
Department of Computer & Information Science

Departmental Papers (CIS)

University of Pennsylvania Year

Schedulability Analysis of AADL models

Oleg Sokolsky ∗ Insup Lee †

Duncan Clark ‡

∗University of Pennsylvania,
†University of Pennsylvania, lee@cis.upenn.edu
‡Fremont Associates,

Copyright 2007 IEEE. Reprinted from 20th International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2006, Volume 2006, April 2006, Article 1639421, 8 pages.

This material is posted here with permission of the IEEE. Such permission of the IEEE does
not in any way imply IEEE endorsement of any of the University of Pennsylvania’s products
or services. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of
the copyright laws protecting it.

This paper is posted at ScholarlyCommons@Penn.

http://repository.upenn.edu/cis papers/313

Schedulability Analysis of AADL Models∗

Oleg Sokolsky and Insup Lee Duncan Clarke
Department of Computer and Info. Science Fremont Associates

University of Pennsylvania 306 Kings Chase
Philadelphia, PA 19104-6389 Camden, SC 29020-2160

Abstract

The paper discusses the use of formal methods for the anal-
ysis of architectural models expressed in the modeling lan-
guage AADL. AADL describes the system as a collection of
interacting components. The AADL standard prescribes se-
mantics for the thread components and rules of interaction
between threads and other components in the system. We
present a semantics-preserving translation of AADL models
into the real-time process algebra ACSR, allowing us to per-
form schedulability analysis of AADL models.

1 Introduction

Embedded systems, which now affect most aspects of our
everyday lives, are used in a variety of systems from airplanes
and cars to medical implants to kitchen appliances. Driven
by improvements in hardware technologies and increased end
user expectations, embedded systems are becoming increas-
ingly more complex. Enhanced multi-feature functionality
and commonplace use of multi-processor and networked plat-
forms makes correct and efficient design of embedded sys-
tems a hard task. There is a commonly recognized need for
new development frameworks that allow designers to perform
efficient exploration of design alternatives and analyze system
properties early in the design cycle.
Model-driven development, boosted by the popularity of

UML, has become an accepted practice in the design of
software-based systems in many application domains. Model-
driven development methods are also starting to have an im-
pact on the process of design for multi-processor networked
embedded systems. Several proposals for UML profiles for
embedded systems have been defined, for example [12, 6, 3].
However, adequate modeling principles for architectural mod-
eling of large embedded systems do not have a universal
recognition. An important recent development in this respect
is the emergence of AADL. AADL (Architecture Analysis
and Design Language) [7] is a new standard for architec-
tural modeling of embedded systems, approved in Novem-

∗This research has been supported in part by AFOSR STTR AF04-T023,
and by NSF CCR-0209024, ARO DAAD19-01-1-0473.

ber 2004 and published as SAE Standard AS5506 [13]. The
standard includes textual and graphical versions of the lan-
guage, and precisely defines execution semantics for its com-
ponents. This semantic definition provides the basis for anal-
ysis of AADL models by off-the-shelf tools.
The AADL standard is complemented by an open-source

model development environment OSATE, which supports an
XML-based internal representation of AADLmodels and pro-
vides a library of model exploration routines, which operates
on the internal representation. This library helps to establish
connections with analysis tools.
In this paper, we describe an approach to provide formal

analysis of timing properties, including schedulability anal-
ysis, of AADL models, which utilizes the AADL semantic
definition and builds upon the OSATE framework. In order
to analyze a model, we automatically translate it into the real-
time process algebra ACSR [9] and use the ACSR-based tool
VERSA to explore the state space of the model, looking for
violations of timing requirements. The contributions of this
work are twofold. On the one hand, we offer a new analysis
tool for AADL. The advantage of the tool is that it can handle
systems with complex patterns of interaction between com-
ponents, which in AADL go beyond the scope of more tra-
ditional schedulability analysis algorithms. Furthermore, our
analysis tool offers a set of failing scenarios in the case when
the system is non-schedulable or violations of timing require-
ments are discovered. By carefully choosing the names in the
translated model we make it possible to present failing sce-
narios in terms of the original AADL model. It is also worth
mentioning that in the process of defining the translation, we
were validating the carefully defined but informal semantics
of AADL.

2 Overview of AADL

Components. The main modeling notion of AADL is a com-
ponent. Components can represent a software application or
an execution platform. A component can have a set of exter-
nally accessible features and an internal implementation that
can be changed transparently to the rest of the model as long as
the features of the component do not change. Implementation
of a component can include interconnected subcomponents.

