
1

CIS541: Embedded and Cyber Physical Systems

Spring 2010

AVR/Butterfly Lab Manual

Requirement ... 1

Setting up the Environment .. 1

Programming with AVR/Butterfly Board ... 2

Standing on the Shoulders of Giants ... 2

Structure of Sample Code ... 4

Programming with AVR/Butterfly Features .. 4

Creating Your Own Code ... 5

Simulation & Debugging ... 6

Dumping to the Board .. 6

Resources.. 6

References .. 7

This lab manual helps you with implementing the pacemaker controller and the heart simulator on

AVR/Butterfly boards. Upon finishing it, you will have a baseline heart simulator and also be able to

program towards the AVR/Butterfly boards. Additional reference materials are also provided.

Requirement

To program with the AVR/Butterfly boards, you need to have access to a Windows machine on which

the AVR Studio 4 and WinAVR software are installed. With these, you are able to write programs in C

and compile them to hex files ready to transfer to the AVR/Butterfly boards. To actually dump the hex

file to the board, the machine must have a RS232 port. (Update: RS232-USB adapter will be provided so

having RS232 is not necessary.)

Setting up the Environment

The AVR Studio 4 and WinAVR are freely available online for download.

 AVR Studio 4.18 and service packs are at http://www.atmel.com/dyn/products/avrstudio. Free

registration is required to download.

 The homepage of WinAVR is at http://winavr.sourceforge.net/. The download site is at

http://sourceforge.net/projects/winavr/files/.

http://www.atmel.com/dyn/products/avrstudio
http://winavr.sourceforge.net/
http://sourceforge.net/projects/winavr/files/

2

The installation process is straightforward. It is suggested to install WinAVR after AVR Studio 4 so that

automatic configuration for programming in C and compile with GCC will be performed. With this, it is

also possible to debug the C code inside AVR Studio.

AVR Studio 4 is mainly used for debugging and dumping the hex files to the AVR/Butterfly board.

WinAVR provides programming environment for the AVR/Butterfly boards in C. The following sections

will get you familiarize with the procedure of working with the AVR/Butterfly boards programming.

Programming with AVR/Butterfly Board

If you want to follow a thorough introduction, the book (Pardue, 2005) is a good starting point. The first

two chapters are freely available online. The following tutorial is partly adapted from this book and

other online sources with heavy edits, which are listed in the Resources section.

Standing on the Shoulders of Giants

One simple way to start programming with the AVR/Butterfly board is to start with other’s project

already. For this tutorial, we will start with the Butterfly GCC-Port program. This is the GCC port of the

pre-loaded Butterfly program on the board. It demonstrates (more than) all functions that we will be

using in our project. A direct link of the downloadable source is at http://www.siwawi.arubi.uni-

kl.de/avr_projects/bf_gcc_20091217.zip. If you want more information about the source code, visit this

website http://www.siwawi.arubi.uni-kl.de/avr_projects.

Unzip the downloaded source code, you’ll find a bf_gcc folder. Double-click the bf_gcc.aps file will open

AVR Studio 4. Two simple steps will let you run the program with the simulator provided with AVR

Studio 4:

1. Build Rebuild All

2. Debug Start Debugging

If you are familiar with programming with, say, Visual Studio, then the IDE is quite similar. The difference

is that more specifics with the board are provided, as detailed below.

http://www.siwawi.arubi.uni-kl.de/avr_projects/bf_gcc_20091217.zip
http://www.siwawi.arubi.uni-kl.de/avr_projects/bf_gcc_20091217.zip
http://www.siwawi.arubi.uni-kl.de/avr_projects

3

1. In the status bar at the bottom, the simulator (AVR Simulator 2) and CPU type of the

AVR/Butterfly board (ATmega169) are provided.

2. In the Processor panel to the left, information of the particular CPU is shown. The Stop Watch

field maybe of particular interest when observation of timing is required. However, one must

note that the time shown here is calculated based on the CPU frequency and number of

instructions of the compiled code. It may not be real time.

