
Real-Time Operating Systems

(Working Draft)

Originally Prepared by Sebastian Fischemeister

Modified by Insup Lee

CIS 541, Spring 2010

Spring ‘10 CIS 541 2

What is an Operating System (OS)?

 A program that acts as an intermediary between a

user of a computer and the computer hardware

 Operating system goals:

o Execute user programs and make solving user problems

easier.

o Make the computer system convenient to use

 Use the computer hardware in an efficient manner

Spring ‘10 CIS 541 3

Computer System Components

1. Hardware – provides basic computing resources

(CPU, memory, I/O devices)

2. Operating system – controls and coordinates the

use of the hardware among the various application

programs for the various users

3. Applications programs – define the ways in which

the system resources are used to solve the

computing problems of the users (compilers,

database systems, video games, business programs)

4. Users (people, machines, other computers)

Spring ‘10 CIS 541 4

Abstract View of System Components

Spring ‘10 CIS 541 5

What is an RTOS (Real-Time OS)?

 Often used as a control device in a dedicated

application such as controlling scientific experiments,

medical imaging systems, industrial control systems,

and some display systems

 Well-defined fixed-time constraints

Spring ‘10 CIS 541 6

More Precisely?

 The system allows access to sensitive resources with

defined response times.

o Maximum response times are good for hard real-time

o Average response times are ok for soft real-time

 Any system that provides the above can be classified

as a real-time system

o 10us for a context switch, ok?

o 10s for a context switch, ok?

Spring ‘10 CIS 541 7

Taxonomy of RTOSs

 Small, fast, proprietary kernels

 RT extensions to commercial timesharing systems

 Component-based kernels

 Monolithic kernels

Spring ‘10 CIS 541 8

Small, Fast, Proprietary Kernels

 They come in two varieties:

o Homegrown

o Commercial offerings

 Usually used for small embedded systems

 Typically specialized for one particular application

 Typically stripped down and optimized versions:

o Fast context switch

o Small size, limited functionality

o Low interrupt latency

o Fixed or variable sized partitions for memory management

 PICOS18, pSOS, MicroC, …

Spring ‘10 CIS 541 9

RT Extensions

 A common approach is to extend Unix

o Linux: RT-Linux, RTLinuxPro, RTAI,

o Posix: RT-Posix

o MACH: RT-MACH

 Also done for Windows based on virtualization.

 Generally slower and less predictable.

 Richer environment, more functionality.

 These systems use familiar interfaces, even standards.

 Problems when converting an OS to an RTOS:

o Interface problems (nice and setpriority in Linux)

o Timers too coarse

o Memory management has no bounded execution time

o Intolerable overhead, excessive latency

Spring ‘10 CIS 541 10

How to do an RT Extension?

 Compliant kernels

o Takes an existing RTOS and make it execute other UNIX

binaries (see LynxOS).

o Interfaces need to be reprogrammed.

o Behavior needs to be correctly reimplemented.

Spring ‘10 CIS 541 11

How to do an RT Extension?

 Dual kernels

o Puts an RTOS kernel between the hardware and the OS.

o Hard tasks run in the RTOS kernel, the OS runs when

CPU is available.

o Native applications can run without any changes.

o Hard tasks get real-time properties.

o See RTLinuxPro

 Problems:
 A single failing hard task can kill the whole system.

 The RTOS kernel requires its own IO drivers.

Spring ‘10 CIS 541 12

How to do an RT Extension?

 Core kernel modifications

o Takes the non-RT operating systems and modifies it to

become an RTOS.

 Problem: (need to do all this)

o Implement high-resolution timers

o Make the kernel preemptive

o Implement priority inheritance

o Replace FIFOs with priority queues

o Find and change long kernel execution paths

Spring ‘10 CIS 541 13

Component-based Kernels

 The source consists of a number of components that can be selectively
included to compose the RTOS.