1-4244-0054-6/06/$20.00 ©2006 IEEE

DriverMode
Logic

ButtonPanel
RefSpeed

Instrument
Panel

Cruise 1 Cruise 2

System HCI System CruiseControlLaws

BusHCI_processor CCL_processor

System CruiseControl

Figure 1. AADL model of a cruise control sys-
tem

The features of a component include data and event ports and
port groups, subroutine call entries, required and provided re-
sources. Interacting components can have their features linked
by event, data, and access connections. In addition, applica-
tion components can be bound to execution platform compo-
nents to yield a complete system model. Properties, specific
to a component type, can be assigned values that describe the
system design and can be used to analyze the model. Com-
ponent types are illustrated in Figure 1. Different component
types are shown as different shapes. Solid lines represent con-
nections, while dashed lines represent bindings.
Execution platform components include processors, buses,

memory blocks, and devices. Properties of these components
describe the execution platform. Processors are abstractions
of hardware and the operating system. Properties of proces-
sors specify, for example, processing speed and the scheduling
policy. Buses can represent physical interconnections or pro-
tocol layers. Their properties identify the throughput and the
latency of data transfers, data formats, etc.
Application components include threads and systems.

Threads are units of execution. Each thread has an associ-
ated semantic automaton that describes thread states and con-
ditions on transitions between thread states. A thread can be
halted, inactive, or active. An active thread can be waiting
for a dispatch, computing, or blocked on resource access; etc.
A thread can also be recovering from a fault or in the state of
non-recoverable error. Properties of the thread specify compu-
tation requirements and deadlines in active states of the thread,
dispatch policy, etc. Threads are classified into periodic, ape-
riodic, sporadic, and background threads. They differ in their
dispatch policies and their response to external events. A sys-
tem component is a unit of composition. It can contain ap-
plication components along with platform components, and
specifies bindings between them. Systems can be hierarchi-
cally organized.
Figure 1 shows an AADLmodel of a cruise control system,

borrowed from the collection of AADL examples in the OS-
ATE release. The system component contains two processors

connected by a bus, and two software subsystems. Each of the
subsystems is bound to a separate processor. Threads commu-
nicate via data ports. Note how features of a component – in
this case, in and out data ports – are mapped by connections
to features of its subcomponents.
Connections. Event and data connections between AADL
components form semantic connections. Each semantic con-
nection has an ultimate source and ultimate destination. Ulti-
mate sources and destinations can be thread or device com-
ponents. Starting from an ultimate source, a semantics
connection follows connections up the component contain-
ment hierarchy via the outgoing ports of enclosing compo-
nents, includes one “sibling” connection between two com-
ponents, and then follows connection down the component
hierarchy until it reaches the ultimate destination. One of
the semantic connections in Figure 1 is between threads
RefSpeed in the system HCI and Cruise1 in the sys-
tem CruiseControlLaws. This connection contains three
syntactic connections and is mapped to the bus component. A
sporadic or aperiodic thread, which is the ultimate source of an
event connection, is dispatched by the arrival of an event via
that connection. By contrast, periodic threads are dispatched
by a timer and therefore ignore external events, unless they
also bring data for processing.
Similarly, semantic access connections describe resources

required by a thread that is the ultimate source of an access
connection. A resource that serves as the ultimate destina-
tion of an access connection is typically a data component.
Properties of access connections specify concurrency control
protocol for a shared resource.
Modes. AADL can represent multi-modal systems, in which
active components and connections between them can change
during an execution. Mode changes occur in response to
events, which can be raised by the environment of the system
or internally by one of the system components. For example,
a failure in one of the components can cause a switch to a
recovery mode, in which the failed component is inactive and
its connections are re-routed to other components. The AADL
standard prescribes the rules for activation and deactivation of
components during a mode switch. The multimodal nature
of AADL models, along with the rich semantics for connec-
tions between components makes it difficult to apply standard
schedulability analysis algorithms that tend to target restricted
task models and communication patterns.
Language annexes. The mechanism of annexes allows users
to extend the core language with additional features. For ex-
ample, an error modeling annex defines additional properties
that describe reliability of the system components and a state
machine that specifies error states of the system. The use of
this annex enables reliability analysis of an AADL model.
A behavioral annex allows us to extend thread components
with a state machine that specifies computation performed by
a thread in more detail. Such a behavioral description refines
the default behavior of a thread and enables more precise anal-
ysis of the timing behavior of the system.

