
Real-Time Scheduling (Part 2)

(Working Draft)

Insup Lee

Department of Computer and Information Science

School of Engineering and Applied Science

University of Pennsylvania

www.cis.upenn.edu/~lee/

CIS 541, Spring 2010

PERIODIC SERVERS FOR

APERIODIC TASKS

Spring ‘10 CIS 541 2

Mixed Periodic and Aperiodic Task

Systems

 Question: how to execute aperiodic tasks without

violating schedulability guarantees given to periodic

tasks?

Spring ‘10 3CIS 541

Mixed Periodic and Aperiodic Task

Systems

 Question: how to execute aperiodic tasks without

violating schedulability guarantees given to periodic

tasks?

 One Answer: Execute aperiodic tasks at lowest

priority

o Problem: Poor performance for aperiodic tasks

Spring ‘10 4CIS 541

Mixed Periodic and Aperiodic Task

Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires

 Servers have different flavors depending on the details of when
they are invoked, what priority they have, and how budgets are
replenished

Server

Period, Ps

Budget, Bs

Spring ‘10 5CIS 541

Mixed Periodic and Aperiodic Task

Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires

 Servers have different flavors depending on the details of when
they are invoked, what priority they have, and how budgets are
replenished

Server

Aperiodic Tasks
Spring ‘10 6CIS 541

Mixed Periodic and Aperiodic Task

Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires

 Servers have different flavors depending on the details of when
they are invoked, what priority they have, and how budgets are
replenished

Aperiodic Tasks

Server

Spring ‘10 7CIS 541

Polling Server

 Runs as a periodic task (priority set according to RM)

 Aperiodic arrivals are queued until the server task is
invoked

 When the server is invoked it serves the queue until
it is empty or until the budget expires then suspends
itself

o If the queue is empty when the server is invoked it
suspends itself immediately.

 Server is treated as a regular periodic task in
schedulability analysis

Spring ‘10 8CIS 541

Example of a Polling Server

 Polling server:
o Period Ps = 5

o Budget Bs = 2

 Periodic task
o P = 4

o C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Spring ‘10 9CIS 541

Example of a Polling Server

 Polling server:
o Period Ps = 5

o Budget Bs = 2

 Periodic task
o P = 4

o C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivalsSpring ‘10 10CIS 541

Example of a Polling Server

 Polling server:
o Period Ps = 5

o Budget Bs = 2

 Periodic task
o P = 4

o C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Spring ‘10 11CIS 541

Example of a Polling Server

 Polling server:
o Period Ps = 5

o Budget Bs = 2

 Periodic task
o P = 4

o C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Why not execute immediately?

Spring ‘10 12CIS 541

Deferrable Server

 Keeps the balance of the budget until the end of the

period

 Example (continued)

Aperiodic arrivals

Budget Polling

Server

Deferrable

Server

Spring ‘10 13CIS 541

Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred

Previous

Invocation

















1

12
ln

s

s
p

U

U
U

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

Spring ‘10 14CIS 541

Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred

Previous

Invocation

















1

12
ln

s

s
p

U

U
U

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

0.186

0.652

0.69

1.0

1.0
Us

U

Spring ‘10 15CIS 541

Priority Exchange Server

 Like the deferrable server, it keeps the budget until

the end of server period

 Unlike the deferrable server the priority slips over

time: When not used, the priority is exchanged for

that of the executing periodic task

Spring ‘10 16CIS 541

Priority Exchange Server

Aperiodic tasks

Priority Exchange

Server

Periodic

Tasks

Example

Spring ‘10 17CIS 541

Priority Exchange Server

Aperiodic tasks

Priority Exchange

Server

Periodic

Tasks

Example















1

2
ln

s

p
U

U

0.186

0.652

0.69

1.0

1.0
Us

U

Priority Exchange

Polling

Spring ‘10 18CIS 541

Sporadic Server

 Server is said to be active if it is in the running or ready
queue, otherwise it is idle.

 When an aperiodic task comes and the budget is not
zero, the server becomes active

 Every time the server becomes active, say at tA, it sets
replenishment time one period into the future, tA + Ps
(but does not decide on replenishment amount).

