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Mixed Periodic and Aperiodic Task 

Systems

 Question: how to execute aperiodic tasks without 

violating schedulability guarantees given to periodic 

tasks?
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Mixed Periodic and Aperiodic Task 

Systems

 Question: how to execute aperiodic tasks without 

violating schedulability guarantees given to periodic 

tasks?

 One Answer: Execute aperiodic tasks at lowest 

priority

o Problem: Poor performance for aperiodic tasks
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Mixed Periodic and Aperiodic Task 

Systems

 Idea: aperiodic tasks can be served by periodically invoked 
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires

 Servers have different flavors depending on the details of when 
they are invoked, what priority they have, and how budgets are 
replenished

Server

Period, Ps

Budget, Bs
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Mixed Periodic and Aperiodic Task 

Systems

 Idea: aperiodic tasks can be served by periodically invoked 
servers

 The server can be accounted for in periodic task schedulability 
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires

 Servers have different flavors depending on the details of when 
they are invoked, what priority they have, and how budgets are 
replenished

Aperiodic Tasks

Server
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Polling Server

 Runs as a periodic task (priority set according to RM)

 Aperiodic arrivals are queued until the server task is 
invoked

 When the server is invoked it serves the queue until 
it is empty or until the budget expires then suspends 
itself

o If the queue is empty when the server is invoked it 
suspends itself immediately.

 Server is treated as a regular periodic task in 
schedulability analysis

Spring ‘10 8CIS 541



Example of a Polling Server

 Polling server:
o Period Ps = 5

o Budget Bs = 2

 Periodic task 
o P = 4

o C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals
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Example of a Polling Server
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 All aperiodic arrivals have C=1
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Example of a Polling Server

 Polling server:
o Period Ps = 5

o Budget Bs = 2

 Periodic task 
o P = 4

o C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Why not execute immediately?
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Deferrable Server 

 Keeps the balance of the budget until the end of the 

period

 Example (continued)

Aperiodic arrivals

Budget Polling

Server

Deferrable

Server
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Worst-Case Scenario
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Exercise: Derive the utilization bound for a deferrable server plus one periodic task

Spring ‘10 14CIS 541



Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred

Previous

Invocation

















1

12
ln

s

s
p

U

U
U

Exercise: Derive the utilization bound for a deferrable server plus one periodic task
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Priority Exchange Server

 Like the deferrable server, it keeps the budget until 

the end of server period

 Unlike the deferrable server the priority slips over 

time: When not used, the priority is exchanged for 

that of the executing periodic task
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Priority Exchange Server

Aperiodic tasks

Priority Exchange

Server

Periodic

Tasks

Example
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Priority Exchange Server

Aperiodic tasks

Priority Exchange

Server

Periodic

Tasks

Example















1

2
ln

s

p
U

U

0.186

0.652

0.69

1.0

1.0
Us

U

Priority Exchange

Polling

Spring ‘10 18CIS 541



Sporadic Server

 Server is said to be active if it is in the running or ready
queue, otherwise it is idle.

 When an aperiodic task comes and the budget is not 
zero, the server becomes active

 Every time the server becomes active, say at tA, it sets 
replenishment time one period into the future, tA + Ps
(but does not decide on replenishment amount).

 When the server becomes idle, say at tI , set 
replenishment amount to capacity consumed in [tA, tI]
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Slack Stealing Server

 Compute a slack function A(ts, tf) that says how 

much total slack is available

 Admit aperiodic tasks while slack is not exceeded
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Aperiodic Servers

Dynamic Priority
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PRIORITY INVERSION
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Resources and Blocking

Priority Inheritance

Priority Ceiling

Slack Resource Policy



The Problem

 Tasks have synchronization constraints

o Semaphores protect critical sections

 Blocking can cause a higher-priority task to wait on a 
lower-priority one to unlock a resource

o Problem: In all previous derivations we assumed that a task 
can only wait for higher-priority tasks not lower-priority
tasks

 Question

o What is the maximum amount of time a higher-priority task 
can wait for a lower-priority task?

o How to account for that time in schedulability analysis?
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Mutual Exclusion Constraints

 Tasks that lock/unlock the same semaphore are said 

to have a mutual exclusion constraint

Lock S Unlock S

Lock S Unlock S

Critical sections

(Mutually exclusive)

Task 1

Task 2
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Priority Inversion

 Locks and priorities may be at odds. Locking results in 

priority inversion

High-priority task

Low-priority task

Lock S

Preempt.
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Priority Inversion

 Locks and priorities may be at odds. Locking results in 

priority inversion

High-priority task

Low-priority task

Lock S

Attempt to lock S 

results in blocking

Preempt.

