
1

Testing

Insup Lee
Department of Computer and Information Science

School of Engineering and Applied Science
University of Pennsylvania
www.cis.upenn.edu/~lee/

Originally prepared by Eunkyoung Jee.

CIS 541, Spring 2010

What is Testing?

§ A successful test is one that finds an error
§ Testing can

o Identify discrepancies between actual results and expected
behavior

o Demonstrate functions are working according to
specification

o Provide an indication of correctness, reliability, safety,
security, performance, fault tolerance, usability,

Software Testing is the process of executing a
program or system with the intent of finding errors

G. Myers

Spring ‘10 2CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.cis.upenn.edu/~lee/
http://www.pdffactory.com

2

What Makes Testing So Difficult?

§ Inherent complexity of software
§ Constructing an operational environment for testing

purpose
§ Intractable and undecidable nature of testing
§ Idiosyncrasy of software

o Trivial clerical errors can have major consequences.
o Errors manifest themselves in rare states, yet crucially

important à Murphy’s Law

Spring ‘10 3CIS 541

Some Testing Principles

§ A programmer should not test his/her own program
§ One should test not only that the program does what it is

supposed to do, but that it does not do what it is not
supposed to

§ The goal of testing is to find errors, not to show that the
program is errorless

§ No amount of testing can guarantee error-free program
§ Parts of programs where a lot of errors have already been

found are a good place to look for more errors
§ The goal is not to humiliate the programmer!

Spring ‘10 4CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

3

Black-Box Testing (Functional Testing)

§ Is not based on the structure of the program (which
is unknown)
§ Test cases are selected based on functional

specification
§ Question: Exhaustive input test?

?
Selected

inputs
Actual
outputs

Expected
output

Spring ‘10 5CIS 541

Examples of Exhaustive Input Test

§ Solution to ax2 + bx + c = 0
§ Input to a compiler

o All possible valid and invalid programs

§ Testing of OS, DBMS, reservation systems .…
o All possible sequences of transactions

Spring ‘10 6CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

4

Tester’s View of a Program

§ Program = {Path Domain, Path Computation}

Path Computation

Path Domain

Spring ‘10 7CIS 541

Test Data

Path Domain Test Data
(specific values)

Spring ‘10 8CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

5

Execution Paths in a Program

If Y > 1 THEN
Y = Y + 1
IF Y > 9 THEN

Y = Y + 1
ELSE

Y = Y + 3
END
Y = Y + 2

ELSE
Y = Y + 4

END
IF Y > 10 THEN

Y = Y + 1
ELSE

Y = Y - 1
END

Y = Y + 4

Y > 1

Y = Y + 1

Y > 9

Y > 10

Y = Y + 1 Y = Y + 3

Y = Y + 2

Y = Y - 1Y = Y + 1

T

T

T

F

F

F

Program
Path

T T T
T T F
T F T
T F F
F - T
F - F

Spring ‘10 9CIS 541

Input Data for Executing Paths

Path
Domain

Y > 8
Infeasible path
5 <= Y <= 8

1 < Y < 5
Infeasible path

Y <= 1

Program
Path

T T T
T T F
T F T
T F F
F - T
F - F

Spring ‘10 10CIS 541

Y = Y + 4

Y > 1

Y = Y + 1

Y > 9

Y > 10

Y = Y + 1 Y = Y + 3

Y = Y + 2

Y = Y - 1Y = Y + 1

T

T

T

F

F

F

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

6

Path Domains and Computations

Y + 3 Y + 5 Y + 7 Y + 5
Y = 1 Y = 5 Y = 8

Path Domains

Path Computations

Y

Spring ‘10 11CIS 541

White-Box Testing (Structural Testing)

§ Test cases are selected based on software
structure/implementation
§ There are several alternative criterions for checking
“enough” paths in the program
§ Question: Exhaustive path test?

Internal
behavior

Selected
inputs

Actual
outputs

Expected
output

Spring ‘10 12CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

7

Exhaustive Path Test

#Paths: 51 + 52 + 53 + 54 + 55 + 56 ≅ 20000

loops ≤ 6

Spring ‘10 13CIS 541

Limitation of Testing

§ There are never sufficiently many test cases.
§ Testing does not find all the errors.
§ Testing is hard and takes a lot of time.
§ Testing is still a largely informal task.

Testing can be a very effective way to show the
presence of errors, but it is hopelessly inadequate

for showing their absence.

E. Dijkstra

Spring ‘10 14CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

8

Strategic Approach to Testing

§ An exhaustive testing is impractical
è Relate the amount of testing to confidence about software

§ A test of any program is necessarily incomplete
è Test Coverage

§ No way of knowing if the error detected is the last
remaining error
è Test Completion

Spring ‘10 15CIS 541

Testing Process

Selection
Criteria

Specification
or Software Test Case

Design
Test Case

Design

Test
Execution

Test
Execution

Test Cases

Test
Verdicts

Test
Oracles

Software

Testing

Software
Under
Testing

Spring ‘10 16CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

9

Test Oracle

§ A mechanism to produce the predicted outcomes to
compare with the actual outcomes of the software
under test

§ “Any program, process, or body of data that
specifies the expected outcome of a set of tests as
applied to a tested object” -W. E. Howden

§ As more software becomes standardized, more
oracles will emerge as products and services.