 See OS-Kit, Coyote, PURE, 2k, MMLite, Pebble, Chaos, eCos.

 eCos

o Hardware Abstraction Layer (HAL)

o Real-time kernel

 Interrupt handling

 Exception handling

 Choice of schedulers

 Thread support

 Rich set of synchronization primitives

 Timers, counters and alarms

 Choice of memory allocators

 Debug and instrumentation support

Counters -- Count event occurrences

Clocks -- Provide system clocks

Alarms -- Run an alarm function

Mutexes -- Synchronization primitive

Condition Variables -- Synchronization primitive

Semaphores -- Synchronization primitive

Mail boxes -- Synchronization primitive

Event Flags -- Synchronization primitive

Spinlocks -- Low-level Synchronization Primitive

Scheduler Control -- Control the state of the scheduler

Interrupt Handling -- Manage interrupt handlers

Spring ‘10 CIS 541 14

Component-based Kernels

 eCos

o µITRON 3.0 compatible API

o POSIX compatible API

o ISO C and math libraries

o Serial, ethernet, wallclock and watchdog device drivers

o USB slave support

o TCP/IP networking stacks

o GDB debug support

 All components can be added through a
configuration file that includes and excludes parts of
the source code.

Spring ‘10 CIS 541 15

Research Kernels

 Many researchers built a new kernel for one of

these reasons:

o Challenge basic assumptions made in timesharing OS

o Developing real-time process models

o Developing real-time synchronization primitives

o Developing solutions facilitating timing analysis

o Strong emphasis on predictability

o Strong emphasis on fault tolerance

o Investigate the object-oriented approach

o Real-time multiprocessor support

o Investigating QoS

What Typically Differs

Spring ‘10 CIS 541 17

Requirements

 RTOS must be predictable

o We have to validate the system

o We have to validate the OS calls/services

 We must know upper bounds to

o Execution time of system calls

o Memory usage

 We must have static bounds on

o Memory layout

o Size of data structures (e.g. queues)

 Fine grain interrupt control

Spring ‘10 CIS 541 18

RTOS Predictability

 All components of the RTOS must be predictable

o System calls, device drivers, kernel internal management

 Memory access

o Page faults, lookup time, caches

 Disk access

o Bound for head movement while reading/writing data

 Net access

o Bound for time for transmission, switching

o Dropped packets??

 Scheduling must be deterministic

Spring ‘10 CIS 541 19

Admission Control

 Admission control is a function that decides if new

work entering the system should be admitted or

not.

 To perform this it requires:

o A model of the state of system resources

o Knowledge about incoming requests

o An algorithm to make the admission decision

o Policies for actions to take upon admission and rejection

 Statically scheduled systems require no admission

control.

Spring ‘10 CIS 541 20

Admission Control

 The admission algorithm requires preanalyzed tasks

 Shared data

 Execution time

 Precedence information

 Importance level

 Deadlines

 Positive decision assigns time slices to the task

 Negative decision has options:

o Run a simpler version of the task

o Run on a different machine

o Reject the task

 Admission algorithms can be complex as they have to consider multiple resources
(e.g., networked video streaming).

Spring ‘10 CIS 541 21

Resource Reservation

 Resource reservation is the act of actually assigning

resources to a task.

o Initially no resource reservation, only allocation as the

task runs.

o Valuable for hard real-time systems.

o Introduces an overhead as resources might be unused

 => introduction of resource reclaiming strategies

 Closely linked to resource kernels that offer

interfaces for resource reservation, donation, and

reflection.

Spring ‘10 CIS 541 22

Task Declaration

 RTOSs tailored to microprocessors often require a

static declaration of tasks.

 Advantages are:

o Simple check that the system has sufficient resources.

o No admission control necessary.

o No overhead introduced by the admission test.

o No thread spawning problems

 => but quite static

Spring ‘10 CIS 541 23

Boot from ROM

 The RTOS typically boots from the ROM when used

on microprocessors.

 Requires the application program to actually start up

the RTOS:
void main (void) {

/* Perform Initializations */

...

OSInit();

...

/* Create at least one task by calling

OSTaskCreate() */

OSStart();

}

Spring ‘10 CIS 541 24

Configurability

 As mentioned with component-based RTOS, the

system must be configurable.

 Include only components needed for the present

system

 Components must be removable

o Inter-module dependencies limit configurability

 Configuration tailors OS to system

o Different configuration possibilities

 Example RoboVM (PICDEM and modular robot).

