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FOREWORD 
Dependence on information technology makes software assurance a key element of business 
continuity, national security, and homeland security. Software vulnerabilities jeopardize 
intellectual property, consumer trust, business operations and services, and a broad spectrum 
of critical applications and infrastructure, including everything from Supervisory Control and 
Data Acquisition systems to commercial-off-the-shelf applications. The integrity of key assets 
depends upon the reliability and security of the software that enables and controls those assets. 
However, informed consumers have growing concerns about the scarcity of practitioners with 
requisite competencies to build secure software. They have concerns with suppliers’ 
capabilities to build and deliver secure software with requisite levels of integrity and to exercise 
a minimum level of responsible practice. Because software development offers opportunities to 
insert malicious code and to unintentionally design and build software with exploitable 
weaknesses, security-enhanced processes and practices—and the skilled people to perform 
them—are required to build software that can be trusted not to increase risk exposure. 

In an era riddled with asymmetric cyber attacks, claims about system reliability, 
integrity and safety must also include provisions for built-in security of the enabling 
software. 

In their Report to the President entitled Cyber Security: A Crisis of Prioritization (February 
2005), the President’s Information Technology Advisory Committee (PITAC) summed up the 
problem of non-secure software: 

Network connectivity provides “door-to-door” transportation for attackers, but 
vulnerabilities in the software residing in computers substantially compound the cyber 
security problem. As the PITAC noted in a 1999 report, the software development 
methods that have been the norm fail to provide the high quality, reliable, and secure 
software that the Information Technology infrastructure requires. 

Software development is not yet a science or a rigorous discipline, and the 
development process by and large is not controlled to minimize the vulnerabilities that 
attackers exploit. Today, as with cancer, vulnerable software can be invaded and 
modified to cause damage to previously healthy software, and infected software can 
replicate itself and be carried across networks to cause damage in other systems. Like 
cancer, these damaging processes may be invisible to the lay person even though 
experts recognize that their threat is growing. And as in cancer, both preventive 
actions and research are critical, the former to minimize damage today and the latter 
to establish a foundation of knowledge and capabilities that will assist the cyber 
security professionals of tomorrow reduce risk and minimize damage for the long 
term. 

Vulnerabilities in software that are introduced by mistake or poor practices are a 
serious problem today. In the future, the Nation may face an even more challenging 
problem as adversaries—both foreign and domestic—become increasingly 
sophisticated in their ability to insert malicious code into critical software. 

Software Assurance has emerged in response to the dramatic increases in business and mission 
risks that are now known to be attributable to exploitable software, including: 
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• Dependence on software components of systems despite their being the weakest link in 
those systems;  

• Size and complexity of software that obscures its intent and precludes exhaustive 
testing;  

• Outsourcing of software development and reliance on unvetted software supply chains;  

• Attack sophistication that eases exploitation of software weaknesses and vulnerabilities; 

• Reuse and interfacing of legacy software with newer applications in increasingly 
complex, disparate networked environments resulting in unintended consequences and 
the increase of vulnerable software targets.  

The growing extent of the resulting risk exposure is not yet well understood. The number of 
threats specifically targeting software is increasing, as the majority of today’s network- and 
system-level attacks exploit vulnerabilities in application-level software. These factors combine 
to the increase of risks to software-enabled capabilities and the vulnerability of software-
intensive systems to asymmetric cyber threats. Only by establishing the basis for justifiable 
confidence in the software that enables their core business operations can the organizations 
that depend on software-intensive systems trust those systems to continue performing in a 
dependable, trustworthy manner, even in the face of attack. 

Enhancing the Development Life Cycle to Produce Secure Software joins a growing body of 
software assurance information resources and tools provided through the Department of 
Homeland Security (DHS) BuildSecurityIn Web portal (https://buildsecurityin.us-cert.gov) 
that are intended to assist software developers, architects, acquirers, and educators in the 
improvement and verification of the quality, reliability, and security of the software they 
produce or procure—and in establishing the justification to use that software with confidence.  

Enhancing the Development Life Cycle to Produce Secure Software1 is intended to 
complement Software Security Assurance: A State-of-the-Art Report,2 which provides an 
broad overview of the current methodologies, practices, technologies, and activities engaged in 
by government, industry, and academia for producing secure software and verifying software’s 
security. Enhancing the Development Life Cycle complements Software Security Assurance by 
describing in greater technical depth and detail the security principles and practices that 
software developers, testers, and integrators can adopt to achieve the twin objectives of 
producing more secure software-intensive systems, and verifying the security of the software 
they produce.  

