Global Time

Insup Lee
Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
www.cis.upenn.edu/~lee/

CIS 541, Spring 2010

Ordering in the Distributed Real-Time System

- The distributed computer system performs a multitude of different functions concurrently.
 - The monitoring of RT-entities
 - The detection of alarm conditions
 - The display of the observations
 - The execution of control algorithms
- All nodes process all events in the same consistent order.
 - To guarantee a consistent behavior of the entire distributed system
Temporal Order

- A timeline consists of an infinite set $\{T\}$ of instants with the following properties.
 - $\{T\}$ is an ordered set, if p and q are any two instants, then either p is simultaneous with q, or p recedes q, or q recedes p, where these relations are mutually exclusive. We call the order of instants on the timeline the temporal order.
 - $\{T\}$ is a dense set: There is at least one q between p and r iff p is not the same instance as r, where p, q and r are instants.
- A section of the time line is called a duration.
- An event takes place at an instant of time.
- If two events occur at an identical instant, then the two events are said to occur simultaneously.

Causal Order

- In many real-time applications, the causal dependencies among events are of interests.
 - A nuclear reactor equipped with many sensors.
 - In case a pipe ruptures, what is the primary event that triggers the alarm shower?
 - The temporal order of two events is necessary, but not sufficient, for their causal order.
- Causal order is more than temporal order.
Delivery Order

- A weaker order relation than temporal or causal order is a consistent delivery order.
- All host computers in the nodes see the sequence of events in the same delivery order.
- The delivery order is not necessarily related to the temporal order or the causal relationship between events.

Why need Temporal Order in Real-Time Systems?

- In case of sudden unexpected changes in the nuclear reactor, system causes an alarm shower.
- What is the primary event that triggers the alarm shower?
 - Knowledge of the exact temporal order is helpful to identify the primary event.
Issues in the Temporal Order

▪ What is the condition to reconstruct temporal order between two events?
▪ Need the following concepts
 ▪ Clocks
 • Physical clock
 • Reference clock
 • Timestamp
 • Offset, Precision and Accuracy
 ▪ Time measurement
 • Global Time
 • Reasonableness Condition of Global Time
 • Condition to reconstruct temporal order.

Clocks: Physical Clock

▪ Physical Clock
 ▪ A device for measuring time with counter and a physical oscillation mechanism.
 ▪ Microtick: The periodic event generated by a oscillation mechanism. (Denoted by microtick\textsubscript{k,i} for ith microtick of clock k)
 ▪ Granularity: The duration between two consecutive microticks.}

![Diagram of Clocks and Granularity](image-url)
Clocks : Reference Clock

- Reference Clock
 - Assume an omniscient external observer who can observe all events that are of interest in a given context.
 - A unique reference clock z with granularity g_z which is in perfect agreement with the international standard of time.
 - (Assume g_z is really really really small, say 10^{-15} second)
- The relationship between reference clock z and a given clock k
 - n^k: a nominal number of microticks of clock z which occur between microtick i,k and microtick $i+1,k$

Clocks : Timestamp

- $Clock(event)$: denotes the timestamp generated by the use of a given clock to timestamp an event.
 - Ex) $z(e)$: The timestamp of event e which is observed by clock z (the absolute timestamp)
- What if the interval of two events is less than g_z?
 - The temporal order of events that occur between any two consecutive microticks of the reference clock z cannot be reestablished from their absolute timestamps.
 - $=>$ Limitation of this time measurement.
Clocks : Offset

- Offset
 - The offset at microtick i between two clocks j and k with the same granularity.
 - $\text{Offset}_{j,k}(i) = |z(\text{microtick}_{j,i}) - z(\text{microtick}_{k,i})|$

Clock j

Clock k

Clocks : Precision

- Precision
 - Given an ensemble of clocks $\{1, 2, \ldots, n\}$, the maximum offset between any two clocks of the ensemble.

\[|\| = \max\{\text{offset}_{j,k}(i)\} \text{ for all } 1 \leq j, k \leq n \]
 - The precision of ensemble $\|$: the maximum $|$ of over an interval of interest.

- Internal synchronization
 - The process of mutual resynchronization of an ensemble of clocks to maintain a bounded precision.

Clock j

Clock k

Clock m

$\text{Offset}_{j,k}(2) < \text{Offset}_{k,m}(2) < \text{Offset}_{j,m}(2)$
Clocks : Accuracy

- **Accuracy**
 - \textit{accuracy}_(i) \(k\): The offset of clock \(k\) with respect to the reference clock \(z\) at microtick \(i\)
 - \textit{accuracy} \(k\): The maximum offset over all microticks \(i\) that are of interest in clock \(k\)

- **External synchronization**
 - The process of resynchronization of a clock with the reference clock

\[
\begin{align*}
\text{Clock } z & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{Clock } j & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{Clock } k & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5
\end{align*}
\]

Clocks : Precision and Accuracy

- **Relationship between Precision and Accuracy**
 - If all clocks are \textit{externally} synchronized with an \textit{accuracy} \(A\), then the clocks are also \textit{internally} synchronized with a \textit{precision} of at most \(2A\).
 - The converse is not true

\[
\begin{align*}
\text{Clock } z & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{Clock } j & \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{Clock } k & \quad 2 \quad 3 \quad 4 \quad 5
\end{align*}
\]
Time Measurement

- Easiest way to achieve temporal order of every event
 - Having a perfect synchronization with a single reference clock \(z \) among all real-time clocks of nodes

- Challenge
 - In loosely coupled distributed system, every node has its own local clock.
 - A tight synchronization of clocks is not possible.

