
Real-Time Scheduling (Part 1)

(Working Draft)

Insup Lee

Department of Computer and Information Science

School of Engineering and Applied Science

University of Pennsylvania

www.cis.upenn.edu/~lee/

CIS 541, Spring 2010

Spring ‘10 CIS 541 2

Real-Time System Example

• Digital control systems
– periodically performs the following job:

senses the system status and

actuates the system according to its current status

Control-Law

Computation

Sensor

Actuator

Spring ‘10 CIS 541 3

Real-Time System Example

Multimedia

• Multimedia applications
– periodically performs the following job:

reads, decompresses, and displays video and audio
streams

Spring ‘10 CIS 541 4

Scheduling Framework Example

CPU

OS Scheduler

Digital Controller Multimedia

Spring ‘10 CIS 541 5

Fundamental Real-Time Issue

• To specify the timing constraints of real-time systems

• To achieve predictability on satisfying their timing
constraints, possibly, with the existence of other
real-time systems

Spring ‘10 CIS 541 6

Real-Time Spectrum

User

interface

Computer

simulation

Internet

video, audio

Cruise

control

Tele

communication

Flight

control

Electronic

engine

Soft RT Hard RTNo RT

Spring ‘10 CIS 541 7

Real-Time Workload

 Job (unit of work)

o a computation, a file read, a message transmission, etc

 Attributes

o Resources required to make progress

o Timing parameters

Released

Absolute

deadline

Relative

deadline

Execution time

Spring ‘10 CIS 541 8

Real-Time Task

 Task : a sequence of similar jobs

o Periodic task (p,e)

 Its jobs repeat regularly

 Period p = inter-release time (0 < p)

 Execution time e = maximum execution time (0 < e < p)

 Utilization U = e/p

5 10 150

Spring ‘10 CIS 541 9

Schedulability

 Property indicating whether a real-time system (a

set of real-time tasks) can meet their deadlines

(4,1)

(5,2)

(7,2)

Spring ‘10 CIS 541 10

Real-Time Scheduling

 Determines the order of real-time task executions

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

Optimality

 Scheduling algorithm A is better than B if for every

task set T, B can schedule T implies A can schedule

T.

 Given a class C of scheduling algorithms, scheduling

algorithm A is optimal in C, if A is better than every

scheduling algorithm B in C.

Spring ‘10 CIS 541 11

Spring ‘10 CIS 541 12

Real-Time Scheduling

 Static scheduling

o A fixed schedule is determined statically

o E.g., Cyclic Executive

 Static-priority scheduling

o Assign fixed priorities to processes

o A scheduler only needs to know about priorities

o E.g., Rate Monotonic (RM)

 Dynamic-priority scheduling

o Assign priorities based on current state of the system

o E.g., Least Completion Time (LCT), Earliest Deadline First

(EDF), Least Slack Time (LST)

CYCLIC EXECUTIVE

Spring ‘10 CIS 541 13

Spring ‘10 CIS 541 14

Cyclic Executives
A cyclic executive is a program that deterministically interleaves the

execution of periodic tasks on a single processor. The order in which
the tasks execute is defined by a cyclic schedule.

Example:

A = (10, 1), B = (10, 3), C = (15, 2), D = (30,8) (30, 3) (30, 5)

Reference: “The Cyclic executive model and ADA” Proc. of RTSS, 1988,
by Baker and Shaw

frame 1 frame 2 frame 3

A major cycle containing 3 frames

i i + 10 i + 20 i +30i +15

A A AB B BDC C D

Spring ‘10 CIS 541 15

General structure of a major

schedule

correct timing enforced at the end of each frame

Rules governing the choice of m for a given {(pi, ei , di)} of n tasks

o m di , i = 1, 2, … , n

o m ei , i = 1, 2, … , n

o M/n = integer (m divides pi for at least one i)

o there must be at least one frame in the interval between the release time and
deadline of every request.
2m - gcd (m, pi) di , for i = 1, 2, … , n

major

cycles

frames

(minor cycles)

i - 1
idle frame overrun

1 2 3 4

i i + 1

t t + m t + 2m t + 3m t + 4m t + M

...

Spring ‘10 CIS 541 16

Advantages of cyclic executive

 Simplicity and predictability:

o timing constraints can be easily checked

o the cyclic schedule can be represented by a table that is

interpreted by the executive

o context switching overhead is small

o it is easy to construct schedules that satisfy precedence

constraints & resource constraints without deadlock and

unpredictable delay

Spring ‘10 CIS 541 17

Disadvantages

 Given major and frame times, structuring the tasks with parameters pi, ei,

and di to meet all deadlines is NP-hard for one processor

 Splitting tasks into subtasks and determining the scheduling blocks of each

task is time consuming

 Error in timing estimates may cause frame overrun:

How to handle frame overrun? It is application dependent:

o suspense or terminate the overrun task, and execute the schedule of the next

frame

o complete the suspended task as background later

o complete the frame, defer the start of the next frame

o log overruns. If too many overruns, do fault recovery

Spring ‘10 CIS 541 18

Mode changes

Handling mode change is difficult.