Priority 

Inversion
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Priority Inversion

 How to account for priority inversion?

High-priority task

Low-priority task

Lock S

Attempt to lock S 

results in blocking

Preempt.

Unlock S

Lock S
Unlock S

Priority 

Inversion
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Unbounded Priority Inversion

 Consider the case below: a series of intermediate 

priority tasks is delaying a higher-priority one

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S 

results in blocking
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Unbounded Priority Inversion

 How to prevent unbounded priority inversion?

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S 

results in blocking
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Priority Inheritance Protocol

 Let a task inherit the priority of any higher-priority 

task it is blocking

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks …

Attempt to lock S 

results in blocking

Lock S
Unlock S

Unlock S
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Priority Inversion and the MARS 

Pathfinder

 Landed on the Martian surface on July 4th, 1997

 Unconventional landing – boucing into the Martian surface

 A few days later, not long after Pathfinder started gathering meteorological data, the 
spacecraft began experiencing total system reset, each resulting in losses of data

 What happened:
o Pathfinder has an “information bus”

o The meteorological data gathering task ran as an infrequent, low priority thread, and used the 
information bus to publish its data (while holding the mutex on bus).

o A communication task that ran with medium priority.

o It is possible for an interrupt to occur that caused (medium priority) communications task to 
be scheduled during the short interval of the (high priority) information bus thread was 
blocked waiting for the (low priority) meteorological data thread.

o After some time passed, a watch dog timer goes off, noticing that the data bus has not been 
executed for some time, it concluded that something had gone really bad, and initiated a total 
system reset.
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The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !
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Priority Inversion
1. T1 has highest priority, T2 next, and T3 lowest

2. T3 comes first, starts executing, and acquires some resource (say, a lock).

3. T1 comes next, interrupts T3 as T1 has higher priority

4. But T1 needs the resource locked by T3, so T1 gets blocked

5. T3 resumes execution (this scenario is still acceptable so far)

6. T2 arrives, and interrupts T3 as T2 has higher priority than T3, and T2 executes till 
completion

7. In effect, even though T1 has priority than T2, and arrived earlier than T2, T2 delayed 
execution of T1

8. This is “priority inversion” !! Not acceptable.

9. Solution T3 should inherit T1’s priority at step 5
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Priority Inheritance Protocol

T1

T2

T3

lock R fails lock(R) unlock(R)

lock(R) unlock(R)

T3 blocks T2

T3 directly blocks T1
T3 has priority of T1

T2 arrives



Priority Inheritance Protocol

 Question: What is the longest time a task can wait for 

lower-priority tasks?

 Answer: ?
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Computing the Maximum Priority 

Inversion Time

 Consider the instant when a high-priority task that arrives. 

o What is the most it can wait for lower priority ones?

Semaphore Queue
Resource

1

Semaphore Queue
Resource

2

Semaphore Queue
Resource

M

If I am a task, priority 

inversion occurs when
(a) Lower priority task holds a 

resource I need (direct blocking)

(b) Lower priority task inherits a 

higher priority than me because it 

holds a resource the higher-priority 

task needs (push-through blocking)
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Schedulability Test
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Why do we have to test each task separately? Why not just one

utilization-based test like it used to? 
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Problem: Deadlock

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock occurs if two tasks locked two semaphores in 

opposite order

Spring ‘10 41CIS 541

Priority Ceiling Protocol

 Definition: The priority ceiling of a semaphore is the 

highest priority of any task that can lock it

 A task that requests a lock Rk is denied if its priority is 

not higher than the highest priority ceiling of all 

currently locked semaphores (say it belongs to 

semaphore Rh)

o The task is said to be blocked by the task holding lock Rh

 A task inherits the priority of the top higher-priority 

task it is blocking
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Problem: Deadlock?

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock used to occur if two tasks locked two semaphores in 

opposite order. Can it still occur in priority ceiling? 
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Problem: Deadlock?

Lock R1

Lock R2: Denied because its 

priority is not higher than 

ceiling of R1

Lock R2

Preemption

Deadlock used to occur if two tasks locked two semaphores in 

opposite order. Can it still occur in priority ceiling? 

