
int v; const min; const max

int[0,N] e; const id

 Templates are instantiated

to form processes:
P:= A(i,1,5);

Q:= A(j,0,4);

Train1:=Train(el, 1);

Train2:=Train(el, 2);

Urgent Channels: Example 1

 Suppose the two edges in

automata P and Q should be

taken as soon as possible.

 I.e. as soon as both automata

are ready (simultaneously in

locations l1 and s1).

 How to model with invariants if

either one may reach l1 or s1

first?

a! a?

l1

l2

s1

s2

P: Q:

Urgent Channels: Example 1

 Suppose the two edges in

automata P and Q should be

taken as soon as possible.

 I.e. as soon as both automata

are ready (simultaneously in

locations l1 and s1).

 How to model with invariants if

either one may reach l1 or s1

first?

 Solution: declare action “a” as

urgent.

a! a?

l1

l2

s1

s2

P: Q:

Urgent Channels

 Informal Semantics:

o There will be no delay if transition with urgent action can

be taken.

 Restrictions:

o No clock guard allowed on transitions with urgent

actions.

o Invariants and data-variable guards are allowed.

urgent chan hurry;

Urgent Channel: Example 2

 Assume i is a data variable.

 We want P to take the transition

from l1 to l2 as soon as i==5.

i==5

l1

l2

P:

Urgent Channel: Example 2

 Assume i is a data variable.

 We want P to take the transition

from l1 to l2 as soon as i==5.

 Solution: P can be forced to take

transition if we add another

automaton:

where “go” is an urgent channel,

and we add “go?” to transition

l1l2 in automaton P.

i==5

l1

l2

P:

s1 go!
go?

broadcast chan a, b, c[2];

 If a is a broadcast channel:

o a! = Emmision of broadcast

o a? = Reception of broadcast

 A set of edges in different processes can synchronize if one is emitting

and the others are receiving on the same b.c. channel.

 A process can always emit.

 Receivers must synchronize if they can.

 No blocking.

Broadcast Synchronisation

21

Urgent Location

 Informal Semantics:

o No delay in urgent location.

 Note: the use of urgent locations reduces the

number of clocks in a model, and thus the

complexity of the analysis.

22

Click “Urgent” in State Editor.

23

Urgent Location: Example

 Assume that we model a simple

media M:

that receives packages on channel a

and immediately sends them on

channel b.

 P models the media using clock x.

M
a b

a?

x:=0

l1

P:

x==0

b!

l2

l3

x 0

24

Urgent Location: Example

 Assume that we model a simple

media M:

that receives packages on channel a

and immediately sends them on

channel b.

 P models the media using clock x.

 Q models the media using urgent

location.

 P and Q have the same behavior.

M
a b

a?

x:=0

l1

P:

x==0

b!

l2

l3

x 0

a?

l1

Q:

b!

l2

l3

urgent

Committed Location

 Informal Semantics:

o No delay in committed location.

o Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of interleaving

in state space exploration (and also the number of clocks in a model), and

thus allows for more space and time efficient analysis.

25

Click “Committed” i State Editor.

26

Committed Location: Example 1

 Assume: we want to model a process

(P) simultaneously sending message a

and b to two receiving processes

(when i==0).

 P’ sends “a” two times at the same

time instant, but in location “n” other

automata, e.g. Q may interfere:

a!b!

l1

l2

P:

a!

l1

P’:

b!

n

l2

urgent
i:=1

i==0

i==0

i:=1 k1 k2
i==0 b!Q:

27

Committed Location: Example 1

 Assume: we want to model a process

(P) simultaneously sending message (a)

to two receiving processes (when

i==0).

 P’ sends “a” two times at the same

time instant, but in location “n” other

automata, e.g. Q may interfere:

 Solution: mark location n

“committed” in automata P’ (instead

of “urgent”).

a!b!

l1

l2

P:

a!

l1

P’:

b!

n

l2

committed
i:=1

i==0

i==0

i:=1 k1 k2
i==0 b!Q:

Committed Locations
(example: atomic sequence in a network)

 If the sequence becomes too long, you can split it ...

28

x:=x+1

y:=y+1

Committed Locations
(example: atomic sequence in a network)

 Semantics: the time spent on C-location should be zero !