Spring ‘10 17CIS 541

Test Adequacy Criteria

§ “A set of rules used to determine whether or not
testing can be terminated” - Weyuker
§ Represent a minimal standard for testing a program.

o “The notion of adequacy is dependent on the method
used for selecting the test set” - Zweben
� Program-based criteria involve program’s structure.
� Specification-based criteria rely on specification.
� Other criteria (e. g., Random testing) may ignore both

specification and program.

Spring ‘10 18CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

10

TEST CASE DESIGN

Spring ‘10 19CIS 541

Test Case Design

§ Construct and organize tests to get the best testing
effect with the least effort
o Testing process is as good as its test cases

§ A good test case is one that has a high probability of
detecting as-yet undiscovered error

Spring ‘10 20CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

11

Typical Test Case Information

§ Test Case ID - a unique identifier
§ Purpose

o a list of actions (functions, processes, services, etc.) that this test case
will exercise

§ Input
o Preconditions
o Inputs – a list of names and values for inputs to actions that this test

case will exercise

§ Output
o Expected Outputs - a list of outputs that will result when this test

case exercises actions
o Post-conditions

§ Execution History
Spring ‘10 21CIS 541

Test Case Design for Black Box Testing

§ Equivalence partition
§ Boundary value analysis
§ Cause-effect graphs

Spring ‘10 22CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

12

Equivalence Class

§ A set of test cases such that any member of the class
is as good a test case as any other
§ For all input values in a particular equivalence class,

the system shows the same kind of behavior
o valid and invalid equivalent classes
o input and also output domains

invalid valid invalid

Spring ‘10 23CIS 541

Equivalence Class Testing

§ Divide the program’s input space into domains such
that all inputs within a domain are equivalent
§ Identify test cases by using one element from each

equivalence class
o Testing with more inputs from the same class hardly

increases the chance of finding defects
o All inputs from the same equivalence class have an equal

chance of finding a defect

§ Most test techniques, functional or structural, fall
under partition testing

Spring ‘10 24CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

13

Equivalence Partition

§ Goals:
o Find a small number of test cases
o Cover as much possibilities as you can

§ Try to group together inputs for which the program
would likely to behave the same

Specification
condition

Valid equivalence
class

Invalid equivalence
class

Spring ‘10 25CIS 541

Example: A Legal Variable

§ Begins with A-Z
§ Contains [A-Z0-9]
§ Has 1-6 characters

Specification
condition

Valid equivalence
class

Invalid equivalence
class

Starting char Starts A-Z Starts other

Chars [A-Z0-9] Has others

Length 1-6 chars 0 chars, >6 chars

1 2

3 4

5
6 7

Spring ‘10 26CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

14

Equivalence Partition (cont.)

§ Add a new test case until all valid equivalence classes
have been covered
o A test case can cover multiple such classes

§ Add a new test case until all invalid equivalence class
have been covered
o Each test case can cover only one such class

Specification
condition

Valid equivalence
class

Invalid equivalence
class

Spring ‘10 27CIS 541

Example: A Legal Variable (cont.)

§ AB36P (1,3,5)
§ 1XY12 (2)
§ A17#%X (4)

§ (6)
§ VERYLONG (7)

Specification
condition

Valid equivalence
class

Invalid equivalence
class

Starting char Starts A-Z Starts other

Chars [A-Z0-9] Has others

Length 1-6 chars 0 chars, >6 chars

1 2

3 4

5
6 7

Spring ‘10 28CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

15

Boundary Value Analysis

§ If an input condition specifies a range bounded by
values a (min) and b (max), test cases should be
designed with values at the minimum, just above the
minimum, a nominal value, just below the maximum,
and at the maximum

a b
Test cases

Spring ‘10
29

CIS 541

min min+ nom max- max

Example of Boundary Value Analysis

§ If input is within range -1.0 ~ +1.0,
select values -1.001, -1.0, -0.999, 0.999, 1.0, 1.001
§ If needs to read N data elements,

check with N-1, N, N+1. Also, check with N=0.

Spring ‘10 30CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

16

Robustness Testing

§ A simple extension of boundary analysis
§ It forces attention on exception handling.

o worst case analysis

Spring ‘10 31CIS 541

a b
Test cases

min min+ nom max- maxmin- max+

Test Case Design for White-Box Testing

§ The main problem is to select a good coverage
criterion
§ Some options are:

o Cover all paths of the program
o Execute every statement at least once
o Each decision has a true or false value at least once
o Each condition is taking each truth value at least once
o Check all possible combinations of conditions in each

decision

Spring ‘10 32CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

17

How to Cover the Executions?