{(cpu ,1)}

done!

Simple
{(cpu ,1),(bus,1) }

a)

{(cpu ,1)}

done!

Simple
{(cpu ,1),(bus,1) }

b) { }

{ }

Figure 2. ACSR process with computation and
communication steps

3 Overview of ACSR

ACSR [9] is a real-time process algebra that makes the no-
tion of resource explicit in system models. Restrictions on si-
multaneous access to shared resources are introduced into the
operational semantics of ACSR, which allow us to perform
analysis of scheduling properties of the system model.
An ACSR model consists of a collection of processes that

evolve during the execution of the model. The operational se-
mantics of ACSR defines a transition relation, in which transi-
tions P1

a
−→ P2 describe how process P1 can evolve into P2

by performing a step a. Rather than giving a formal descrip-
tion of syntax and semantics, which can be found in several
publications [9, 10], we show a pictorial representation for
processes. We also use an example that becomes more com-
plex as features of the formalism are introduced.
Computation and communication. ACSR processes can ex-
ecute two kinds of steps: computation steps and communi-
cation steps. Computation steps, which we call here timed
actions, or simply actions, take time and require access to a
set of resources in order to proceed. Access to resources is
controlled by priorities that are associated with each resource
access. Formally, an action is a set of pairs (ri, pi), where
pi is the priority of access to the resource ri. For an action
A, we denote the set of resources to be ρ(A). Communica-
tion steps, on the other hand, consist of sending or receiving
an instantaneous event. To avoid confusion with event ma-
nipulation in AADL models, we will refer to events in ACSR
processes as ACSR events. Communication also have priori-
ties associated with them. Figure 2, a shows a simple process
that performs a computation step using the processor resource
cpu, then performs another computation step that requires, in
addition, access to a shared bus represented as the resource
bus, and finally announces its completion by sending an event
done before restarting.
Resource contention and alternative behaviors. According
to ACSR semantics, a timed action cannot be performed if
the necessary resources are not available. The process that

tries to execute the step will be deadlocked, unless other steps
are available in the same state. To allow processes wait for
resource access, ACSR models introduce idling steps, which
do not consume resources but let the time progress, to allow a
process to wait for resources, as shown in Figure 2, b.
Temporal scope of an ACSR process. A process can oper-
ate in a temporal scope [11], which we represent as a shaded
background for the process, as shown in Figure 3. The scope
can be exited in one of the three ways: an exception represents
a voluntary release of control by the process, which is trans-
ferred to its exit point, represented pictorially as a white circle;
an interrupt represents an involuntary release of control, when
the control is transferred to a handler process and the activity
within the scope is abandoned; the last means of exit is a time-
out, which occurs a specified duration of time passes since the
scope was entered. Scopes can be nested. Pictorial represen-
tation may also use labeled arrows to indicate which inputs
and outputs can be performed by the process.
Parallel composition and preemption. ACSR processes
can be combined in parallel and interact in two ways. Pro-
cesses can instantaneously send and receive ACSR events.
Event communication follows the CCS style of synchroniza-
tion. The sender and the receiver of matching events take the
event step synchronously, performing together an internal step
labeled by a special ACSR event τ . For clarity, we also specify
the name of the ACSR event that generated the internal step,
writing the label as τ@name. Alternatively, a process can
perform the step individually, unless the event is restricted.
Event restriction, therefore forces synchronization of the pro-
cesses within the scope of the restriction operator. The sec-
ond means of interaction is implicitly represented by resource
conflicts. Processes can perform actions, which take time to
execute and require access to a set of resources. Because time
progress is global, all processes have to perform action steps
together. The following rule for parallel composition speci-
fies that two processes can perform action steps concurrently
as long as resources used in each step are disjoint:

(Par3) P1

A1−→ P ′

1
, P2

A2−→ P ′

2

P1‖P2

A1∪A2−→ P ′

1
‖P ′

2

, ρ(A1) ∩ ρ(A2) = ∅

Access to resources is guarded by priorities, and a process
with a higher priority of access can preempt the execution of
another process. The preemption relation is defined on actions
and events. For two actions A1 and A2, A2 preempts A1,
denoted A1 ≺ A2, if every resource used in A1 is also used
in A2 with greater or equal priority, and at least one resource
has a strictly greater priority. As a result of this definition, any
resource-using step will preempt an idling step (with an empty
set of resources). In addition, an internal step with a non-zero
priority will preempt any timed action to ensure progress in
the behavior of an ACSR model. The prioritized transition
relation for an ACSR process removes preempted transitions
from the transition relation.
Figure 3 shows our running example composed in parallel

with a driver process, which lets Simple complete one itera-
tion. The first action of the driver uses disjoint resources with

{(cpu ,1)}

{ }

interrupt?

done!