                                                 

1 Sponsored by the DHS Software Assurance Program and collaboratively developed through contributions of 
the Software Assurance Forum working groups, the document is published by the Defense Technical Information 
Center’s Data and Analysis Center for Software (DACS) as a community resource. 

2 Goertzel, Karen Mercedes, et al. Software Security Assurance: A State-of-the-Art Report. Herndon, Virginia: 
Information Assurance Technology Analysis Center (IATAC) of the DTIC, 31 July 2007. Accessed 28 January 2008 
at: http://iac.dtic.mil/iatac/download/security.pdf 
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Enhancing the Development Life Cycle benefited greatly from contributions and critiques by 
participants in the Software Assurance Forum. The Software Assurance Forum was established 
jointly by the DHS and Department of Defense (DoD) Software Assurance Programs to provide 
a venue in which relevant initiatives and organizations across the private sector, academia, and 
government agencies can collaborate and partner to improve the state of the art of software 
development and acquisition by shaping a comprehensive strategy that addresses people, 
processes, technologies, and acquisition practices throughout the software life cycle. 

DHS established its Software Assurance Program, consistent with the National Strategy to 
Secure Cyberspace which included action/recommendation 2-14:  “DHS will facilitate a 
national public-private effort to promulgate best practices and methodologies that promote 
integrity, security, and reliability in software code development, including processes and 
procedures that diminish the possibilities of erroneous code, malicious code, or trap doors 
that could be introduced during development.”  

The co-sponsored Software Assurance Forum provides a public-private venue for stakeholders 
to discuss relevant issues and promote the objectives of software assurance throughout the 
development life cycle.  The software assurance objectives are:  

1. Dependability (Correct and Predictable Execution): Justifiable confidence can 
be attained that software, when executed, functions only as intended; 

2. Trustworthiness: No exploitable vulnerabilities or malicious logic exist in the 
software, either intentionally or unintentionally inserted; 

3. Resilience (and Survivability): If compromised, damage to the software will be 
minimized, and it will recover quickly to an acceptable level of operating capacity; 

4. Conformance: A planned and systematic set of multi-disciplinary activities will be 
undertaken to ensure software processes and products conform to requirements and 
applicable standards and procedures.  

A growing number of software and security engineers have identified and now promote 
principles, practices, and technologies that support these software assurance objectives. Their 
experiences have provided real-world evidence that software produced and vetted by such tools 
and practices exhibit fewer faults and weaknesses that are exploitable as vulnerabilities, while 
also increasing the software’s overall dependability and quality. Enhancing the Development 
Life Cycle describes these principles, practices, and technologies.  

Recognizing that no single practice, process, or methodology offers a universal “silver bullet” 
for software security, the authors of Enhancing the Development Life Cycle do not set out to 
recommend a specific methodology. In this way, Enhancing the Development Life Cycle differs 
from many other works published on secure software engineering, secure programming, secure 
coding, application security, and similar topics.  

What Enhancing the Development Life Cycle does do is present software practitioners with 
background in software security concepts and issues, and describes a set of frequently cited 
secure software principles and security-enhancing development practices. These are principles 
and practices that have been demonstrated in software development projects across 
government, industry, and academia, in the United States (U.S.) and abroad, to aid in the 
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production, verification, and sustainment of software that is more dependable, more 
trustworthy, and more resilient than software produced without the benefit of those principles 
and practices. The information in Enhancing the Development Life Cycle is intended to 
prepare its readers to evaluate and choose from among the growing number of secure software 
development methodologies, practices, and technologies those best suited for adoption by their 
own development organizations to help reshape their life cycle processes and practices. 

Enhancing the Development Life Cycle is expected to contribute to the growing Software 
Assurance community of practice. This freely downloadable document is intended solely as a 
source of information and guidance, and is not a proposed standard, directive, or policy from 
the DoD, DHS, or any other federal government organization. This document will continue to 
evolve with usage and changes in practice; therefore, comments on its utility and 
recommendations for improvement will always be welcome and should be addressed to the 
DACS at swa@thedacs.com and Joe.Jarzombek@dhs.gov. 