§ Choose values for A, B, X
§ Value of X may change, depending on A and B
§ What do we want to cover? Paths? Statements?

Conditions?

IF (A>1)&(B=0)
THEN X=X/A;
END;

IF (A=2)|(X>1)
THEN X=X+1;
END;

Spring ‘10 33CIS 541

Control Flow Testing

§ A family of test strategies based on selecting paths
through the program’s control structure
§ If the set of paths is properly chosen, some measure

of test thoroughness can be achieved
§ Requires complete knowledge of the programs

structure
§ Most applicable to unit testing

Spring ‘10 34CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

18

An Example of Path Selection

§ What is the fewest number of paths that will cover
all statements and branches?

T

T

T

T

F

F F

F

a b

g f

edc

k j

i h

l

m

Spring ‘10 35CIS 541

Statement Coverage

§ Execute every statement at
least once

§ Minimum testing
requirement in the IEEE
unit test standard

§ By choosing
A=2,B=0, and X=3, each
statement will be executed

§ The case that the tests fail
is not checked!

Spring ‘10 CIS 541 36

IF (A>1)&(B=0)
THEN X=X/A;
END;

IF (A=2)|(X>1)
THEN X=X+1;
END;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

19

Statement Testing: An Example

main()
{

int x, y, z;
1) z = 1;
2) while(y != 0) {
3) if (y%2 != 0) z = z * x;
4) y = y/2 ;
5) x = x * x;

}
6) printf("x**y =%5d“, z);

}
Spring ‘10 37CIS 541

Statement Testing: An Example

Inputs Statement
x y 1 2 3 4 5 6

5 0 O O X X X O

5 2 O O X O O O

5 3 O O O O O O

Spring ‘10 38CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

20

Branch (Decision) Coverage

§ Each branch(decision) has a
true and false outcome at
least once
§ Can be achieved using

o A=3,B=0,X=3
o A=2,B=1,X=1

§ Problem: does not test
individual conditions.
o E.g., when X>1 is erroneous

in second decision

IF (A>1)&(B=0)
THEN X=X/A;
END;

IF (A=2)|(X>1)
THEN X=X+1;
END;

Spring ‘10 39CIS 541

Branch Testing: An Example

A > 1
AND
B = 1 T

F

T

F

A = 2
OR

X > 1

X = X/A

X = X + 1 Test Case 4 (Path FT)

Test Case 2 (Path FF)

Test Case 3 (Path TF)

Test Case 1 (Path TT)

T: A > 1 and B = 1
(A = 2, B = 1, any X)

T: A = 2 or X > 1 (true)

T: A > 1 and B = 1
(A = 2, B = 1, X = 1)

F: A = 2 or X > 1 (false)

F: A > 1 and B = 1
(A = 1, X = 1)

F: A = 2 or X > 1 (false)

F: A > 1 and B = 1
(A = 1, X = 2)

T: A = 2 or X > 1 (true)
Spring ‘10 40CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

21

Limitation of Branch Testing

Either paths bd & ac or paths ad & bc will cover all the decisions

a

b

d

c

Spring ‘10 41CIS 541

Condition Coverage

§ Each condition has a true
and false value at least once
§ For example:

o A=1,B=0,X=3
o A=2,B=1,X=0

lets each condition be true
and false once.
§ Problem: covers only the

path where the first test
fails and the second
succeeds

IF (A>1)&(B=0)
THEN X=X/A;
END;

IF (A=2)|(X>1)
THEN X=X+1;
END;

Spring ‘10 42CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

22

Multiple Condition Coverage

§ Test all combinations of all
conditions in each test
§ Cases:

o A>1,B=0
o A>1,B≠0
o A<=1,B=0
o A<=1,B≠0
o A=2,X>1
o A=2,X<=1
o A≠2,X>1
o A≠2,X<=1

IF (A>1)&(B=0)
THEN X=X/A;
END;

IF (A=2)|(X>1)
THEN X=X+1;
END;

Spring ‘10 43CIS 541

A Smaller Number of Cases:

§ Example:
o A=2,B=0,X=4
o A=2,B=1,X=1
o A=1,B=0,X=2
o A=1,B=1,X=1
o Note the X=4 in the first

case: it is due to the fact
that X changes before being
used

IF (A>1)&(B=0)
THEN X=X/A;
END;

IF (A=2)|(X>1)
THEN X=X+1;
END;