Mode change: deletion and addition of tasks or change the parameters of
existing tasks

When to do mode change? Pros and cons of doing it at the end of current
frame, current major cycle, execution of the current task, upon interrupt
immediately

Handling sporadic tasks
 convert each sporadic task into a periodic one: periodic server (p, e, d)

 set aside time in minor cycles for execution of sporadic tasks
o does not guarantee worst case

E

deadline

dtm

min time between arrival

p = min (tm, d - e +1) -
too pessimistic - guarantees worst case

performance by giving max time to the task

Spring ‘10 CIS 541 19

Priority-driven algorithms

 A class of algorithms that never leave the processor(s) idle
intentionally

 Also known as greedy algorithms and list algorithms

 Can be implemented as follows: (preemptive)
o Assign priorities to tasks
o Scheduling decisions are made

 when any task becomes ready,
 when a processor becomes idle,
 when the priorities of tasks change

o At each scheduling decision time, the ready task with the highest priority
is executed

 If non-preemptive, scheduling decisions are made only when a
processor becomes idle.

 The algorithm is static if priorities are assigned to tasks once for all
time, and is dynamic if they change. Static if fixed.

SCHEDULING ANOMALY

Spring ‘10 CIS 541 20

Spring ‘10 CIS 541 21

Example

T1

T1

T1

T1

T2

T2

T2

T2

T2

T3

T3

T3

T3

0

non preemptive EDF, FIFO

preemptive EDF

non preemptive, not priority-driven

10

14

11

3

2

6

4

4

0 3 9 13
missed

deadline

4

4

0 3 8

0 3 8 14

13

intentional idle time

Spring ‘10 CIS 541 22

T1 : 3 T2 : 2 T3 : 2 T4 : 2

T9 : 9 T5 : 4 T6 : 4 T7 : 4 T8 : 4

L = (T1, T2, T3, T4, T5, T6, T7, T8, T9)

T1

T2

T3

T4

T9

T5 T7

T6 T8

P1

P2

P3

t

Unexpected behavior of priority-driven

scheduling algorithm

Unexpected behavior of priority-driven

scheduling algorithm (cont.)

Spring ‘10 CIS 541 23

 Suppose that we have 4 processors:

 Suppose that execution times are

2, 1, 1, 1, 3, 3, 3, 3, 8

 Suppose that T4 before T5 and T4 before T6 are removed

P1

P2

P3

P4

Anomalies of Priority-Driven Systems

 Given J1, J2, J3, J4

 Priority:

o J1 > J2 > J3 > J4

 Preemption but no job

migration

 Two processors P1 and

P2

Spring ‘10 CIS 541 24

Cases: e2 = 6 and e2 = 2

Spring ‘10 CIS 541 25

Cases: e2 = 3 and e2 = 5

Spring ‘10 CIS 541 26

Validation Problem

 Scheduling anomalies make validation hard

 Can anomalies exist even on single processor

systems?

Spring ‘10 CIS 541 27

EARLIEST DEADLINE FIRST

(EDF)

Spring ‘10 CIS 541 28

Spring ‘10 CIS 541 29

EDF (Earliest Deadline First)

 A task with a shorter deadline has a higher priority

 Executes a job with the earliest deadline

 Optimal dynamic priority scheduling for single

processor

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 30

EDF (Earliest Deadline First)

 Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 31

EDF (Earliest Deadline First)

 Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 32

EDF (Earliest Deadline First)

 Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 33

EDF (Earliest Deadline First)

 Optimal scheduling algorithm

o if there is a schedule for a set of real-time tasks,

EDF can schedule it.

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 34

Optimality of EDF

 Optimality of the earliest deadline first algorithm for

preemptive scheduling on one processor

 Given a task system T, if the EDF algorithm fails to find a

feasible schedule, then T has no feasible schedule, where

o feasible schedule = one in which all release time and

deadline constraints are met

d1

d1

d2

d2

r1 , r2

r1 , r2

T2’s deadline T1’s deadline

T1 T2

T2 T1T2

can always be transform to

Utilization Bounds

 Intuitively:

o The lower the processor utilization, U, the easier it is to

meet deadlines.

o The higher the processor utilization, U, the more difficult it

is to meet deadlines.

 Question: is there a threshold Ubound such that

o When U < Ubound deadlines are met

o When U > Ubound deadlines are missed

Spring ‘10 CIS 541 36

EDF – Utilization Bound

 Real-time system is schedulable under EDF if and

only if

∑Ui ≤ 1

Liu & Layland,

“Scheduling algorithms for multi-programming in a

hard-real-time environment”, Journal of ACM,

1973.