 
Joe Jarzombek, PMP 
Director for Software Assurance 
National Cyber Security Division 
Department of Homeland Security 
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Other software assurance documents are freely available through the Software Assurance Program of 
the U.S. Department of Homeland Security (DHS) National Cyber Security Division.  The documents 
and resource material can be downloaded via the “Software Assurance Community Resources and 
Information Clearinghouse” at https://buildsecurityin.us-cert.gov/swa and the “Build Security In” 
website at https://buildsecurityin.us-cert.gov. 

The Software Assurance Forum and Working Groups have provided collaborative venues for 
stakeholders to share and advance techniques and technologies relevant to software security, and they 
provide resources and seek ongoing feedback to improve those resources.   

Software Security Assurance: A State-of-the-Art Report (SOAR) represents an output of collaborative 
efforts of software assurance subject matter experts in the Department of Defense (DoD) Information 
Assurance Technology Analysis Center and Data and Analysis Center for Software, in concert with 
organizations and individuals in the SwA Forum and working groups. The SOAR provides an overview 
of the current state of the environment in which software must operate and surveys current and emerging 
activities and organizations involved in promoting various aspects of software security assurance. The 
report also describes the variety of techniques and technologies in use in government, industry, and 
academia for specifying, acquiring, producing, assessing, and deploying software that can, with a 
justifiable degree of confidence, be said to be secure. The report also presents observations about 
noteworthy trends in software security assurance as a discipline. Many other SwA resources are 
provided by the SwA working groups. 

“Software Assurance in Acquisition:  Mitigating Risks to the Enterprise” was published in October 2008 
through the National Defense University Press.  This collaboratively developed document provides a reference for 
security-enhanced software acquisition and outsourcing by incorporating SwA throughout the acquisition process 
from the acquisition planning phase to contracting, monitoring and acceptance, and follow-on phases. For each 
phase, the material covers SwA concepts, recommended strategies, and acquisition management tips. It also 
includes recommended request for proposal and/or contract language and due diligence questionnaires that may 
be tailored to facilitate the contract evaluation process. A pre-production copy is freely downloadable via the DHS 
SwA Community Resources and Information Clearinghouse at https://buildsecurityin.us-cert.gov/swa/acqact.html  

“Practical Measurement Framework for Software Assurance and Information Security” was published in 
October 2008 through the Practical Software and Systems Measurement Support Center.  It provides an approach 
for measuring the effectiveness of achieving Software Assurance (SwA) goals and objectives at an organizational, 
program or project level. It addresses how to assess the degree of assurance provided by software, using 
quantitative and qualitative methodologies and techniques. This framework incorporates existing measurement 
methodologies and is intended to help organizations and projects integrate SwA measurement into their existing 
programs.  The document can be free downloaded via the PSM Support Center web site under "Products" then 
"white papers".  The link is: http://www.psmsc.com/Prod_TechPapers.asp.  The link directly to the paper is: 
http://www.psmsc.com/Downloads/TechnologyPapers/SwA%20Measurement%2010-08-8.pdf 
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THIS DOCUMENT, AND ENTITIES AND PRODUCTS MENTIONED WITHIN THIS DOCUMENT MAKE NO WARRANTIES OF ANY 

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS 

FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL DESCRIBED OR 

REFERENCED HEREIN. NO WARRANTY OF ANY KIND IS MADE WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, 
OR COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this guide is not intended in any way to infringe on the rights of the 
trademark holder. 

References in this document to any specific commercial products, processes, or services by trade 
name, trademark, manufacturer, or otherwise, do not necessarily constitute or imply its 
endorsement, recommendation, or favoring by any of the parties involved in or related to this 
document. 

No warranty is made that the use of the guidance in this document or on any site or supplier, 
which is the source of content of this document, will result in software that is secure or even more 
secure. Code examples, when provided, are for illustrative purposes only and are not intended to 
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1 INTRODUCTION 
This section provides information on this document’s content and intended readers.  

NOTE: This document is not intended to be comprehensive, nor is it intended to be the only 
document the reader will ever have to consult about producing secure software. It is, instead, 
intended to provide a roadmap to help the reader navigate and intelligently select from among 
the multiplicity of other resources available on the various aspects of software security and 
assurance. 

1.1 DOCUMENT PURPOSE AND INTENDED AUDIENCE 

The main purpose of Enhancing the Development Life Cycle is to arm developers, integrators, and 
testers with the information they need to incorporate security considerations and principles 
into the practices and processes they use to produce software, and thereby increase the 
likelihood that the resulting software will be secure. What “secure” means as it relates to 
software is explained in Section 2. 