3. The AVR/Butterfly board input and output port values are shown in the I/O view panel to the

right.

4. The Debug toolbar is of particular importance when playing with the simulator. The meanings of

the buttons are straightforward.

One thing to note when playing with the buttons is that, when it comes to real-time provided by the

Real-Time Clock (RTC), the simulator may halts. This is because the program is busy waiting some value

to be changed by an external RTC provided on the AVR/Butterfly board.

4

Structure of Sample Code

The GCC-Port of the Butterfly program is straight forward to read. This subsection provides an overview.

You may safely ignore this section if you want to read the code on your own. The main logic of the

program is as follows.

1. Initialization of variables (including setting current state and state function pointer pStateFunc)

2. Main loop

a. If not in PowerSave mode

i. Print state indication text

ii. Get an input from the button

iii. Execution code associated in the current state

iv. If input from the button is not NULL, transit to next state

v. Update state function pointer pStateFunc

b. Code for AutoPowerSave mode

i. If system idle time is larger than preset, set PowerSave to TRUE

c. Code for AutoPress mode

i. If a button is held for some time, consider it pressed even if released, until

changed

d. Code for SleepMode

i. Turn off LCD

ii. If UP button is pressed, return to normal mode

Programming with AVR/Butterfly Features

The detailed functions for state behaviors are implemented in separate files. Entry points of these

functions are defined in menu.h. Here is a short list of where in the code you can find necessary part for

implementing the Pacemaker project code.

 For reading input from the Joystick, use input=getkey() function, and then compare input with

predefined key values KEY_ENTER(·), KEY_NEXT(→), KEY_PREV(←), KEY_PLUS(↑), and

KEY_MINUS(↓).

 For outputting values to the LCD, use functions defined LCD_functions.h. Chapter 11 of (Pardue,

2005) also provides examples of how to use functions defined here.

 For inputting and outputting values to the AVR/Butterfly board PORTB or PORTD pins, you need

two steps:

1. Set the data direction for each pin of the port. For example, if you want to set pins 0 to 3

(lower) of PORTB as input and pins 4 to 7 (upper) as output, you can set

DDRB=0xF0=0b11110000, where 0 for a pin means input, and 1 for a pin means output.

The DDRB means Data Direction Register for Port B.

2. After this, you can read values of PINB for values of Port B, and write values to PORTB

for Port B.

 For using clocks, there are two approaches provided.

5

1. One is to use the interrupts provided from the RTC. To do this, you need to register the

functions you’ll execute when a Timer interrupt has occurred. These functions can be

found in the sound.c and sound.h file.

2. Another way is just to rely on the CPU busy waiting. One such example is the Delay

function defined in main.c. Note that the simulator works with this type of timer, with

an estimate of the execution time (of the loop for busy waiting) according to the CPU

speed parameter.

 (Optional) For using the beepers (to indicate periodic heart beats or an error), you need to set

the frequency, the tempo, the duration, and then output values to OC1A. The piezo-element is

connected to this port and can read and play sounds from Pulse Width Modulator (PWM). The

sound.c demonstrated examples of using this feature as well as Timer0 to play tunes. The last

project in Chapter 8 of (Pardue, 2005) provides a detailed analysis of how the code works.

Here are some tips that might be useful.

1. When reading the code, there might be many predefined variables as OC1A, PORTB, TCCR1A,

etc. It is handy to have the datasheet of the ATmega169 chip (AMTEL, 8-bit AVR Microcontroller

with 16K Bytes In-System Programmable Flash, 2006) for easy lookup. It is named doc2514.pdf,

freely available online, and also included in the companion pack of this document.

2. It is not the case that all pins of Port B and Port D are free to use. This is because some of them

are connected to other pins which you also want to use. For one example, some pins are

connected to LCD pins (if you write values the screen may show weird things). For another, the

OC1A pin mentioned above is actually the same as Pin 5 or Port B (PB5). See (Boehnlein, 2003)

for a list of pins that you can safely use.