T

Simple
{(cpu,1),(bus ,1)}

Exception
Handler

Timeout
Handler

{ }

Interrupt
Handler

in
te
rr
up
t

done

SimpleDriver
{(bus ,2)} {(bus ,2)} { } {(bus ,2)} {(bus ,2)} interrupt!

{(cpu,1),(bus ,2)} {(bus ,2)} {(cpu ,1),(bus ,1)} done!
{(cpu,1),(bus ,2)} {(bus ,2)}

{(cpu,2)}

@interrupt
interrupt

exception{(cpu ,2)}

Idle

{ }

Figure 3. Parallel composition of ACSR processes

the first action of Simple and thus they can proceed together.
However, the second action uses the same resource bus with
a higher priority of access and preempts the execution of Sim-
ple for one time step. Then, the driver has two alternative be-
haviors that prevent the process Simple from completing the
second iteration. One behavior forces an interrupt by sending
an ACSR event that synchronizes with the trigger of the inter-
rupt handler. The other behavior preempts Simple at the initial
state on the second iteration. The alternative idling step takes
Simple to the exception handler.
Parameterized processes. An ACSR process can be asso-
ciated with parameters that are changed during an execution
of the process. These dynamic parameters are used as vari-
ables that keep the history of the execution – for example, the
progress of time. At the same time, their use is more restricted
than variables (which ACSR processes do not have). Syntac-
tic rules limit the range of each parameter and thus ensure that
the parameterized model remains finite-state. The use of pa-
rameters in an ACSR process is illustrated in the next section.

4 Translating AADL into ACSR

4.1 Overview of the translation

The main steps of the translation are given by Algorithm 1.
Given the limited space, we do not discuss handling of modes
in the translation, which is, in general, quite involved. We also
omit handling of access connections, which requires encod-
ing of concurrency control protocols. We use the following
notation: P is the set of processors in the AADL model; Tp

is the set of threads bound to processor p; Ein
t (respectively,

Eout
t) is the set of semantics event or data event connections

that have thread t as the ultimate destination (respectively, ul-
timate source).

Algorithm 1 AADL to ACSR translation
for all p ∈ P do
for all t ∈ Tp do
generate a skeleton St for t (Section 4.2)
generate an dispatcherDt for Ein

t (Section 4.3)
for all e ∈ Eout

t do
populate St with events e! (Section 4.4)
if e is mapped to a bus b then
populate St with resource b (Section 4.4)

for all e ∈ Ein
t do

generate the queue process for e (Section 4.4)

Continuing our cruise control example in Figure 1, the
translation produces six ACSR processes that represent
threads and six ACSR processes that represent dispatchers for
each thread. All connections in the example are data connec-
tions, thus no queue processes are introduced.
Assumptions and restrictions. The translation applies to
systems that are completely instantiated and bound. This
means that: 1) The system contains at least one thread
and at least one processor components. Each thread has
to be bound to a processor; and 2) If the thread is non-
periodic (that is, aperiodic, sporadic, or background),
each in event port and in event data port must
have an incoming connection. In addition, each thread is
required to have the properties Dispatch Protocol,
Compute Execution Time, and Compute Deadline
specified. Each processor component that has
any threads bound to it must have the property
Scheduling Protocol specified.

The current version of the standard AADL assumes that
threads in the system are synchronizedwith respect to a global
clock. This assumption matches the timing model of ACSR.
In addition, we assume that time is discrete. That is, time is
partitioned into fixed-size scheduling quanta and all schedul-
ing decisions are made at quantum boundaries. This assump-
tion means that if a thread is blocked on access to any shared
resource, it remains blocked for the remainder of the quantum
and any computation performed in this quantum has to be re-
peated. It also means that access to shared data is modeled as
taking the whole quantum, since only one thread can gain ac-
cess to it during the quantum. As a result of this assumption,
analysis will overapproximate timing behavior of a thread and
may result in false reports of deadline violations. Precision
of the timing analysis can be improved by making scheduling
quanta smaller, which tends to increase the size of the state
space that needs to be explored. We also assume that the time
of data and event delivery across connections in the AADL
model is significantly smaller than the scheduling quantum.
This assumption allows us to model communication between
thread as instantaneous.