The intended readers for this document are “software practitioners”, who include: 

1. Requirements analysts, 

2. Architects and designers, 

3. Programmers (also known as “coders”), 

4. Software integrators, 

5. Testers, 

6. Maintainers, 

7. Software configuration managers, 

8. Security experts assigned to work with software development teams (see note), 

9. Software project technical leads/managers. 

NOTE: Whereas this document is intended primarily to familiarize software practitioners with 
security concepts, principles, and practices, the security expert can read this document to better 
grasp the relationship between security concepts and principles he/she already understands, how 
they pertain to software, and how they can be applied to software practices—both areas with 
which the security expert is likely to be unfamiliar. 

The principles and practices identified in this document can inform the use of a variety of 
frameworks, models, and standards that provide the infrastructure for repeatable processes 
and continuous process improvement, including ISO 15288 and Capability Maturity Model 
Integration. To support the integration of assurance considerations in the development 
lifecycle, an industry working group created a draft set of assurance goals and practices that 
harmonize existing practices in the Motorola Secure Software Development Model (MSSDM), 
the System Security Engineering Capability Maturity Model (SSE-CMM), and other secure 
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system and software engineering models and experiences. See the Suggested Resource list 
below for references. 

Please note that while the software project manager is listed as an intended beneficiary of the 
information in this document, issues of security in software project management and software 
process improvement at the level addressed by CMMs and similar process models both fall 
outside the scope of this document. There are a number of good resources for software project 
managers to consult in these areas. These are listed in the Suggested Resources list below. 

This document assumes that the reader is already familiar with good general software 
development concepts, principles, and practices. To benefit fully from the content of this 
document, the reader should also be familiar with key information security and cyber security 
concepts, such as “trust”, “privilege”, “integrity”, and “availability”. See the Suggested 
Resources at the end of Section 3.2.1 for some helpful Information Assurance (IA) and 
Information System Security resources. 

CAVEAT ABOUT TERMINOLOGY:  
Developers, Designers, Architects 

While the authors recognize that there are a number of different roles—those listed above 
plus others—involved in the production and sustainment of software, we have chosen in this 
document to frequently use the term developer as a general designator for anyone directly 
involved with the development of software at some point in its life cycle: this includes the 
requirements analyst, the architect, the designer, the programmer, the software (vs. 
system) integrator, and the maintainer. We can only hope that this imprecision of 
terminology will not confuse the reader, and that he/she will understand when, for example, 
within the discussion of requirements engineering we may refer to the developer rather than 
the (requirements) analyst. We generally refer to the tester separately, to clearly 
differentiate the function of evaluating software (source code or binary executable) that has 
already been developed from that of reviewing code as it is still being written. 

Also, the authors do not attempt to make a clear distinction between the software (vs. 
system) architect and the software designer—either of whom may be referred to as 
designer or developer; this is because we feel that the two aspects of software definition 
tend to dovetail and blur into each other, and thus any attempt at a clear distinction would 
be neither accurate or helpful. 
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1.2 DOCUMENT STRUCTURE AND CONTENT 

Enhancing the Development Life Cycle consists of nine chapters and seven appendices, each of 
which is described in Table 1-1 below. The table also indicates which readers (by role) will 
benefit most from the content of each section and subsection. 

Table 1-1. Document structure and content 

Section Content Who will benefit 
most from reading? 

1 Introduction: Document purpose, intended 
audience, structure, and content description 

All 

2 Background: Understanding the problem All 

3 Integrating security into the SDLC  

3.1 Influence on how software comes to be on its security Project manager 

3.2 General software security principles All 

3.2.1 Software assurance, information assurance, and system 
security 

Project managers 
Requirements 
analysts 
Integrator 

3.3 Secure development life cycle activities and practices Project manager 

3.4 Secure version management and change control of SDLC 
artifacts 

Configuration 
manager 

3.5 Security assurance cases for software Project manager 

3.6 SDLC methodologies that aid in secure software 
production 

Project manager 

4 Requirements for secure software  

4.1 The challenge of negative and non-functional 
requirements 

Requirements analyst 

4.2 Origins of requirements for secure software Requirements analyst 
Project manager 

4.3 Deriving requirements that will ensure security of 
software 

Requirements analyst 

4.4 Secure software requirements verification challenges Requirements analyst 

4.5 Requirements engineering and security modeling 
methodologies and tools 

Requirements analyst  

4.5.1 Attack modeling Requirements analyst 
Tester 
(test planning) 

  Requirements analyst 
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Section Content Who will benefit 
most from reading? 