Spring ‘10 44CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

23

Loop Testing

§ Simple loops
§ Nested loops
§ Concatenated loops
§ Unstructured loops

o Redesign the loops

Spring ‘10 45CIS 541

Loop Testing

§ A nested loop

§ A concatenated loop

Spring ‘10 46CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

24

Simple loop with maximum n number
of passes
§ Skip the loop entirely
§ Only one pass through the loop
§ m passes through the loop where m < n
§ n passes through the loop
§ If possible, try n – 1 and n + 1 passes through the

loop

Spring ‘10 47CIS 541

Nested loops

§ Start at the inner most loop, set all other loops to
minimum number of iterations
§ Conduct simple loop tests for the innermost loop

while holding outer loops at their minimum number
of iterations
§ Work outward, conducting tests for the next loop,

keeping all outer loops at minimum iterations and
keeping nested loops to “typical” values
§ Continue until all loops have been tested

Spring ‘10 48CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

25

Concatenated loops

§ If each of the loops is independent of the other, use
tests for simple loops
§ If loops are not independent, use tests for nested

loops

Spring ‘10 49CIS 541

Data Flow Testing

§ A family of test strategies based on selecting paths
through the program’s control flow in order to
explore sequence of events related to the status of
data objects
§ Select test paths of a program according to locations

of definitions and uses of variables in the program

Spring ‘10 50CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

26

Data Usage

§ d - defined, created, initialized
§ k – killed, undefined, released
§ u – used for something

o Used in computation (c-use)
o Used in a predicate (p-use)

Spring ‘10 51CIS 541

Data-Flow Anomalies

§ dd – probably harmless but suspicious
§ dk – probably a bug
§ du – a normal case
§ kd – normal situation
§ kk – harmless but probably buggy
§ ku – a bug
§ ud – usually not a bug
§ uk – normal situation
§ uu – normal situation

Spring ‘10 52CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

27

Definition-Use Chain

§ DEF(S) = {X | statement S contains a definition of X}
§ USE(S) = {X | statement S contains a use of X}

o DU chain = [X, S, S’]
o X ∈ DEF(S) , X ∈ USE(S’)

Spring ‘10 53CIS 541

Data Flow Strategies

§ All Definition-Use Paths
§ All-Uses paths
§ All-p-Uses/Some-c-Uses
§ All-c-Uses/Some-p-Uses
§ All Definitions
§ All-Predicate Uses
§ All Computation Uses

Spring ‘10 54CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

28

Data Flow Test: An Example (1)
All-Defs

Requires:
d1(x) to a use

Satisfactory Path:
1, 2, 4, 6

All-Uses
Requires:

d1(x) to u2(x)
d1(x) to u3(x)
d1(x) to u5(x)

Satisfactory Paths:
1, 2, 4, 5, 6
1, 3, 4, 6

1

2 3

4

5

6

d1(x)

u3(x)

u5(x)

u2(x)

Spring ‘10 55CIS 541

Data Flow Test: An Example (2)

All-Du-Paths
Requires:

d1(x) to u2(x)
d1(x) to u3(x)
both paths for d1(x) to u5(x)

Satisfactory Paths:
1, 2, 4, 5, 6
1, 3, 4, 5, 6

1

2 3

4

5

6

d1(x)

u3(x)

u5(x)

u2(x)

Spring ‘10 56CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

29

Test Thoroughness

all paths

all definition-use paths

all uses

all
definitions

all computational
uses

all predicate uses

branch

statement

all computational/
some predicate uses

all predicate/some
computational uses

Spring ‘10 57CIS 541

Subsume relation
between adequacy

criteria

State-Based Testing

§ Many computer systems are finite state machines
o They can be in a limited number of different internal

conditions (states) and the rules which determine when
they change from one state to another are specified in
terms of inputs to the system

§ State-Based Testing
o Verifies the relationships between events, actions,

activities, states, and state transitions
o Verifies that in response to input events the correct

actions are taken and the system reaches the correct
states

Spring ‘10 58CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

30

Finite State Machine of a Comment
Printer

1 2 3 4

*, Φ : ignore
/, Φ : ignore

/ : ignore

/ : deacc-bf, print-bf

* : empty-bf

/, Φ : acc-bf

* : acc-bf

Φ : acc-bf

Spring ‘10 59CIS 541

*: acc-bf

A Testing Tree

§ From FSM, Testing tree is
constructed to generate
test sequence

§ Each path from the root of
the transition tree
comprises a test

1

1 1 2

1 13

4 3 3

34 1

* Φ /

* Φ /

* Φ /

* Φ /

Spring ‘10 60CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

31

An example: Video Cassette Recorder
(VCR)

Standby

Rewind
Fast

Forward

Play

Record

Stop-button

Stop-button

Stop-button

Stop-button
rewind-button

Play-button

Play-button

End-tape

Record-button

End-tape

End-tape

FF-button

FF-button

Play-button

Rewind-button

Rewind-button

Beginning-tape

Spring ‘10 61CIS 541

State-Event Table

§ Is used in composing the transition tree.