Creating Your Own Code

To save battery life, you are required to retain the power save module from the source code. Then, you

may create your heart simulator.

Create a menu item. You can safely remove unnecessary menu items and add your own entry to the

heart simulator. In addition, you may want to set parameters from the AVR/Butterfly board itself rather

than changing the parameters on PC, compile, and dumping the program to the board again. A possible

menu system may look like the following (and may be different). Note that only the Heart Sim module is

to be implemented, other parts are already provided. Also, the “Adjust” functions are also things you

can reuse (check the EnterName function in vcard.c).

6

Required features for the Heart Simulator are introduced in the previous section. The expected behavior

is detailed in a separate document (Milestone 3 requirement).

Simulation & Debugging

As has been mentioned above, when you use a RTC, simulation & debugging is not feasible with AVR

Studio 4. To see performance or correctness of your code, we need profiling and data logging with an

oscillator. Lab hours will be provided for using the oscillator. Logged data can be used for analyzing

correctness of your design and implementation.

Aside from timing issues, AVR Studio 4 and the GDB debugger are good enough to use. For the latter,

the WinAVR website http://winavr.sourceforge.net/helpme.html contains much information for the

adventurous souls.

Dumping to the Board

Step by step instructions can be found in several of the documents in the companion package. See

(AMTEL, AVR Butterfly Evaluation Kit User Guide, 2005), (Boehnlein, 2003), and (Mckain, 2004), etc. The

only difference in our environment is that an additional RS232 to USB adapter will be used.

Resources

Aside from the documents mentioned in the text (also listed in the References section), here are some

more spots you may want to hit.

 The AVR Projects website http://www.siwawi.arubi.uni-kl.de/avr_projects/. It contains much

information including the GCC-Port code you’ve downloaded.

AVR Butterfly Revision

Heart Sim Set Params

Run (Stopped)

Options

Running

Adjust Param2

Adjust Param1

Adjust Param3

Bootloader
Jump to

Bootloader

Power Save

Mode

Press ENTER

to sleep

http://winavr.sourceforge.net/helpme.html
http://www.siwawi.arubi.uni-kl.de/avr_projects/

7

 The AVR libc website http://www.nongnu.org/avr-libc/ and reference manual

http://www.nongnu.org/avr-libc/user-manual/index.html.

 The WinAVR website http://winavr.sourceforge.net/ and its document page

http://winavr.sourceforge.net/helpme.html.

 The AVR Freaks website http://www.avrfreaks.net/.

References

AMTEL. (2006, July). 8-bit AVR Microcontroller with 16K Bytes In-System Programmable Flash. Retrieved

from http://www.atmel.com/dyn/resources/prod_documents/doc2514.pdf

AMTEL. (2005, April). AVR Butterfly Evaluation Kit User Guide. Retrieved from

http://www.atmel.com/dyn/resources/prod_documents/doc4271.pdf

AMTEL. (2003, May). AVR Butterfly Quick Start User Guide. Retrieved from

http://www.atmel.com/dyn/resources/prod_documents/doc4249.pdf

Boehnlein, A. (2003, October 11). Programming the Butterfly for Idiots Like Me. Retrieved from AVR

Projects: http://www.siwawi.arubi.uni-kl.de/avr_projects/pbfi.pdf

Mckain, W. (2004, May 14). How to Program the AVR Butterfly. Retrieved from

http://www.coe.uncc.edu/~jmconrad/AVR/ButterflyGuide.pdf

Pardue, J. (2005). C Programming for Microcontrollers Featuring ATMEL's AVR Butterfly and the free

WinAVR Compiler. Smiley Micros.

http://www.nongnu.org/avr-libc/
http://www.nongnu.org/avr-libc/user-manual/index.html
http://winavr.sourceforge.net/
http://winavr.sourceforge.net/helpme.html
http://www.avrfreaks.net/