 When the server becomes idle, say at tI , set
replenishment amount to capacity consumed in [tA, tI]















1

2
ln

s

p
U

U

Spring ‘10 19CIS 541

Slack Stealing Server

 Compute a slack function A(ts, tf) that says how

much total slack is available

 Admit aperiodic tasks while slack is not exceeded

Spring ‘10 20CIS 541

Aperiodic Servers

Dynamic Priority

Summary

Periodic Tasks

Deadline=Period Deadline<Period

Rate Monotonic EDF

Bounds
Optimality

Result
Bound

Optimality

Result

Deadline Monotonic EDF

Bound

(Poor)

Per Task

Tests

Simple Recursive

Processor

Demand

Classical Hyperbolic

Aperiodic Tasks

Real-time Tasks

Fixed-Priority Dynamic-Priority

Polling

Slack Steal. Priority Ex.

Deferrable Sporadic

Total B.

Sporadic

DPE

CBS

TBS+

IPE

EDL

Spring ‘10 22CIS 541

PRIORITY INVERSION

Spring ‘10 CIS 541 23

Resources and Blocking

Priority Inheritance

Priority Ceiling

Slack Resource Policy

The Problem

 Tasks have synchronization constraints

o Semaphores protect critical sections

 Blocking can cause a higher-priority task to wait on a
lower-priority one to unlock a resource

o Problem: In all previous derivations we assumed that a task
can only wait for higher-priority tasks not lower-priority
tasks

 Question

o What is the maximum amount of time a higher-priority task
can wait for a lower-priority task?

o How to account for that time in schedulability analysis?

Spring ‘10 25CIS 541

Mutual Exclusion Constraints

 Tasks that lock/unlock the same semaphore are said

to have a mutual exclusion constraint

Lock S Unlock S

Lock S Unlock S

Critical sections

(Mutually exclusive)

Task 1

Task 2

Spring ‘10 26CIS 541

Priority Inversion

 Locks and priorities may be at odds. Locking results in

priority inversion

High-priority task

Low-priority task

Lock S

Preempt.

Spring ‘10 27CIS 541

Priority Inversion

 Locks and priorities may be at odds. Locking results in

priority inversion

High-priority task

Low-priority task

Lock S

Attempt to lock S

results in blocking

Preempt.

Priority

Inversion

Spring ‘10 28CIS 541

Priority Inversion

 How to account for priority inversion?

High-priority task

Low-priority task

Lock S

Attempt to lock S

results in blocking

Preempt.

Unlock S

Lock S
Unlock S

Priority

Inversion

Spring ‘10 29CIS 541

Unbounded Priority Inversion

 Consider the case below: a series of intermediate

priority tasks is delaying a higher-priority one

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S

results in blocking

Spring ‘10 30CIS 541

Unbounded Priority Inversion

 How to prevent unbounded priority inversion?

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S

results in blocking

Spring ‘10 31CIS 541

Priority Inheritance Protocol

 Let a task inherit the priority of any higher-priority

task it is blocking

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks …

Attempt to lock S

results in blocking

Lock S
Unlock S

Unlock S

Spring ‘10 32CIS 541

Spring ‘10 CIS 541 33

Priority Inversion and the MARS

Pathfinder

 Landed on the Martian surface on July 4th, 1997

 Unconventional landing – boucing into the Martian surface

 A few days later, not long after Pathfinder started gathering meteorological data, the
spacecraft began experiencing total system reset, each resulting in losses of data

 What happened:
o Pathfinder has an “information bus”

o The meteorological data gathering task ran as an infrequent, low priority thread, and used the
information bus to publish its data (while holding the mutex on bus).

o A communication task that ran with medium priority.

o It is possible for an interrupt to occur that caused (medium priority) communications task to
be scheduled during the short interval of the (high priority) information bus thread was
blocked waiting for the (low priority) meteorological data thread.

o After some time passed, a watch dog timer goes off, noticing that the data bus has not been
executed for some time, it concluded that something had gone really bad, and initiated a total
system reset.

Spring ‘10 CIS 541 34

The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !

Spring ‘10 CIS 541 35

Priority Inversion
1. T1 has highest priority, T2 next, and T3 lowest

2. T3 comes first, starts executing, and acquires some resource (say, a lock).

3. T1 comes next, interrupts T3 as T1 has higher priority

4. But T1 needs the resource locked by T3, so T1 gets blocked

5. T3 resumes execution (this scenario is still acceptable so far)

6. T2 arrives, and interrupts T3 as T2 has higher priority than T3, and T2 executes till
completion

7. In effect, even though T1 has priority than T2, and arrived earlier than T2, T2 delayed
execution of T1

8. This is “priority inversion” !! Not acceptable.

9. Solution T3 should inherit T1’s priority at step 5

Spring ‘10 CIS 541 36

Priority Inheritance Protocol

T1

T2

T3

lock R fails lock(R) unlock(R)

lock(R) unlock(R)

T3 blocks T2

T3 directly blocks T1
T3 has priority of T1

T2 arrives

Priority Inheritance Protocol

 Question: What is the longest time a task can wait for

lower-priority tasks?

 Answer: ?

Spring ‘10 37CIS 541

Computing the Maximum Priority

Inversion Time

 Consider the instant when a high-priority task that arrives.

o What is the most it can wait for lower priority ones?

Semaphore Queue
Resource

1

Semaphore Queue
Resource

2

Semaphore Queue
Resource

M

If I am a task, priority

inversion occurs when
(a) Lower priority task holds a

resource I need (direct blocking)

(b) Lower priority task inherits a

higher priority than me because it

holds a resource the higher-priority

task needs (push-through blocking)

Spring ‘10 38CIS 541

Schedulability Test

)12(

,1,

/1

1








i
i

k k

k

i

i i
P

C

P

B

nii

Spring ‘10 39CIS 541

Schedulability Test

)12(

,1,

/1

1








i
i

k k

k

i

i i
P

C

T

B

nii

Why do we have to test each task separately? Why not just one

utilization-based test like it used to?

Spring ‘10 40CIS 541

Problem: Deadlock

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock occurs if two tasks locked two semaphores in

opposite order

Spring ‘10 41CIS 541

Priority Ceiling Protocol

 Definition: The priority ceiling of a semaphore is the

highest priority of any task that can lock it

 A task that requests a lock Rk is denied if its priority is

not higher than the highest priority ceiling of all

currently locked semaphores (say it belongs to

semaphore Rh)

o The task is said to be blocked by the task holding lock Rh

 A task inherits the priority of the top higher-priority

task it is blocking

Spring ‘10 42CIS 541

Problem: Deadlock?

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock used to occur if two tasks locked two semaphores in

opposite order. Can it still occur in priority ceiling?

Spring ‘10 43CIS 541

Problem: Deadlock?

Lock R1

Lock R2: Denied because its

priority is not higher than

ceiling of R1

Lock R2

Preemption

Deadlock used to occur if two tasks locked two semaphores in

opposite order. Can it still occur in priority ceiling?

Unlock R1
Unlock R2

Inherit higher priority

Spring ‘10 44CIS 541

Slack Resource Policy

 Priority:
o Any static or dynamic policy (e.g., EDF, RM, …)

 Preemption Level
o Any fixed value that satisfies: If A arrives after B and Priority (A) > Priority

(B) then PreemptionLevel (A) > PreemptionLevel (B)

 Resource Ceiling
o Highest preemption level of all tasks that might access the resource

 System Ceiling
o Highest resource ceiling of all currently locked resources

 A task can preempt another if:
o It has the highest priority

o Its preemption level is higher than the system ceiling

Spring ‘10 45CIS 541

MULTI-PROCESSOR

SCHEDULING

Spring ‘10 CIS 541 46

Multiprocessor Scheduling

 Why consider multiprocessors
o Better tradeoff between computational power and costs

(energy,fabrication)

o Ability to exploit inherent concurrency in software

 Problem statement
o Constrained deadline sporadic task system

 W = {1,…, n}, where i=(Ti,Ci,Di) and Ci <= Di <= Ti

 Ci units must be supplied non-concurrently

o Identical, unit-capacity multiprocessor platform
 m processors

o How can W be scheduled on these m processors?