Events\States Standby Rewind Play Fast Forward Record

evRewindB 1-Rewind * 9-Rewind 13-Rewind *

evPlayB 2-Play 5-Play * 14-Play *

evFFb 3-FF 6-FF 10-FF * *

evRecordB 4-Record * * * *

evStopB * 7-Standby 11-Standby 15-Standby 17-Standby

evEndtape * * 12-Standby 16-Standby 18-Standby

evBegintape * 8-Standby * * *

Spring ‘10 62CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

32

Transition Tree of a VCR

Standby Standby
Standby

Standby
Standby

Standby
Standby

Standby
Standby

FF

Rewind

Rewind

Rewind

Play

Play

Play

Record

FF

FF
Test Path 1

Test Path 2

Test Path 3

Test Path 4

Test Path 5

Test Path 6

Test Path 7

Test Path 8

Test Path 9

Test Path 10

Test Path 11

Test Path 12

Test Path 13

Test Path 14

1

2

3

4

5

6

9

7
8

10
11
12

13

17

14

18

16
15

Spring ‘10 63CIS 541

Mutation Testing

§ A fault-based testing technique that helps the tester create a
set of test cases to detect specific, predetermined types of
faults

§ The basic idea is to find a set of test cases that will reveal the
faults that might be expected to be present in a given
program

§ Hypothesis
o Competent programmers tend to write programs that are “close” to

being correct. It is assumed that a fault is manifest as a small
modification to the correct program code

o A test data set that distinguishes all programs with simple faults is
sensitive enough so that it will also distinguish programs with more
complex faults

Spring ‘10 64CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

33

Mutants

§ A copy of the program that contains a seeded fault.
§ A mutant simulates a fault that programmers usually make.
§ The effectiveness depends heavily on the types of faults.

S3(int x)
{

switch(x)
{

case 1:
return x*2;

case 2:
return x;

}
return –1;

}

S3(int x)
{

switch(x)
{

case 1:
return x+2;

case 2:
return x;

}
return –1;

}

Mutated program

mutated

Original Program

Spring ‘10 65CIS 541

Mutation Operator

§ A mutation operator simulates the fault generation
rule by programmers.
§ Design of the mutation operators is crucial for the

effectiveness of mutation testing.

Original
program

Mutant

Mutant

Mutant

Mutant

Mutation
operator

Example) AOR
(Arithmetic Operator Replace)

x = x + 1; x = x – 1;

x = x * 1;

x = x / 1;

Spring ‘10 66CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

34

Mutation Testing Process

Original
program

Test input
Oracle

Different
Output?

F = no fault found

T = fault found

Original
program

Test Input

Oracle
Different
Output?

F = no fault found

T = fault found

Mutants

Different
Output?

F = ignore the test input

T = retain the test case

Conventional Testing Process

Mutation Testing Process

Spring ‘10 67CIS 541

Model-Based Testing

§ One way to generate test cases automatically is
“model-based testing” where a model of the system
is used for test case generation

§ “Model-based testing is a testing technique where
the runtime behavior of an implementation under
test is checked against predictions made by a formal
specification, or model.” - Colin Campbell, MSR

68 Spring ‘10CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

35

Model in Model-Based Testing

§ What is a model?
o A model is a depiction of a system’s behavior
o Models are simpler than the systems they describe
o Models help us understand and predict the system’s

behavior

§ A model describes how a system should behave in
response to an action
§ Supply the action and see if the system responds as

you expect

69 Spring ‘10CIS 541

Using Models to Test

§ Decide what type of model will be used
o Finite State Machine, UML, Sets, Grammars, etc.

§ Create the model
§ Choose tests using the model
§ Verify results

§ (Some examples of model-based testing can be found in the
tutorial slides of H. Robinson, “MBT Tutorial”, StarWest
2006)

Spring ‘10 70CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

36

Benefits of Model-Based Testing

§ Easy test case maintenance
§ Reduced costs
§ More test cases
§ Early bug detection
§ Increased bug count
§ Time savings
§ Time to address bigger test issues
§ Improved tester job satisfaction

Spring ‘10 71CIS 541

Obstacles to Model-Based Testing

§ Comfort factor
o This is not traditional test automation

§ Skill sets
o Need testers who can design

§ Expectations
o Models can be a significant upfront investment
o Will never catch all the bugs

§ Metrics
o Bad metrics: bug counts, number of test cases
o Better metrics: spec coverage, code coverage

Spring ‘10 72CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

37

TEST DATA GENERATION

Spring ‘10 73CIS 541

Test Data Generation

§ Process of identifying program input which satisfy
the selected testing criterion
§ Given a program P and a path u, generate input x ∈

S such that x traverses u
o P : S → R
o S : the set of all possible inputs
� the set of all vectors x = (d1,d2,…,dn) such that di ∈ Dxi, where

Dxi is the domain of input variable xi

o R : the set of all possible outputs
1. Find the path predicate for the path
2. Solve the path predicate in terms of input variables

Spring ‘10 74CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

38

Test Data Generation: An Example

Select a path
for testing criterion

Extract the path
condition

Solve the path

test data

Solve the path
condition to obtain

test data

2

3

7

x = y*2

If (x >= 10)

x = x+10

If (x + y < 110)

printf(“OK”);

y = y+1

6

(x’ >= 10)
∧ (x + y < 110)

TF

TF

1

5

4

x? y?