- The concept of global time
 - A weaker notion of a universal time reference
 - With local clock, achieve local implementation of a global notion of time.

Global Time(1/2)

- How to achieve the local implementation of a global notion of time?

- Assumption
 - Each node has its own local physical clock \(c_k \) with granularity \(g_k \).
 - All local clocks are internally synchronized with a precision \(\pi \).

\[
|z(microtick(i)) - z(microtick(i))| < \pi
\]

- Macrotick
 - A subset of the microticks of each local clock.
 - The local implementation of a global notion of time.
 - Ex) Every tenth microtick of a local clock \(k \) may be interpreted as the global tick, the macrotick \(t_k(i) \).
Global Time(2/2)

- Illustration of the relationship between microtick and macrotick.

Reasonableness Condition(1/3)

- The global time t is called **reasonable**.
 - If all local implementations of the global time satisfy the condition
 $$g > \prod$$
 - The impact of reasonable condition
 - The synchronization error is bounded to less than one macrogranule g.
 - For a single event e, that is observed by any two different clocks which satisfy the reasonable condition
 $$|t_{e} - t_{e}| \leq 1$$
 - i.e. the global timestamps for a single event can differ by at most one tick. **This is the best we can achieve.**
Reasonableness Condition (2/3)

- Illustration of the reasonableness condition \((g > \prod)\)
 - Timestamp of a single event, \(|t_j(e) - t_k(e)| \leq 1\)

Reasonableness Condition (3/3)

- Illustration of the impact unless the reasonableness condition meets.
 - Timestamp of a single event \(|t_j(e) - t_k(e)| > 1\) at some point. (not all points.)
The meaning of one tick difference

- Both duration \((17, 42), (67, 69)\) observed by clock \(j\) and \(k\) have one tick difference.
- Problem ? \(z(67) < z(69)\), but \(t_k(67) > t_k(69)\)
 - Because of the accumulation of the synchronization error and the digitalization error.

The Condition to Reconstruct Temporal Order

- One tick difference between two events
 - Not possible to reconstruct the temporal order.
 - (We are not sure: Some of them can be reconstructed, but some cannot be.)
- Two tick difference between two events
 - The temporal order can be reconstructed.
 - (Guaranteed: All such events can be reconstructed.)
 - WHY? \(The\ sum\ of\ the\ synchronization\ and\ digitalization\ error\ is\ always\ less\ than\ 2\ granules.\)
Why need Clock Synchronization?

- Failure modes of a clock
 - Error in Counter (state error)
 - Error in Drift (rate error)

Internal Clock Synchronization

- The parameters for synchronization condition
 - Resynchronization interval : R_{int}
 - Convergence function : the offset of the time values immediately after the resynchronization.
 - Drift offset : the maximum divergence of any two good clocks from each other during R_{int}.
 - The maximum specified drift rate : ρ
The Synchronization Condition

- The synchronization condition
 - \(\Phi + \Gamma \leq \prod \)
 - => The synchronization algorithm must bring the clocks so close together that the amount of divergence during the next resynchronization interval will not cause a clock to leave the precision interval.

Synchronization Algorithms (1)

- The goal is to achieve the synchronization condition.
- Central Master Synchronization
 - A unique node, the central master, periodically sends the value of its time counter in synchronization messages to all other nodes, the slave nodes.
 - The slave node corrects the clock based on the master’s time and the latency of the message.
Synchronization Algorithms (2)

- Distributed Synchronization Algorithms
 - Step 1) Every node acquires knowledge about the state of the global time counters in all the other nodes.
 - Step 2) Every node analyzes the collected information to detect errors, and calculate a correction value for the local global time counter.
 - Step 3) The local time counter of the node is adjusted by the calculated correction value.

External Clock Synchronization

- External synchronization links the global time of a cluster to an external standard of time.
 - Time server
 - GPS

- Internal and external synchronization
 - Internal sync. : a cooperative activity among all the members of a cluster.
 - External sync. : an authoritarian process (the time server forces its view of external time on all its subordinates.)
Clock Synchronization

- State correction
- Rate correction

Event-Triggered versus Time-Triggered

- Chap 4.4 (pp. 82-86)
- Event-triggered (ET) system – the control signal derived from state change, an event, in the environment or within the computer system
- Time-triggered (TT) system – the control signal derived from the progression of time
- Example in Elevator
 - Two buttons pushed repeatedly, very close to each other