4.2 ACSR skeleton of a thread component

Each thread is translated into an ACSR process indepen-
dently, based on 1) its timing parameters and other proper-
ties; 2) its associated connections; and 3) its shared resources.
The overall structure of the ACSR process skeleton for a
given thread is shown in Figure 4. It directly corresponds
to the thread semantic automaton given in the AADL stan-
dard. We refer to this process as the thread skeleton, because
steps within this process can be extended depending on the
event and access connections of the thread, scheduling proto-
col property, etc. Refinements of the skeleton are discussed
below. Note that subprocesses of the ACSR thread process
can be partitioned into two groups. In one group, the thread is
idle waiting for some external event, such as activation or dis-
patch. In the other group, thread executes some activity, such
as activation, deactivation, finalization, or normal computa-
tion. These subprocesses relinquish control to the complete
exit point when the activity is complete, or a timeout occurs
when the deadline is reached. The dashed transitions reflect
the differences in execution semantics for different kinds of
threads. Specifically, recovery is required for sporadic and
aperiodic threads when a mode switch occurs during the exe-
cution. On the other hand, background threads are dispatched
immediately upon initialization. Note the ACSR event done,
sent when the execution of the subprocess Compute com-
pletes. That event is received by the dispatcher process of
the thread (see below).
An ACSR process representing a thread in the Com-

pute state is shown in more detail in Figure 5. The pro-
cess has two static parameters: minimum cmin and maxi-
mum cmax execution times. They are taken from the prop-
erty Compute Execution Time of the thread component,
which gives the range of the execution times. The process is

AwaitMode

Halted

ThreadInit

ThreadActivate

AwaitDispatch

complete

complete

Compute

ThreadDeactivateThreadFinalize

completecomplete

stop?

stop?

start?

activate?

dispatch?

Violation
initDeadline

de
ac
tiv
at
eD
ea
dl
in
e

activateDeadline

computeDeadline

Recovery

modeSwitch?

complete

modeSwitch?

complete
done!

Figure 4. ACSR representation of a single
thread component

indexed by two dynamic parameters, e and t. Parameter e

represents the amount of execution time that has been accu-
mulated by the thread in the current dispatch. Parameter t

represents the total amount of time elapsed since the dispatch.
As the process executes, it performs computation steps that

require resource cpu, representing the processor to which the
thread is mapped. In addition, an additional set of resources
may have to be used, according to the access connections of
the thread. This set of resources is generically denoted R.
Each computation step increases both dynamic parameters of
the process. When the thread is preempted by a high-priority
thread, it cannot perform the computation step and moves to
the Preempted state. There, it performs actions that use re-
sources in R, but not cpu. These steps increase parameter
t, but not e. After the number of computation steps exceeds
cmin, the process can exit its scope via the complete exit point
and return to the AwaitDispatch state. Once the cmax has been
reached, the process is forced to leave the Compute.
As an example of the skeleton refinement, consider again

the cruise control model shown in Figure 1. Two of the
threads, DriverModeLogic and RefSpeed have outgo-
ing data connections that are mapped to the bus. Thus the bus
is modeled as a shared resource that these threads need to ac-
cess. Output on a data connection is produced as the thread
completes its dispatch. Thus the last computation step of the
Compute state uses both cpu and bus as resources. In all other
computation steps in these threads, and all computation steps
in the other threads, have R = ∅ and access only cpu.
Some of the subprocesses shown in Figure 4 may be ab-

t := t + 1

e < cmax - 1

t := t + 1.
e := e + 1

{(cpu,p),R}

Compute

{(cpu ,p),R}

cmin - 1 < e
< cmax

{R}

complete

Preempted

{R}t := t + 1{(cpu ,p),R}t := t + 1.
e := e + 1

Figure 5. ACSR process for thread computation

sent in the ACSR representation of the task. For example,
if the AADL model has only one mode, then subprocesses
ThreadActivate and ThreadDeactivate are not present.