Spring ‘10 75CIS 541

Complexity of Test Data Generation

§ The problem of determining whether a solution
exists to a system of inequalities is undecidable
§ The path feasibility problem is undecidable

Spring ‘10 76CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

39

Problems in Test Data Generation

§ Arrays, Pointers
o Ambiguity
o Complex-heap

§ Objects
o Dynamically allocated
o Inheritance, Polymorphism

§ Loops
o Not having a constant number of iterations

§ The only way of achieving an oracle is to supply
extra information.
o Requirement/design spec, assertion…

Spring ‘10 77CIS 541

Architecture of Test Data Generator

Program
Analyzer

Path
Selector

Test Data
Generator

Control Flowgraph,
Data Dependence Graph

Test Paths

Test Data

Path Information
concerning

infeasible paths

Spring ‘10 78CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

40

Automated Test Data Generation
Techniques
§ Approaches for test data generation

o Random
o Path-Oriented
o Goal-Oriented

§ Implementation methods
o Static
o Dynamic
o Hybrid methods

Spring ‘10 79CIS 541

Random Test Data Generation

§ Inputs are produced at random until a useful input is
found.
o Easy to implement
o Frequently used as a benchmark since it is commonly

reported in the literature

§ The probability of selecting an input that discovers
the semantically small faults is low

test data
generator

01110011…

a stream of bits

program
execution

Spring ‘10 80CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

41

Specification of Triangle Classification
Problem
§ Input: three positive integers a, b, c, with a ≥ b ≥ c
§ Output: indicate which of the following descriptions

is satisfied by a, b, and c.
1. They do not represent the sides of a triangle
2. They are the sides of an equilateral triangle
3. They are the sides of an isosceles, but not equilateral

triangle
4. They are the sides of a scalene right triangle
5. They are the sides of a scalene obtuse triangle
6. They are the sides of a scalene acute triangle

Spring ‘10 81CIS 541

Flowchart for Triangle Classification
Problem

obtuse
triangle

acute
triangle

equilateral
triangle

isosceles
triangle

illegal
input

right
triangle

T

F

T

F

T

FF

T TF a ≥ b ∧
b ≥ c

a = b ∧
b = c

a = b ∨
b = c

a < da ≠ d

a, b, c

a ← a*a
b ← b*b
c ← c*c
d ← b+c

Spring ‘10 82CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

42

Path-Oriented Test Data Generation
int triType(int a, int b, int c) {

int type = PLAIN;
1 if (a > b)
2 swap(a,b);
3 if (a > c)
4 swap(a,c);
5 if (b > c)
6 swap(b,c);
7 if (a==b) {
8 if (b==c)
9 type = EQUILATERAL;

else
10 type = ISOSCELES;

}
11 else if (b==c)
12 type = ISOSCELES;
13 return type;

}Spring ‘10 83CIS 541

Path-Oriented Test Data Generation

Valid Path Condition
P = a > b = c

data
dependency

solve using ?
CLP, IRM, MILP…

Test Data: (a, b, c) = (5, 4, 4)

1
2

3
4

5

7

6

8

910

11

12

13

s

e

a > b

a ≤ b

a > c

b > c

a ≤ c

b ≤ c

a = b
a ≠ b

b = c

b ≠ c

b = cb ≠ c

Path Condition
P = (a > b) ∧ (a > c) ∧ (b ≤ c) ∧ (a ≠ b) ∧ (b = c)

Spring ‘10 84CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

43

Goal-Oriented Test Data Generation

§ Find-any-path concept
o Hard to predict the coverage
o More flexible to find test data
o Alleviates the problem of selecting infeasible paths.

§ Related works (Bogdan Korel)
o Chaining approach (IEEE TSE, 1995)
� Data dependence analysis

o Assertion-oriented approach (IEEE TSE, 1996)
� Assertions are inserted
� Oracle is given in the code

Spring ‘10 85CIS 541

Goal-Oriented Test Data Generation

Unspecific path <3,10,13>
: <3> and <10,13>

Set of paths
<3,5,7,8,10,13>

<3,4,5,7,8,10,13>
<3,5,6,7,8,10,13>

<3,4,5,6,7,8,10,13>

Choose one path

Test Data

1
2

3

4

5

7

6

8

910

11

12

13

s

e

a > b

a ≤ b

a > c

b > c

a ≤ c

b ≤ c

a = b
a ≠ b

b = c
b ≠ c

b = cb ≠ c

Spring ‘10 86CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

44

Static Test Data Generation

§ Generate test data using static information of the
program
o Symbolic execution is a representative techniques.
� First proposed by J. C. King(1976)

