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Uppaal Tutorial

 What’s inside Uppaal

 The Uppaal input languages

o (i.e., TA and TCTL in Uppaal)

2
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Networks of Timed Automata
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………….

Two-way synchronization
on complementary actions.

Closed Systems!



Uppaal modeling language

 Networks of Timed Automata with Invariants

o urgent action channels, 

o broadcast channels,

o urgent and committed locations,

o data-variables (with bounded domains),

o arrays of data-variables, 

o constants, 

o guards and assignments over data-variables and arrays…,

o templates with local clocks, data-variables, and constants

o C subset

 The syntax used for declarations in UPPAAL is 

similar to the syntax used in the C programming 

language.

 Clocks:

o Syntax:

clock x1, …, xn;

o Example: 

o clock x, y; Declares two clocks: x and y.

Declarations in Uppaal



 Data variables

o Syntax:

int n1, … ; Integer with “default” domain.

int[l,u] n1,…; Integer with domain from “l” to “u”.

int n1[m], … ; Integer array w. elements n1[0] to

n1[m-1].

o Example;

o int a, b;

o int[0,1] a, b[5];

Declarations in Uppaal (cont.)

 Actions (or channels):

o Syntax:

chan a, … ; Ordinary channels.

urgent chan b, … ; Urgent actions (described later)

o Example:

o chan a, b[2];

o urgent chan c;

Declarations in Uppaal (cont.)



 Constants

o Syntax:

const int c1 = n1;

o Example:

o const int[0,1] YES = 1;

o const bool NO = false;

Declarations in Uppaal (const.)

Declarations in Uppaal

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems



Templates in Uppaal

 Templates may be 

parameterised:
int v; const min; const max

int[0,N] e; const id

 Templates are instantiated 

to form processes:
P:= A(i,1,5);

Q:= A(j,0,4);

Train1:=Train(el, 1);

Train2:=Train(el, 2);

Urgent Channels: Example 1

 Suppose the two edges in 

automata P and Q should be 

taken as soon as possible.

 I.e. as soon as both automata 

are ready (simultaneously in 

locations l1 and s1).

 How to model with invariants if 

either one may reach l1 or s1

first?

a! a?

l1

l2

s1

s2

P: Q:



Urgent Channels: Example 1

 Suppose the two edges in 

automata P and Q should be 

taken as soon as possible.

 I.e. as soon as both automata 

are ready (simultaneously in 

locations l1 and s1).

 How to model with invariants if 

either one may reach l1 or s1

first?

 Solution: declare action “a” as 

urgent.

a! a?

l1

l2

s1

s2

P: Q:

Urgent Channels

 Informal Semantics:

o There will be no delay if transition with urgent action can 

be taken.

 Restrictions:

o No clock guard allowed on transitions with urgent 

actions.

o Invariants and data-variable guards are allowed.

urgent chan hurry;



Urgent Channel: Example 2

 Assume i is a data variable.

 We want P to take the transition 

from l1 to l2  as soon as i==5.

i==5

l1

l2

P:

Urgent Channel: Example 2

 Assume i is a data variable.

 We want P to take the transition 

from l1 to l2  as soon as i==5.

 Solution: P can be forced to take 

transition if we add another 

automaton: 

where “go” is an urgent channel, 

and we add “go?” to transition 

l1l2 in automaton P.

i==5

l1

l2

P:

s1 go!
go?



broadcast chan a, b, c[2];

 If a is a broadcast channel:

o a! = Emmision of broadcast

o a? = Reception of broadcast

 A set of edges in different processes can synchronize if one is emitting 

and the others are receiving on the same b.c. channel.  

 A process can always emit.  

 Receivers must synchronize if they can. 

 No blocking.

Broadcast Synchronisation

21

Urgent Location

 Informal Semantics:

o No delay in urgent location.

 Note: the use of urgent locations reduces the 

number of clocks in a model, and thus the 

complexity of the analysis.

22

Click “Urgent” in State Editor.



23

Urgent Location: Example

 Assume that we model a simple 

media M:

that receives packages on channel a 

and immediately sends them on 

channel b.

 P models the media using clock x.

M
a b

a?

x:=0

l1

P:

x==0

b!

l2

l3

x 0

24

Urgent Location: Example

 Assume that we model a simple 

media M:

that receives packages on channel a 

and immediately sends them on 

channel b.

 P models the media using clock x.

 Q models the media using urgent 

location. 

 P and Q have the same behavior.

M
a b

a?

x:=0

l1

P:

x==0

b!

l2

l3

x 0

a?

l1

Q:

b!

l2

l3

urgent



Committed Location

 Informal Semantics:

o No delay in committed location.

o Next transition must involve automata in committed location. 

Note: the use of committed locations reduces the number of interleaving 

in state space exploration (and also the number of clocks in a model), and 

thus allows for more space and time efficient analysis.

25

Click “Committed” i State Editor.
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Committed Location: Example 1

 Assume: we want to model a process 

(P) simultaneously sending message a 

and b to two receiving processes 

(when i==0). 