4.3 Tread dispatcher

An AADL thread is dispatched according to its dispatch
policy. This policy is captured by the dispatcher process that
is generated for each thread in addition to the thread skeleton.
The dispatcher sends the dispatch event to the thread skele-
ton that advances the skeleton from the AwaitDispatch state to
Compute state. In addition to thread dispatch, the dispatcher
process keeps track of thread deadlines and signals deadline
violations by inducing a deadlock into the model execution.
Figure 6 shows dispatcher processes for AADL dispatch poli-
cies. Figure 6,a shows a dispatcher for a periodic thread. In
the initial state, Dispatcherp sends the dispatch event. Note
that the dispatcher cannot idle in this state and has to send this
event immediately. Once the event is sent, the dispatcher idles
while the thread process is executing. If execution is com-
pleted and the ACSR event done is received before the time-
out d (the deadline of the thread), the dispatched now idles un-
til the next period arrives p time units from the dispatch, and
repeats the dispatch cycle. Otherwise, if the deadline timeout
happens, the dispatcher process is blocked, inducing a dead-
lock in the ACSR model that denotes a timing violation.
Aperiodic or background threads are dispatched by

an event taken from a queue. The dispatcher process
Dispatchera, shown in Figure 6,b, receives the ACSR event
e deq from the event queue process E q that corresponds to
an incoming event or data event connection of the thread (con-
nection handling is discussed in Section 4.4). When this event
is received, the dispatcher sends the dispatch event to the
thread skeleton and waits for the ACSR event done, which
should arrive before the deadline. Note that here, unlike in
the case of a periodic thread, the dispatcher can idle wait-
ing for an event to arrive. If there are several incoming event
connections, the choice between them may be resolved by as-
signing priorities to the communication step according to the
Urgency property of each connection.

Dispatcherp

dispatch!

done?

a)

Dispatchera

dispatch!

done?
Idle

b)

d
e_deq?

Dispatcher s

dispatch!

done?
Idle

c)
de_deq?

Idlep

{ }

{ }

done?
Idle d

Idle

Figure 6. Thread dispatchers

Finally, the dispatcher process Dispatchers for a sporadic
thread, shown in Figure 6,c, is a combination of the two dis-
patcher processes discussed above. A dispatch happens when
an ACSR event from the queue process is received. However,
the next dispatch cannot happen until the minimum separation
interval p elapses.

4.4 Events and connections

Sending and receiving AADL events is represented in
ACSR by communication steps. Each semantic event or data
event connection e in the AADL model is represented by an
auxiliary ACSR process E that handles queuing of events at
the destination. We introduce two ACSR events: e q, sent by
the source thread and received byE, and e deq, sent byE and
received by the dispatcher for the destination thread.
Sending events. An AADL thread that is the ultimate source
of a semantic event or data event connection e can raise an
event during its computation. It is represented by a commu-
nication step with the output ACSR event with the name e q.
Events can be raised at any time when the thread is execut-
ing. The communication step is added as a self-loop to the
Compute state of the skeleton process in Figure 5. AADL
also defines a special completion event that is treated differ-
ently. If the implicitly defined out event port Complete of
the thread is connected, a communication step with the out-
put ACSR event complete is performed immediately prior to
sending the done event.
Since many events can be raised during the execution of a

thread, and each such event can cause a dispatch of another
thread, analysis results can be very conservative. It can be
improved in two ways. On the one hand, if the thread has a
behavioral annex associated with it, the state machine in the
annex can specify a detailed pattern of event communication.
In this case, the state machine of the annex refines the Com-
pute subprocess of the thread skeleton. On the other hand,

some reasonable assumptions can be made by the user about
the thread behavior. For data event connections in particular,
a common behavior of a periodic thread is to send data at the
end of its computation period. This is the default treatment of
data event connections in our translation.
Queue management. The queue of a connection e is repre-
sented by a counter ACSR process E that counts up to the
number specified by the Queue Size property of the last
port of the connection. Queue size of 1 is assumed if the prop-
erty is not specified. The counter is sufficient for the represen-
tation of the queue, since we do not model the attributes of
individual events. Therefore, we need to know only the num-
ber of events in the queue at anymoment during the execution.
The counter is incremented by the ACSR input event e q and
decremented by the ACSR output event e deq, which matches
the input event performed by the thread skeleton at dispatch.
Property Overflow Handling Protocol of the port de-
termines the behavior of the queue process when the counter
reaches its maximal count. The incoming event can be qui-
etly dropped, introducing a self-loop transition, or can cause
an error to occur, in which case it appears as the interrupt of
the queue process leading to an error state.