§ Difficulty with dynamic data structures, arrays,
procedures, and loop conditions
§ Overheads of repeated algebraic manipulation and

simplification of variable and path expressions
§ Not applicable to real-time software systems

Spring ‘10 CIS 541 87

Symbolic Evaluation

§ Monitors manipulations performed on the input data
§ Maintains the relationships between the input data

and resulting values
§ Represents a program’s computations and domains

by symbolic expressions
§ Applications

o Testing and debugging
o Program verification
o Program optimization and documentation
o Test data generation

Spring ‘10 88CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

45

An Example Program

Procedure TRANSACT (DAYS: in integer; AMOUNT:in real;
BALANCE:in out real; INTEREST:out real;
BELOWMIN:out boolean; OVERDRAFT:out boolean)

NEWBAL :real; -- new balance
RATE :constant real:= 0.06; -- interest rate
MINBAL :constant real:= 100.00 -- minimum balance
BMCHARGE :constant real:= 0.10 -- below minimum charge
ODCHARGE :constant real:= 4.00 -- overdraft charge

S begin
1 OVERDRAFT := false;
2 BELOWMIN := false;
3 NEWBAL := BALANCE*(1 + RATE/365)**DAYS;
4 INTEREST := NEWBAL – BALANCE;
5 if AMOUNT > 0.0 then -- process deposit
6 NEWBAL := NEWBAL + AMOUNT;

endif;

Spring ‘10 89CIS 541

An Example Program

FT

F

F

T

T

Path (2)

7 if AMOUNT < 0.0 then -- process check
8 if - AMOUNT > NEWBAL then
9 OVERDRAFT := true;
10 NEWBAL := NEWBAL - ODCHARGE;

else
11 NEWBAL := NEWBAL + AMOUNT;

endif
12 if NEWBAL < MINBAL then
13 BELOWMIN := true;
14 NEWBAL := NEWBAL - BMCHARGE;

endif
endif

15 BALANCE := NEWBAL;
f end TRANSACT;

Spring ‘10 90CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

46

Example of Path Condition

§ Path Computation for Path P(2)
o BALANCE = balance*(1+0.06/365)**days + amount - 0.1
o INTEREST= balance*(1+0.06/365)**days – balance
o BELOWMIN := true
o OVERDRAFT := true

§ Path Condition for Path P(2)
o (amount <= 0.0) and

(amount < 0.0) and
(-amount <= balance*(1+0.06/365)**days) and
(balance*(1+0.06/365)**days + amount < 100.0)

Spring ‘10 91CIS 541

Symbolic Evaluation of Path (2)
Statement Interpreted predicate Interpreted assignments
s true DAYS = days, AMOUNT = amount, BALANCE = balance,

INTEREST = ?, BELOWMIN = ?, OVERDRAFT = ?, NEWBAL = ?, RATE
= 0.06, MINBAL = 100.0, BMCHARGE = 0.1, ODCHARGE = 4.0

1 OVERDRAFT = false
2 BELOWMIN = false
3 NEWBAL = balance*(1 + 0.06/365)**days

4 INTEREST = balance*(1 + 0.06/365)**days - balance

(5.7) amount <= 0.0

(7,8) amount < 0.0

(8,11) – amount <= balance*(1 +
0.06/365)**days

11 NEWBAL = balance*(1 + 0.06/365)**days + amount
(12,13) balance*(1 + 0.06/365)**days

+ amount < 100.0

13 BELOWMIN = true

14 NEWBAL = balance*(1 + 0.06/365)**days + amount – 0.1

15 BALANCE = balance*(1 + 0.06/365)**days + amount – 0.1

Spring ‘10 92CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

47

Symbolic Execution: An Example

1

2

3

4

5

7

x = y*2

If (x >= 10)

x = x+10

If (x + y <110)

printf(“OK”);

y = y+1

6

input variable : y → Y

Node Path condition Path action

1 x = Y*2

2 Y*2 >= 10

3 x = Y*2 + 10

4 y = Y + 1

5 (Y*2 + 10) + (Y + 1) >= 110

Y >= 5 ∧Y >= 33 èY >= 33Y >= 5 ∧Y >= 33 èY >= 33

TF

TF

Spring ‘10 93CIS 541

Dynamic Test Data Generation

§ Execution-based approach
o The program is executed with some, possibly randomly

selected input
o If some desired test requirement is not satisfied, inputs

are incrementally modified until one of them satisfies the
test requirements

o Function minimization search
� Genetic algorithms

o Dynamic data flow analysis [Korel]

Spring ‘10 94CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

48

Function Minimization Problem:

1

2

3

4

5

7

x = y*2

If (x >= 10)

x = x+10

If (x+y <110)

printf(“OK”);

y = y+1

6

input variable : y

TF

TF

F(y) = 10 – x2(y) if x2(y) < 10

0 otherwise

F(y) = 10 – x2(y) if x2(y) < 10

0 otherwise

Find a value of y that minimizes F(y)

x2(y) is the value of x at the statement #2
when the program is executed the input y