5 Secure design principles and practices  

5.1 Secure architecture considerations Architect 

5.2 Secure software design principles and practices Designer 

5.3 Modeling and risk analysis for architecture and design Architect 
Designer 

5.4 Relationship of security patterns to secure software Designer 

5.5 Execution environment security contraints, protections, 
and services for software 

Architect 
Integrator 

5.6 Secure architecture and design methodologies Architect 
Integrator 

6 Secure component-based software engineering  

6.1 Architecture and design considerations for component-
based software systems 

Architect 
Designer 
Integrator 

6.2 Security issues associated with COTS and OSS 
components 

Architect 
Integrator 

6.3 Security evaluation and selection of components Architect 
Integrator 

6.4 Implementing secure component-based software Architect 
Integrator 

6.4 Secure sustainment of component-based software Integrator 

7 Secure coding principles and practices Programmer 

8 Risk-based software security testing Tester 

9 Secure distribution, deployment, and sustainment  

9.1 Preparations for secure distribution Programmer 
Integrator 

9.2 Secure distribution Program manager 

9.3 Secure installation and configuration Program manager 

9.4 Secure sustainment considerations Program manager 
Maintainer 

App. A Abbreviations, acronyms, and definitions  All 

App. B Resources and Bibliography All 
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Section Content Who will benefit 
most from reading? 

App. C Software assurance concerns raised by specific 
technologies, methodologies, and programming 
languages  

 

C.1 Security concerns associated with Web service software All 
(for application 
software) 

C.2 Security concerns associated with embedded system 
software 

All 
(for embedded 
software) 

C.3 Formal methods and secure software All 
(for high-
consequence 
software) 

C.4 Security benefits and concerns associated with specific 
programming languages 

Programmers 

 Leveraging Design by Contract™ for software security Programmers 

App. D Security checklist excerpts Integrators 
(evaluators of 
components) 

Testers  
(test planners) 

 

At the end of many sections, the reader will find a list of resources that provide more detailed, 
in-depth explanatory information on the section’s topic, or that provide practical guidance on 
how to implement the different activities, techniques, and practices referred to in the section. 
All of these resources, as well as those cited in footnotes throughout this document, also 
appear, listed alphabetically by author (or in the case where no author’s name is know, by 
title), in Appendix B.  

NOTE: References throughout this document to “Software Security Assurance” refer to 
Goertzel, Karen, et al. Software Security Assurance: A State-of-the-Art Report. Herndon, 
Virginia: Information Assurance Technology Analysis Center, 31 July 2007. Accessed 28 
January 2008 at: http://iac.dtic.mil/iatac/download/security.pdf 
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2 BACKGROUND: UNDERSTANDING THE PROBLEM 

2.1 WHAT IS SECURE SOFTWARE? 

Secure software is not the same as software that performs security-relevant functions. While 
the performance of security functions is an excellent rationale for ensuring that the software 
that performs them is secure, the fact that software performs security-relevant functions does 
not assure the software’s own secure behavior and interactions. Security functionality in a 
software-intensive system is critical to assuring system security, but does very little to assure 
software security.  

A security function on which the system relies for protection will be of little value if the 
software that has implemented that function contains exploitable weaknesses that can be used 
to bypass or compromise the dependable operation of that function. By the same token, a 
system that cannot correctly authenticate its users, control access to its resources, or validate 
digital signatures when necessary will be non-secure regardless of whether the poorly 
implemented authentication, access control, or signature validation software contains no 
exploitable software vulnerabilities. Both of system-level security and software level-security 
must be assured for the system to be truly secure; moreover, the software that implements the 
system’s security components/functions for it to be possible to assure the system itself is 
secure. 

To be considered secure, software must exhibit three properties:3 

1. Dependability: Dependable software executes predictably and operates correctly under 
all conditions, including hostile conditions, including when the software comes under 
attack or runs on a malicious host. 

2. Trustworthiness: Trustworthy software contains few if any vulnerabilities or 
weaknesses that can be intentionally exploited to subvert or sabotage the software’s 
dependability. In addition, to be considered trustworthy, the software must contain no 
malicious logic that causes it to behave in a malicious manner. 