Spring ‘10 CIS 541 37

Schedulable Utilization

 Utilization of a periodic task (p, t, d)
u = t/p the fraction of time the task keeps the

processor busy
U , total utilization of task system

T = {(pi, ti , di)} contains n tasks

 A system of n tasks with di = pi can be feasibly scheduled if
and only if U 1
o If U >1 , the total demand of processor in the time interval [0, p1p2 … pn]

is p2 p3 … pnt1 + p1 p3 … pnt2 + … p1 p2 … pn-1tn > p1 p2 … pn

clearly, no feasible schedule exists.

o If U 1 , the EDF algorithm can always find a feasible schedule.
To show this statement is true, we suppose that the EDF algorithm fails
to find a feasible schedule. And, then show U >1, which is a contradiction
to U 1

 timeprocessor for demand /
1

n

i

ii pU t

Spring ‘10 CIS 541 38

Processor Demand Bound

 Demand Bound Function : dbf(t)

o the maximum processor demand by workload over any

interval of length t

(4,1)

(5,2)

(7,2)

t

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 39

EDF - Schedulability Analysis

 Real-time system is schedulable under EDF

if and only if dbf(t) ≤ t for all interval t

Baruah et al.

“Algorithms and complexity concerning the
preemptive

scheduling of periodic, real-time tasks on one

processor”, Journal of Real-Time Systems, 1990.

 Demand Bound Function : dbf(t)

o the maximum processor demand by workload over any
interval of length t

Spring ‘10 CIS 541 40

Behavior of earliest deadline algorithm

 Schedule (2, 1) (5, 3) with U = 1.1

 Schedule (2, 0.8) (5, 3.5) with U = 1.1

Which deadline will be missed
as U increases cannot be predicted

(2, 1)

(5, 3)

(2, 0.8)

(5, 3.5)

Spring ‘10 CIS 541 41

 Domino effect during overload conditions

o Example: T1(4,3), T2(5,3), T3(6,3), T4(7,3)

EDF – Overload Conditions

T1

50 7

T2 T3 T4

3 6

Deadline Miss !

T1

50 7

T3

3 6

Better schedules :

T1

50 7

T4

3 6

RATE MONOTONIC (RM)

Spring ‘10 CIS 541 42

Spring ‘10 CIS 541 43

RM (Rate Monotonic)

 It assigns priority according to period

 A task with a shorter period has a higher priority

 Executes a job with the shortest period

 Optimal static-priority scheduling for single

processor

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 44

RM (Rate Monotonic)

 Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 45

RM (Rate Monotonic)

 Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

Deadline Miss !

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 46

RM – Utilization Bound

 Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1)

Liu & Layland,

“Scheduling algorithms for multi-programming in a

hard-real-time environment”, Journal of ACM,

1973.

Spring ‘10 CIS 541 47

RM – Utilization Bound

 Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1)

 Example: T1(4,1), T2(5,1), T3(10,1),

∑Ui = 1/4 + 1/5 + 1/10

= 0.55

3 (21/3-1) ≈ 0.78

Thus, {T1, T2, T3} is schedulable under RM.

Spring ‘10 CIS 541 48

RM Utilization Bounds

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 16 64 256 1024 4096

The Number of Tasks

U
ti
liz

a
ti
o

n

RM – Utilization Bound

 Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1)

A Conceptual View of Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
o When U < Ubound deadlines are met

o When U > Ubound deadlines may or may not be missed

?

i i

i

P

C

Spring ‘10 CIS 541 50

Response Time

 Response time

o Duration from released time to finish time

(4,1)

(5,2)

(10,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 51

Response Time

 Response time

o Duration from released time to finish time

(4,1)

(5,2)

(10,2)

Response Time

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 52

Response Time

 Response Time (ri) [Audsley et al., 1993]

 HP(Ti) : a set of higher-priority tasks than Ti

(4,1)

(5,2)

(10,2)

k

THPT k

i
ii e

p

r
er

ik

)(

5

5

10

10

T1

T2

T3

Spring ‘10 CIS 541 53

RM - Schedulability Analysis

 Real-time system is schedulable under RM

if and only if ri ≤ pi for all task Ti(pi,ei)

Joseph & Pandya,

“Finding response times in a real-time system”,

The Computer Journal, 1986.

Spring ‘10 CIS 541 54

RM vs. EDF

 Rate Monotonic

o Simpler implementation, even in systems without explicit
support for timing constraints (periods, deadlines)

o Predictability for the highest priority tasks

 EDF

o Full processor utilization

o Misbehavior during overload conditions

 For more details: Buttazzo, “Rate monotonic vs.
EDF: Judgement Day”, EMSOFT 2003.