Spring ‘10 95CIS 541

Dynamic Test Data Generation

§ Can handle dynamic data structures (pointer, array)
and function calls
§ Expensive; requires many iterations before a suitable

input is found
§ Inefficient in handling infeasible paths
§ Monitoring can be done by instrumentation

Spring ‘10 96CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

49

EMBEDDED SOFTWARE
TESTING

Spring ‘10 97CIS 541

Embedded System

§ A system whose prime function is not that of information
processing, but which nevertheless requires information
processing in order to carry out their prime function

§ A system that is logically incorporated in a larger system
whose primary function is not computation

§ Host Environment
o The operating system or computer which the embedded software

code is written on

§ Target Environment
o The operating system or device which the embedded software code

will execute on

Spring ‘10 98CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

50

Examples of Embedded Systems

§ Cruise control
§ Set-top box
§ Pacemaker
§ NMR scanner
§ Railroad signaling
§ Telecom switching
§ Missile defense systems

Spring ‘10 99CIS 541

Generic Scheme of an Embedded
System

Processing
Unit

Interface with other systems

Embedded SystemPlant

Environm
ent

Pow
er supply

Sensors
A

ctors

Specific Interfaces

Input/O
utput

A
D

C
onversion

D
A

C
onversion

RA
M

Em
bedded

Softw
are

Spring ‘10 100CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

51

Development of an Embedded
Software System
§ Model Building

o A model of the system is built on PC
o A model simulates the required system behavior

§ Prototype Building
o Code is generated from the model and embedded in a

prototype

§ Product Building
o The experimental hardware of the prototypes is gradually

replaced by the real hardware
o The system is built in its final form and mass produced

Spring ‘10 101CIS 541

Multiple V Development Lifecycle

build build build

Model Prototype(s) Final Product

Spring ‘10 102CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

52

Problems in Testing Embedded
Software
§ Divergent environment

o Testing happens too late and depends on hardware
o Simulation-based testing
� User interface, HW interface, Protocol, Time

§ Reactive and Concurrent behavior
o Tests are not repeatable and takes too much time and resources.
o Static analysis vs. Run-time monitoring and checking

§ Timing requirements
§ Probe effects

o Hardware monitoring
� Monitoring the system bus activity for data and instructions
� ROM monitors
� In-circuit emulator

Spring ‘10 103CIS 541

Testing Embedded Software

§ Host (Development) Environment
o Unix, Windows NT, …

§ Target Environment
o Product-specific
o Specific for target system
o Target OS
� Communication, Scheduling, …

o Target HW
� I/O, interrupts, interfaces, …

o Environment
� Protocols, UI, …

o Timing
Spring ‘10 104CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

53

Testing Embedded Software

Target
Operating

System

Software
Under
Test

Target
Hardware

Outside
Environment

Timing

Spring ‘10 105CIS 541

Test Environment

§ Hardware/Software/Network
§ Test Databases

o Test Data have to be stored

§ Simulation and Measurement Equipment

Spring ‘10 106CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

54

Embedded Software Testing
Techniques
§ “White Box” or “Code-Based” Testing

o Requires that the tester has a detailed knowledge of the
software structure and its intended role.

o Embedded software requires higher code coverage
percentages due to the strict requirements for safety and
reliability.
� Many code-based testing tools on the host environment are

introduced

Spring ‘10 107CIS 541

Embedded Software Testing
Techniques (cont.)
§ “Black Box” or “Functional” Testing

o The quality of the requirements will affect the resultant
tests

o An aspect of black box testing of embedded SW is to test
to extremes
� Functional testing should not only exercise how the software

works, but how the software fails

Spring ‘10 108CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

55

Embedded Software Testing Phases

§ Module Testing
§ Integration Testing
§ System Testing
§ Hardware/Software Integration Testing

Spring ‘10 109CIS 541

Embedded Software Testing Tools

§ Memory Analysis Tools
o Designed to address faults in allocation of dynamic

memory
o SW and HW based memory analyzers

§ Performance Analysis Tools
o Provide specific data about how and when execution time

was spent
o The majority of execution time is spent in a relatively

small amount of code

§ GUI Testers
o Has the ability to record and playback operator actions

Spring ‘10 110CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

56

Embedded Software Testing Tools
(cont.)
§ Code Coverage Tools

o Track the portion of the code that has been executed.
o SW and HW based monitoring

§ General Support Tools
o Databases, Defect Tracking, Configuration Management

Spring ‘10 111CIS 541

References

§ Y. Kwon & H. Bae, SEP524 Software Quality Assurance
§ D. Peled, Lecture2: Testing
§ H. Robinson, Model-Based Testing Tutorial, StarWest 2006

Spring ‘10 112CIS 541

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