3. Survivability (also referred to as “Resilience”): Survivable—or resilient—software is 
software that is resilient enough to (1) either resist (i.e., protect itself against) or tolerate 
(i.e., continue operating dependably in spite of) most known attacks plus as many novel 
attacks as possible, and (2) recover as quickly as possible, and with as little damage as 
possible, from those attacks that it can neither resist nor tolerate. 

                                                 

3 At a system security level, these properties are equally important. However, they would probably be discussed 
in the terms of of the need for Availability, Integrity, Quality of Protection, and Quality of Service. 
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The main objective of software assurance is to ensure that the processes, procedures, and 
products used to produce and sustain the software conform to all requirements and standards 
specified to govern those processes, procedures, and products. 

A number of factors influence how likely software is to consistently exhibit these properties 
under all conditions. These include: 

• Development principles and practices: The practices used to develop the software, and 
the principles that governed its development; 

• Development tools: The programming language(s), libraries, and development tools 
used to design, implement, and test the software, and how they were used by the 
developers; 

• Acquired components: How commercial-off-the-shelf (COTS) and open source 
software (OSS) components were evaluated, selected, and integrated;  

• Deployment configuration: How the software was configured during its installation; 

• Execution environment: The nature and configuration of the protections provided to 
higher-level software by its underlying and surrounding execution environment;4 

• Practitioner knowledge: The level of security awareness and knowledge of the 
software’s analysts, designers, developers, testers, and maintainers…or their lack 
thereof.  

                                                 

4 A software program or component may reside at the application layer, the middleware layer, or the operating 
system layer (including kernel, device drivers, etc.), or the firmware layer. For purposes of this document, 
middleware software is that software that provides services and interfaces to application-level software to 
provide it with support capabilities that it cannot obtain from the operating system; examples of middleware 
include database management systems, Web servers, public key encryption software virtual machine monitors, 
etc.  
 
Regardless of the software’s level, all software has a “platform” execution environments on which it is directly 
hosted. This platform environment consists of the hardware platform consisting of hardware and firmware, plus 
any other software at the level(s) below that of the software being “hosted” in the environment. For example, 
operating system software has a platform environment that consists solely of hardware and firmware, except in 
those cases where the operating system is hosted on top of a low-level virtual machine monitor, which acts as 
middleware between the operating system and the hardware. For middleware-level software the platform 
execution environment expands to include the underlying operating system software, which provides the 
middleware with services and interfaces that enable it to access the file system, network interfaces, environment 
variables, and other middleware-level and application-level processes executing on the same physical host. For 
application-level software, the execution environment expands further to include middleware. Much of today’s 
software is “networked” or “distributed”, which means that its execution environment extends beyond its own 
platform, to include external network-based infrastructure services, such as certificate and identity management 
services, directory services, etc. 
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Both research and “real world” experience indicate that correcting weaknesses and 
vulnerabilities as early as possible in the software’s life cycle is far more cost-effective over the 
lifetime of the software than developing and releasing frequent patches for deployed software.  

Experience has also taught that the most effective way to achieve secure software is for its 
development life cycle processes to rigorously conform to secure development, deployment, 
and sustainment principles and practices. Organizations that have adopted a secure SDLC 
process have found almost immediately upon doing so that they have begun finding many 
more vulnerabilities and weaknesses in their software early enough in the SDLC that they are 
able to eradicate those problems at an acceptable cost. Moreover, as such secure practices 
become second nature over time, these same developers start to notice that they seldom 
introduce such vulnerabilities and weaknesses into their software in the first place. 

2.2 WHY DOES SOFTWARE ASSURANCE MATTER? 

The reason software assurance matters is that so many business activities and critical 
functions—from national defense to banking to healthcare to telecommunications to aviation 
to control of hazardous materials—depend on the on the correct, predictable operation of 
software. It is safe to say that in today’s world, these and myriad other activities and functions 
would become hopelessly crippled if not completely impossible were the software-intensive 
systems that they rely on to fail.  

This extreme reliance on software makes it a very high-value target for those who wish to 
exploit or sabotage such activities and functions, whether for financial gain, political or 
military advantage, to satisfy ideological imperatives, or out of simple malice.  