 P’ sends “a” two times at the same 

time instant, but in location “n” other 

automata, e.g. Q may interfere:

a!b!

l1

l2

P:

a!

l1

P’:

b!

n

l2

urgent
i:=1

i==0

i==0

i:=1 k1 k2
i==0 b!Q:
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Committed Location: Example 1

 Assume: we want to model a process 

(P) simultaneously sending message (a) 

to two receiving processes (when 

i==0). 

 P’ sends “a” two times at the same 

time instant, but in location “n” other 

automata, e.g. Q may interfere:

 Solution: mark location n 

“committed” in automata P’ (instead 

of “urgent”).

a!b!

l1

l2

P:

a!

l1

P’:

b!

n

l2

committed
i:=1

i==0

i==0

i:=1 k1 k2
i==0 b!Q:

Committed Locations
(example: atomic sequence in a network)

 If the sequence becomes too long, you can split it ...

28

x:=x+1

y:=y+1



Committed Locations
(example: atomic sequence in a network)

 Semantics: the time spent on C-location should be zero !

29

C

x:=x+1

y:=y+1

Committed Locations
(example: atomic sequence in a network)

 Semantics: the time spent on C-location should be zero !

30

C

x:=x+1

y:=y+1



Committed Locations
(example: atomic sequence in a network)

 Semantics: the time spent on C-location should be zero !

 Now, only the committed (red) transition can be taken!

31

C

x:=x+1

y:=y+1

Committed Locations
(example: atomic sequence in a network)

32

C

x:=x+1

y:=y+1



Committed Locations

 A trick of modeling (e.g. to model multi-way 

synchronization using handshaking) 

 More importantly, it is a simple and efficient 

mechanism for state-space reduction!

o In fact, it is a simple form of ’partial order reduction’

 It is used to avoid  intermediate states, interleavings: 

o Committed states are not stored in the passed list

o Interleavings of any state with a committed location will 

not be explored

33
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Committed Location: Example 2

 Assume: we want to pass 

the value of integer “k” from 

automaton P to variable “j” 

in Q. 

 The value of k can is passed 

using a global integer variable 

“t”. 

 Location “n” is committed to 

ensure that no other 

automat can assign “t” 

before the assignment “j:=t”.

a?

l1

l2

Q:l1

P:

a!

n

l2

j:=t

t:=k

committed



More Expressions

 New operators (not clocks): 

o Logical: 

 && (logical and), || (logical or), ! (logical negation), 

o Bitwise: 

 ^ (xor), & (bitwise and), | (bitwise or), 

o Bit shift: 

 << (left), >> (right) 

o Numerical: 

 % (modulo), <? (min), >? (max) 

o Compound Assignments: 

 +=, -=, *=, /=, ^=, <<=, >>=

o Prefix or Postfix: 

 ++ (increment), -- (decrement) 

35
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More on Types

 Multi dimensional arrays

o e.g. int b[2][3];

 Array initialiser:

o e.g. int b[2][3] := { {1,2,3}, {4,5,6} };

 Arrays of channels, clocks, constants. 

o e.g. 

 chan a[3];

 clock c[3];

 const k[3] { 1, 2, 3 };

 Broadcast channels.

o e.g. broadcast chan a;



Extensions

Select statement

 Models non-deterministic choise
 x : int[0,42]

Types

 Record types

 Type declarations

 Meta variables:

o not stored with state

o meta int x;

Forall / Exists Expressions

 forall (x:int[0,42]) expr

true if expr is true for all values 

in [0,42] of x

 exists (x:int[0,4]) expr

true if expr is true for some 

values in [0,42] of x

Example:
forall (x:int[0,4])array[x];

37
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Advanced Features

 Priorities on channels 
chan a,b,c,d[2],e[2]; 

chan priority a,d[0] < default < b,e 

 Priorities on processes
system A < B,C < D; 

 Functions

C-like functions with return values



Uppaal Specification Language

39
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TCTL Quantifiers in UPPAAL

 E – exists a path ( “E” in UPPAAL).

 A – for all paths ( “A” in UPPAAL).

 G – all states in a path ( “[]” in UPPAAL).

 F – some state in a path ( “<>” in UPPAAL).

You may write the following queries in UPPAAL: 

 A[]p,  A<>p,  E<>p,  E[]p  and  p --> q

AG p

AF p EF p

EG p

p and q are ”local properties”
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“Local Properties”

A[]p, A<>p, E<>p, E[]p, p-->p
where p is a local property

p::= a.l | gd | gc | p and p |

p or p | not p | p imply p |

( p )

clock guard
data guard

automaton location

process/ name

42

E<>p – “p Reachable”

 E<> p – it is possible to reach a state in which p is 

satisfied.

 p is true in (at least) one reachable state.

p
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A[]p – “Invariantly p”

 A[] p – p holds invariantly.

 p is true in all reachable states.

p

p

p

p

pp

44

A<>p – “Inevitable p”

 A<> p – p will inevitable become true, the 

automaton is guaranteed to eventually reach a state 

in which p is true.

 p is true in some state of all paths.

p

pp
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E[ ] p – “Potentially Always p”

 E[] p – p is potentially always true.

 There exists a path in which p is true in all states.

p

p

p
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p --> q – “p lead to q”

 p --> q – if p becomes true, q will inevitably become 
true. 

same as A[]( p imply A<> q )

 In all paths, if p becomes true, q will inevitably 
become true.

p

q

q