5 Timing analysis

Schedulability analysis of real-time systems modeled in
ACSR has been studied in [1]. The schedulability analysis
framework of ACSR includes two parts. The first part im-
plements the task model as a collection of concurrent ACSR
processes. The translation of the AADLmodel into ACSR de-
scribed above accomplishes this part. The second part is the
encoding of a scheduling policy as a priority assignment rule.
Any fixed-priority scheduling algorithm, such as rate-

monotonic or deadline-monotonic scheduling, can be imple-
mented by considering the set of AADL thread components
bound to a particular processor component P in the system
and assigning a priority to each thread Ti based on the appro-
priate properties of the thread. Then, this priority is assigned
to every use of the resource that corresponds to P in any timed
action of the ACSR thread process for Ti.
Dynamic-priority scheduling can be implemented by using

parametric expressions for priorities. For example, in order to
reflect the EDF (Earliest-Deadline First) scheduling, we use
the following expression as the priority in each access to the
processor resource: πi = dmax − (di − t), where di is the
deadline of the thread Ti, dmax is the largest deadline among
the threads assigned to the processor P , and t is the parame-
ter of the ACSR process for thread Ti, which keeps the time
since the last dispatch of Ti (see Figure 5). The priority πi

defined above has the property that the earlier the absolute
deadline of the current dispatch of Ti, the larger its value.
Thus the thread with the earliest deadline will preempt any
other thread that is bound to the same processor. Other com-
monly used dynamic scheduling policies that have encodings
in ACSR include the LLF (Least Laxity First) algorithm and

priority-inheritance protocol.
It can be shown that the resulting ACSRmodel is deadlock-

free if and only if every task meets its deadline. Indeed, con-
sidering the structure of a thread skeleton in isolation, we can
see that it can become deadlocked only if a timeout occurs,
that is, if a timing violation is detected or if an error occurs
in the case of queue overflow. Further, we can show the ab-
sence of blocking due to communication. These two observa-
tions, combined, allow us to conclude that the ACSR model
that meets its timing constraints is deadlock free. With this,
analysis can be performed by state-space exploration of the
ACSR process. A deadlock found in the state space of the
process indicates a violation of the timing constraints.
The approach to checking thread deadlines by means of an

observer process (that is, the dispatcher process of a thread)
can be extended to check other timing properties of AADL
models. For example, an observer process can capture viola-
tions of an end-to-end latency constraint for a data flow from
an in port of an AADL system to an output port. Such an ob-
server would be triggered by an input event and, just like a
dispatcher process, would deadlock if the output event is not
observed by the flow deadline. The caveat is that, if inputs are
processes in a pipelined fashion, observer processes need to
be spawned dynamically as needed.
Implementation. ACSR models can be analyzed using the
VERSA tool [4]. VERSA performs state-space exploration
and deadlock detection for a given model. Since the schedula-
bility problem is reduced in ACSR to the problem of deadlock
detection, VERSA can be used to perform schedulability anal-
ysis. If VERSA finds a deadlock in themodel, it reports a trace
leading from the start state to the deadlocked state. This trace
can be used as the failing scenario, which provides diagnos-
tic information to the user. Schedulability analysis of AADL
models has been implemented in the Eclipse framework as a
plugin into the OSATE modeling environment. The plugin
performs the following three steps. First, the AADL model
is translated into the input of the VERSA tool. Second, the
model is loaded into VERSA, which looks for deadlocks. If a
deadlock is found, the failing scenario is “raised” to the level
of the original AADL model. Steps of the trace are reinter-
preted in terms of the actions of the components in the AADL
model. As a result, we obtain a fully automatic tool for for-
mal schedulability analysis of AADL models that completely
hides the specifics of the formal analysis from the user.

6 Related work

Several approaches to formal timing analysis exist that ex-
plicitly take scheduling into account. Extensions of timed au-
tomata are used in [5, 2, 8], however, continuous time model
does not seem to fare well with the discrete nature of schedul-
ing decisions, resulting in much more cumbersome analysis
algorithms. More significantly, ACSR is the only formalism
that treats resource contention directly in the semantics, avoid-
ing complicated encodings necessary in other formalisms,

which considerably increase the size of the model. Formal
schedulability analysis based on state-space exploration of an
executable model is related to simulation-based methods of-
fered by tools such as Cheddar [14]. We believe that exploring
the state space of a formal executable model offers exhaustive
analysis of all possible behaviors, which is very important if
there is much uncertainty in the model behavior.
MetaH [15], a precursor to AADL, offers schedulability

analysis for rate-monotonic priority assignments. Our ap-
proach complements that work by covering other scheduling
algorithms as well.