It is this virtually guaranteed presence of flaws and defects that makes software such an easy 
target for attackers. Software flaws and defects can cause software to behave incorrectly and 
unpredictably, even when it is used purely as its designers intended. Moreover, a number of 
software flaws and defects can be intentionally exploited by attackers to subvert the way the 
software operates—making it untrustworthy—or to sabotage the software’s ability to 
operate—making it undependable.  

The inherent complexity of software-intensive systems makes it extremely difficult to establish 
whether such systems are secure. Even when the secure behaviors and lack of vulnerabilities 
in individual software components can be verified, such verifications will not enable an 
analyst to predict whether each component’s secure behavior will continue to be exhibited 
when that component interacts with other components in the system, nor whether new 
vulnerabilities may emerge from the interactions of those components. Nor can the security of 
the system as a whole be extrapolated from the security of its individual components.  

According to the Computer Emergency Response Team Coordination Center at CMU, most 
successful attacks on software result from successful exploitation of the software’s known 
vulnerabilities and non-secure configurations.  
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Software is subject to threats at various points in its life cycle, perpetrated by either insiders—
individuals closely affiliated with the organization that is producing, deploying, operating, or 
maintaining the software, and thus trusted by that organization—or outsiders who have no 
affiliation-based trust relationship with the organization. These threats can occur: 

• During development (mainly insider threats): A developer may corrupt the software—
intentionally or unintentionally—in ways that will compromise that software's 
dependability and trustworthiness when it is operational.  

• During deployment (mainly insider threats): Those responsible for distributing the 
software may fail to tamperproof the software before shipping or uploading, or may 
transmit it over easily intercepted communications channels. The software’s installer 
may fail to “lock down” the host platform, and may configure the software insecurely. 
The user organization may not only fail to apply necessary patches and updates, but 
may fail to upgrade to newer, supported versions of the software from which the root 
causes of such vulnerabilities may have been eliminated. 

• During operation (both insider and outsider threats): Any software system that runs on a 
network-connected platform will have its vulnerabilities exposed during its operation. 
The level of exposure will vary depending on whether the network is public or private, 
Internet-connected or not, and whether the software’s environment has been configured 
to minimize its exposure. But even in highly controlled networks and “locked down” 
environments, potential threats from malicious insiders (users, administrators, etc.) 
remain, as do potential threats from the software’s own untrustworthy behavior. 

• During sustainment (mainly insider threats): Those responsible for addressing 
discovered vulnerabilities in released software fail to issue patches or updates in a 
timely manner to correct those vulnerabilities. Moreover, they fail to seek out and 
eliminate the root causes of the vulnerabilities to prevent their perpetuation in future 
releases of the software. 

NOTE: The secure development principles, practices, and methodologies discussed in this document 
are intended to help reduce the exposure of software to insider threats during its development 
process. 

2.3 WHICH SOFTWARE MUST ALWAYS BE SECURE? 

There are types of software and critical portions of software-intensive systems for which 
security should always be a high priority. These include software that performs “trusted” 
functions and software that implements interfaces among software components, between 
software and network components, and between software and human users. 

Software that performs “trusted” functions includes security-critical, safety-critical, and other 
high-consequence functions the dependability and trustworthiness of which are vital. Such 
functions include those that perform security policy decision-making and enforcement, protect 
sensitive data, avoid critical failures, perform critical calculations, measurements, and 
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configurations (such as targeting calculations in weapons systems, temperature monitoring 
and control in nuclear power plants, metering in medical life-support systems), etc. 

Interfaces include remote procedure calls and programmatic interfaces between the software 
system’s own components, modules, and processes, and interfaces between the software and 
external entities including those in the execution environment, peer software that provides 
services to or receives services from the software system, and human and software-agent 
users.  

NOTE: In the DoD, Intelligence Community, or Federal civilian agencies, the criticality of 
information system software is indicated to some extent by its Mission Assurance Category (defined 
in DoD Instruction 8500.2),5 Protection Level (defined in Director of Central Intelligence Directive 
[DCID] 6/3 “Protecting Sensitive Compartmented Information within Information Systems”),6 or 
Impact Levels (defined in Federal Information Processing Standard [FIPS] 199).7  

2.4 WHAT MAKES SOFTWARE SECURE? 

The main characteristics that discriminate the developer of secure software from that of non-
secure software are awareness, intention, and caution. A software professional who cares 
about security and acts upon that awareness will recognize that software vulnerabilities and 
weaknesses can originate at any point in the software’s conception or implementation: from 
inadequate requirements, to poor design and implementation choices, to inadvertent coding 
errors or configuration mistakes.  