Unlock R1
Unlock R2

Inherit higher priority
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Slack Resource Policy

 Priority: 
o Any static or dynamic policy (e.g., EDF, RM, …)

 Preemption Level
o Any fixed value that satisfies: If A arrives after B and Priority (A) > Priority 

(B) then PreemptionLevel (A) > PreemptionLevel (B)

 Resource Ceiling
o Highest preemption level of all tasks that might access the resource

 System Ceiling
o Highest resource ceiling of all currently locked resources

 A task can preempt another if:
o It has the highest priority 

o Its preemption level is higher than the system ceiling
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MULTI-PROCESSOR 

SCHEDULING
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Multiprocessor Scheduling

 Why consider multiprocessors
o Better tradeoff between computational power and costs 

(energy,fabrication)

o Ability to exploit inherent concurrency in software

 Problem statement
o Constrained deadline sporadic task system

 W = {1,…, n}, where i=(Ti,Ci,Di) and Ci <= Di <= Ti

 Ci units must be supplied non-concurrently

o Identical, unit-capacity multiprocessor platform
 m processors

o How can W be scheduled on these m processors?
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Global Scheduling
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1



2 m.  .  . Physical processors

Single task cluster



Partitioned Scheduling
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1

x1

2 m.  .  . Physical processors

x2
xm

.  .  . Task clusters

x1 
 x2 

…xm 
= 

xi 
 xj  

=  for all i and j

Counter-example for Partitioned

 Task set and number of processors
 ====(3,2,3) and =(6,4,6), m=4

 No partitioning technique will work
o Some processor must be assigned two tasks which is not possible

 Schedulable under global LLF
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Processor 1

Processor 2

Processor 3

Processor 4

11 5 5 5 5

2 2

3 3

4 4

1 1

2 2 3

3 4 4



Counter-example for Global

 Task set and number of processors
 ==(3,1,3) and =(7,6,7), m=2

 Global EDF cannot schedule this task set

 Partitioned EDF can
  on processor 1, and the other two on processor 2 
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0            1           2           3            4           5            6

Processor 1

Processor 2

1

2

33 1

2

33

Partitioned vs. Global

 Two extreme cases of task-processor clustering
o one-one (partitioned) vs. one-all (global)

 Both have advantages and disadvantages
o Partitioned: Low preemptions, but low resource utilization
o Global: High resource utilization with high preemptions

 Optimal scheduling on identical platforms
o Only developed for implicit deadline task systems (Di = Ti for all i)
o All known optimal schedulers are global strategies (Pfair [BCPV96] )
o Problem open for constrained deadline periodic task systems

 Shown to be impossible for sporadic task systems

 Can we support general task-processor clustering through the 
concept of platform virtualization (hierarchical scheduling)?
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Virtual Cluster-based Scheduling
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1 2 k
.  .  .

1

x1

2 m.  .  . Physical processors

x2
xk

.  .  . Task clusters

Virtual processors

Intra-cluster scheduling

x1 
 x2 

…xk 
= 

xi 
 xj  

=  for all i and j

Virtual Cluster-based Scheduling
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• Each i is resource required to schedule xi
in cluster VCi

• Each mi (<= m) denotes maximum number of physical    

processors that can be assigned to VCi at any instant     

1(m1) 2(m2) k(mk)
.  .  .

1

x1

2 m.  .  . Physical processors

x2
xk

.  .  . Task clusters

Virtual processors

Inter-cluster scheduling



Counter-example for Partitioned and Global

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 No Partitioning technique can work

o Some processor needs to be assigned two tasks 
which is not possible (maximum utilization that can 
be assigned to any processor is 1)
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Counter-example for Partitioned and Global

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 Schedule under global EDF/EDZL (earliest deadline until zero 
laxity)/LLF

o Task 2 misses its deadline
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Counter-example for Partitioned and Global

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 Schedule under global fp-EDF/US-EDF (highest priority to high 

utilization tasks 1,…,5)

o Task 6 misses its deadline
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4 4
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Virtual Clustering

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 Schedule under clustered scheduling

 1, 2, 3 scheduled on processors 1 and 2

 4, 5, 6 scheduled on processors 3 and 4
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Virtual Clustering

 Two-level hierarchical scheduler
o Intra-cluster schedulers for tasks within clusters
o Inter-cluster schedulers for clusters on the platform 

(clusters can share some physical processors)

 Concurrency bound for each cluster
o Abstract concurrency constraints of tasks within cluster
o Helps regulate resource access (e.g., Caches)

 Have virtual clusters been used before?
o Supertasks[MoRa99], Megatasks[ACD06]

o Results restricted to Pfair schedulers (not generalizable)
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MODE CHANGE 

PROTOCOLS
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