Spring ‘10 CIS 541 47

Global Scheduling

Spring ‘10 CIS 541 48

1



2 m. . . Physical processors

Single task cluster

Partitioned Scheduling

Spring ‘10 CIS 541 49

1

x1

2 m. . . Physical processors

x2
xm

. . . Task clusters

x1
 x2

…xm
= 

xi
 xj

=  for all i and j

Counter-example for Partitioned

 Task set and number of processors
 ====(3,2,3) and =(6,4,6), m=4

 No partitioning technique will work
o Some processor must be assigned two tasks which is not possible

 Schedulable under global LLF

Spring ‘10 CIS 541 50

0 1 2 3 4 5 6

Processor 1

Processor 2

Processor 3

Processor 4

11 5 5 5 5

2 2

3 3

4 4

1 1

2 2 3

3 4 4

Counter-example for Global

 Task set and number of processors
 ==(3,1,3) and =(7,6,7), m=2

 Global EDF cannot schedule this task set

 Partitioned EDF can
  on processor 1, and the other two on processor 2

Spring ‘10 CIS 541 51

0 1 2 3 4 5 6

Processor 1

Processor 2

1

2

33 1

2

33

Partitioned vs. Global

 Two extreme cases of task-processor clustering
o one-one (partitioned) vs. one-all (global)

 Both have advantages and disadvantages
o Partitioned: Low preemptions, but low resource utilization
o Global: High resource utilization with high preemptions

 Optimal scheduling on identical platforms
o Only developed for implicit deadline task systems (Di = Ti for all i)
o All known optimal schedulers are global strategies (Pfair [BCPV96])
o Problem open for constrained deadline periodic task systems

 Shown to be impossible for sporadic task systems

 Can we support general task-processor clustering through the
concept of platform virtualization (hierarchical scheduling)?

Spring ‘10 CIS 541 52

Virtual Cluster-based Scheduling

Spring ‘10 CIS 541 53

1 2 k
. . .

1

x1

2 m. . . Physical processors

x2
xk

. . . Task clusters

Virtual processors

Intra-cluster scheduling

x1
 x2

…xk
= 

xi
 xj

=  for all i and j

Virtual Cluster-based Scheduling

Spring ‘10 CIS 541 54

• Each i is resource required to schedule xi
in cluster VCi

• Each mi (<= m) denotes maximum number of physical

processors that can be assigned to VCi at any instant

1(m1) 2(m2) k(mk)
. . .

1

x1

2 m. . . Physical processors

x2
xk

. . . Task clusters

Virtual processors

Inter-cluster scheduling

Counter-example for Partitioned and Global

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 No Partitioning technique can work

o Some processor needs to be assigned two tasks
which is not possible (maximum utilization that can
be assigned to any processor is 1)

Spring ‘10 CIS 541 55

Counter-example for Partitioned and Global

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 Schedule under global EDF/EDZL (earliest deadline until zero
laxity)/LLF

o Task 2 misses its deadline

Spring ‘10 CIS 541 56

0 1 2 3 4 5 6

Processor 1

Processor 2

Processor 3

Processor 4

11 5 5 5 5

2 2

3 3

4 4

1

1

2

33

4 4

6 6 6

Counter-example for Partitioned and Global

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 Schedule under global fp-EDF/US-EDF (highest priority to high

utilization tasks 1,…,5)

o Task 6 misses its deadline

Spring ‘10 CIS 541 57

0 1 2 3 4 5 6

Processor 1

Processor 2

Processor 3

Processor 4

11 5

2 2

3 3

4 4

1 1

2 2

3 3

4 4

6

5

6

Virtual Clustering

 Task set and number of processors
 ====(3,2,3), =(6,4,6), and =(6,3,6), m=4

 Schedule under clustered scheduling

 1, 2, 3 scheduled on processors 1 and 2

 4, 5, 6 scheduled on processors 3 and 4

Spring ‘10 CIS 541 58

0 1 2 3 4 5 6

Processor 1

Processor 2

Processor 3

Processor 4

11

5 5

2

2

3 3

4 4

1 1

2

2

33

4 4

55

6

6 6

Virtual Clustering

 Two-level hierarchical scheduler
o Intra-cluster schedulers for tasks within clusters
o Inter-cluster schedulers for clusters on the platform

(clusters can share some physical processors)

 Concurrency bound for each cluster
o Abstract concurrency constraints of tasks within cluster
o Helps regulate resource access (e.g., Caches)

 Have virtual clusters been used before?
o Supertasks[MoRa99], Megatasks[ACD06]

o Results restricted to Pfair schedulers (not generalizable)

Spring ‘10 CIS 541 59

MODE CHANGE

PROTOCOLS

Spring ‘10 CIS 541 60