Spring ‘10 CIS 541 25

Configurability

 Remove unused functions

o May be done via linker automatically

 Replace functionality

o Motor placement comes in three functions:

 Calculated

 Lookup table (program memory)

 Lookup table (EEPROM)

 Conditional compilation

o Use #if, #ifdef constructs

o Needs configuration editor

o Example: Linux make config….

Spring ‘10 CIS 541 26

Problem with Configurability

 Per (boolean) configuration option, we obtain two

new OS versions.

 Embedded systems require extensive testing.

 The application must be tested with each

configuration separately:

o 100 configuration options we get around 2^100

o Require hardware setup

o Require software setup

o Require reporting for automated testing

Spring ‘10 CIS 541 27

Embedded RTOS I/O

 I/O normally only through kernel via a system call.

o Expensive but provides control

 In an RTOS for embedded systems, tasks are
allowed to do I/O operations directly

o Direct fast access

o Direct task to task communication between chips

 Problem: Can cause troubles if tasks interfere

 Solution: Programmer must do synchronization too

Spring ‘10 CIS 541 28

Embedded RTOS: Interrupts

 Normal OS: Interrupts are kernel only

o Must be reliable (dropped disk interrupts…)

o Costly: Notification via context switch/syscalls

 Embedded OS: tasks can use interrupts

o Again: only trusted/tested programs

o Speed important

o Fast task control possible

o But: modularity decreases, as tasks may have to share

interrupts correctly

Spring ‘10 CIS 541 37

PICOS18 Interrupt Routine

 Part of the user application.

 One for the high priority interrupts and one for low

priority interrupts.

 Most important part: AddOneTick()

 Let’s have a look.

Spring ‘10 CIS 541 38

PICOS18 Context Switch

 The active task gets suspended and its context gets

pushed onto its stack.

 The preempted task gets resumed and its context

gets restored.

 Let’s have look at the save_task_ctx routine.

Spring ‘10 CIS 541 39

Static Declarations

 PICOS18 requires you to statically declare

o Alarms

o Resources

o Tasks

 Let’s have a look.

Spring ‘10 CIS 541 41

Tasks Implementation

 At most 16 events.

 The task state is encoded in the following variables:

o tsk_X_state_ID

 Bits 0-3: task identifier

 Bit 4: unused

 Bit 5-7: task state

o tsk_X_active_prio

 Bits 0-3: task priority

 Bit 5-7: activation counter

o Let’s look at some of the functions in pro_man.c

Spring ‘10 CIS 541 42

Event Management

 StatusType SetEvent (TaskType TaskID,

EventMaskType Mask)

o Posts an event to another task. Causes a scheduling operation.

 StatusType ClearEvent (EventMaskType Mask)

o Clears the event, otherwise an infinite loop.

 StatusType GetEvent (TaskType TaskID,

EventMaskRefType Event)

o Receives the event value for a specific task.

 StatusType WaitEvent (EventMaskType Mask)

o Blocks the current task until the event occurs.

Spring ‘10 CIS 541 43

Event Implementation

 At most 16 events.

 The event status is encoded in these two variables:

o EventMaskType event_X

 For each task 16 possible events.

o EventMaskType wait_X

 Each task can listen for 16 possible events.

 Let’s have a look at the code.

Spring ‘10 CIS 541 44

Alarm Management

 StatusType GetAlarm (AlarmType AlarmID,
TickRefType Tick)

o Returns the number of ticks until the alarm goes off.

 StatusType SetRelAlarm (AlarmType AlarmID,
TickType increment, TickType cycle)

o Registers an alarm relative to the current kernel counter.

 StatusType SetAbsAlarm (AlarmType AlarmID,
TickType start, TickType cycle)

o Registers an alarm as absolute kernel counter tick value.

 StatusType CancelAlarm (AlarmType AlarmID)
o Deactivate an alarm.

Spring ‘10 CIS 541 45

Alarm Implementation

 Each tick the alarm counters get incremented by

one.

 If the alarm value equals the counter value, then the

alarm will cause an event.

 Let’s look at the code.

Spring ‘10 CIS 541 46

Sample Application

 Let’s look at the sample application that comes with

PICOS18.