7 Conclusions and future work

We presented an approach to provide formal schedulabil-
ity analysis for models of embedded systems expressed in an
industry-standard language AADL. The approach works by
translating the AADL model into an expression in the real-
time process algebra ACSR. The basis for the translation is
given by the semantic definition for thread components in
the AADL standard. Schedulability analysis of the translated
ACSR model is enabled by the ability of ACSR to describe
resource requirements and use priorities to control access to
shared resources. A number of commonly used scheduling
disciplines are encoded in this schedulability analysis frame-
work. The schedulability problem is reduced to the problem
of deadlock detection, which is performed by the VERSA
tool. An important feature of the presented approach is that
the diagnostic information produced by VERSA in terms of
the translated ACSR model is translated back in terms of the
AADL model and can be presented to the user in a convenient
time line form.
Future work on this approach includes keeping up with the

new developments in the AADL standard. Version 1.1 of the
standard is currently being prepared for submission to SAE,
and version 2.0 is being planned. Newer versions of the stan-
dard will include additional features that will have to be reflect
in the translation. One of the new features will be support for
hierarchical scheduling, which will require new priority en-
codings and possibly new component encodings. The other
direction of future work is to make the analysis framework
more efficient. This involves modifying the translation to pro-
duce ACSR models with more compact state spaces as well as
improving the state-space exploration efficiency of VERSA.

References

[1] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y. S. Kim,
I. Lee, and H.-L. Xie. A Process Algebraic Approach
to the Schedulability Analysis of Real-Time Systems.
Real-Time Systems, 15:189–219, 1998.

[2] K. Brink, J. van Katwijk, R. F. L. Spelberg, and W. J.
Toetenel. Analyzing schedulability of Astral specifica-
tions using extended timed automata. In Proceedings of
Euro-Par ’97, pages 1290–1297, 1997.

[3] R. Chen, M. Sgroi, L. Lavagno, G. Martin,
A. Sangiovanni-Vincentelli, and J. Rabaey. Em-
bedded system design using UML and platforms.
In Forum on Specification and Design Languages
(FDL ’2002), Sept. 2002.

[4] D. Clarke, I. Lee, and H.-L. Xie. VERSA: A Tool for
the Specification and Analysis of Resource-Bound Real-
Time Systems. Journal of Computer and Software Engi-
neering, 3(2):185–215, April 1995.

[5] J. C. Corbett. Timing analysis of Ada tasking programs.
IEEE Transactions on Software Engineering, 22(7):461–
483, 1996.

[6] M. Edwards and P. Green. UML for hardware and soft-
ware object modeling. In UML for real: design of em-
bedded real-time systems, pages 127–147. Kluwer Aca-
demic Publishers, 2003.

[7] P. Feiler, B. Lewis, and S. Vestal. The SAE AADL stan-
dard: A basis for model-based architecture-driven em-
bedded systems engineering. In Workshop on Model-
Driven Embedded Systems, May 2003.

[8] E. Fersman and W. Yi. A generic approach to schedu-
lability analysis of real time tasks. Nordic Journal of
Computing, 2005.

[9] I. Lee, P. Brémond-Grégoire, and R. Gerber. A Process
Algebraic Approach to the Specification and Analysis
of Resource-Bound Real-Time Systems. Proceedings of
the IEEE, pages 158–171, Jan 1994.

[10] I. Lee, J.-Y. Choi, H.-H. Kwak, A. Philippou, and
O. Sokolsky. A family of resource-bound real-time pro-
cess algebras. In Formal Techniques for Networked and
Distributed Systems (FORTE’01), Aug. 2001.

[11] I. Lee and V. Gehlot. Language Constructs for Dis-
tributed Real-Time Programming. In Proceedings IEEE
Real-Time Systems Symposium, 1985.

[12] G. Martin, L. Lavagno, and J. Louis-Guerin. Embed-
ded UML: a merger of real-time UML and co-design.
In 9th International Conference on Hardware/Software
Co-Design (CODES ’01), pages 23–28, Apr. 2001.

[13] SAE International. Architecture Analysis and Design
Language (AADL), AS 5506, Nov. 2004.

[14] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Ched-
dar: a flexible real time scheduling framework. In
SIGAda ’04, pages 1–8, 2004.

[15] S. Vestal. Metah support for real-time multi-processor
avionics. In Proceedings of the Joint Workshop
on Parallel and Distributed Real-Time Systems (WP-
DRTS/OORTS ’97), pages 11–21, 1997.