29

C

x:=x+1

y:=y+1

Committed Locations
(example: atomic sequence in a network)

 Semantics: the time spent on C-location should be zero !

30

C

x:=x+1

y:=y+1

Committed Locations
(example: atomic sequence in a network)

 Semantics: the time spent on C-location should be zero !

 Now, only the committed (red) transition can be taken!

31

C

x:=x+1

y:=y+1

Committed Locations
(example: atomic sequence in a network)

32

C

x:=x+1

y:=y+1

Committed Locations

 A trick of modeling (e.g. to model multi-way

synchronization using handshaking)

 More importantly, it is a simple and efficient

mechanism for state-space reduction!

o In fact, it is a simple form of ’partial order reduction’

 It is used to avoid intermediate states, interleavings:

o Committed states are not stored in the passed list

o Interleavings of any state with a committed location will

not be explored

33

34

Committed Location: Example 2

 Assume: we want to pass

the value of integer “k” from

automaton P to variable “j”

in Q.

 The value of k can is passed

using a global integer variable

“t”.

 Location “n” is committed to

ensure that no other

automat can assign “t”

before the assignment “j:=t”.

a?

l1

l2

Q:l1

P:

a!

n

l2

j:=t

t:=k

committed

More Expressions

 New operators (not clocks):

o Logical:

 && (logical and), || (logical or), ! (logical negation),

o Bitwise:

 ^ (xor), & (bitwise and), | (bitwise or),

o Bit shift:

 << (left), >> (right)

o Numerical:

 % (modulo), <? (min), >? (max)

o Compound Assignments:

 +=, -=, *=, /=, ^=, <<=, >>=

o Prefix or Postfix:

 ++ (increment), -- (decrement)

35

36

More on Types

 Multi dimensional arrays

o e.g. int b[2][3];

 Array initialiser:

o e.g. int b[2][3] := { {1,2,3}, {4,5,6} };

 Arrays of channels, clocks, constants.

o e.g.

 chan a[3];

 clock c[3];

 const k[3] { 1, 2, 3 };

 Broadcast channels.

o e.g. broadcast chan a;

Extensions

Select statement

 Models non-deterministic choise
 x : int[0,42]

Types

 Record types

 Type declarations

 Meta variables:

o not stored with state

o meta int x;

Forall / Exists Expressions

 forall (x:int[0,42]) expr

true if expr is true for all values

in [0,42] of x

 exists (x:int[0,4]) expr

true if expr is true for some

values in [0,42] of x

Example:
forall (x:int[0,4])array[x];

37

38

Advanced Features

 Priorities on channels
chan a,b,c,d[2],e[2];

chan priority a,d[0] < default < b,e

 Priorities on processes
system A < B,C < D;

 Functions

C-like functions with return values

Uppaal Specification Language

39

40

TCTL Quantifiers in UPPAAL

 E – exists a path (“E” in UPPAAL).

 A – for all paths (“A” in UPPAAL).

 G – all states in a path (“[]” in UPPAAL).

 F – some state in a path (“<>” in UPPAAL).

You may write the following queries in UPPAAL:

 A[]p, A<>p, E<>p, E[]p and p --> q

AG p

AF p EF p

EG p

p and q are ”local properties”

41

“Local Properties”

A[]p, A<>p, E<>p, E[]p, p-->p
where p is a local property

p::= a.l | gd | gc | p and p |

p or p | not p | p imply p |

(p)

clock guard
data guard

automaton location

process/ name

42

E<>p – “p Reachable”

 E<> p – it is possible to reach a state in which p is

satisfied.

 p is true in (at least) one reachable state.

p

43

A[]p – “Invariantly p”

 A[] p – p holds invariantly.

 p is true in all reachable states.

p

p

p

p

pp

44

A<>p – “Inevitable p”

 A<> p – p will inevitable become true, the

automaton is guaranteed to eventually reach a state

in which p is true.

 p is true in some state of all paths.

p

pp

45

E[] p – “Potentially Always p”

 E[] p – p is potentially always true.

 There exists a path in which p is true in all states.

p

p

p

46

p --> q – “p lead to q”

 p --> q – if p becomes true, q will inevitably become
true.

same as A[](p imply A<> q)

 In all paths, if p becomes true, q will inevitably
become true.

p

q

q