The security-aware software professional knows that the only way these problems can be 
avoided is through well-informed and intentional effort: requirements analysts must 
understand how to translate the need for software to be secure into actionable requirements, 
designers must recognize and choices that conflict with secure design principles, and 
programmers must follow secure coding practices and be cautious about avoiding coding 
errors, and finding and removing the bugs they were unable to avoid. Software integrators 
must recognize and strive to reduce the security risk associated with vulnerable components 
(whether custom-built, COTS, or open source), and must understand the ways in which those 
modules and components can be integrated to minimize the exposure of any vulnerabilities 
that cannot be eliminated. 

                                                 

5 DoD Instruction 8500.2, Information Assurance (IA) Implementation. 6 February 2003. Accessed 25 January 2008 at: 
http://www.dtic.mil/whs/directives/corres/html/850002.htm. 

6 Director of Central Intelligence Directive 6/3 (DCID 6/3), Protecting Sensitive Compartmented Information within 
Information Systems – Manual. Accessed 28 January 2008 at: http://www.fas.org/irp/offdocs/dcid-6-3-
manual.pdf 

7 NIST Computer Security Division. Standards for Security Categorization of Federal Information and Information 
Systems. FIPS 199, February 2004. Accessed 26 January 2008 at: 
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf 
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The main reason for adding security practices throughout the SDLC is to establish a 
development process that codifies both caution and intention, so that: 

1. Well-intentioned developers are more likely to capture requirements adequately, and 
far less likely to make poor design choices and make, or at least leave in, inadvertent 
coding errors as software is being developed; 

2. Malicious developers will find it very difficult to surreptitiously plant exploitable 
vulnerabilities, weaknesses, and malicious logic into software under development; 

3. The software that results from the secure SDLC process will be secure in execution, and 
in its interactions with external entities (users, execution environment, and other 
software). 

The key elements of a secure SDLC process are: 

1. Security criteria in SDLC checkpoints: Security criteria are included in each SDLC 
phase’s entry and exit checkpoints. The checkpoint at the exit of a phase is intended to 
ensure that the product(s)—or artifact(s)—of that phase (e.g., specification, architecture, 
design, code) is sufficient as the basis for developing the artifact(s) of the next phase, 
For example, the exit criteria for the requirements specification should establish that the 
specification is clear, detailed, and traceable enough that an architecture and design that 
will satisfy its requirements can, in fact, be defined with sufficient detail and 
completeness to ensure that software can be implemented that is functionally complete 
and correct, and able to consistently exhibit all other required properties including 
security.  
 
For secure software, the security criteria of the phase’s exit checkpoint will collectively 
ensure that all security concerns for the phase’s artifact(s) have been explicitly and 
sufficiently addressed. In short, the evaluators of artifacts leaving a given phase should 
be satisfied that those products contain no unacceptable problems (e.g., inadequate or 
missing requirements, poor design choices, coding errors, unacceptable interfaces, etc.); 
such unacceptable problems include security deficiencies. The evaluations performed at 
exit checkpoints include peer reviews, requirements and design reviews, code reviews, 
security tests, and security audits. 
 
The purpose of a phase-entry checkpoint is to adjust any findings and assumptions 
made during the previous phase’s exit checkpoint as needed to accommodate new 
knowledge or changed circumstances. For example, a security safeguard may have been 
included in the software’s design based on the assumption that there were commercial 
or open source implementations of that specified safeguard available. The discovery 
that such is not the case, and that the safeguard would have to be custom-developed 
could lead to the entry-phase evaluator instead requesting that the design be reworked 
to define an alternative mechanism for addressing the security concern that was 
supposed to be dealt with by the safeguard. Backward propagation of any such design 
change might also have to be made in the architecture and even the requirements 
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specification. Or it may be discovered during the design of a safeguard required in the 
specification that the safeguard raised an irreconcilable conflict between two 
requirements.  
 
For example, a requirement for handling user input might have specified that 
unacceptable input data should be allowed into the system then “sanitized”. During the 
design phase, it might be discovered that an input validation mechanism that was 
intelligent enough to sanitize input would be likely to impose too much processing 
overhead. In this way, the requirement for input sanitization conflicts with the system’s 
performance requirements. Instead of attempting to rework the design to define a 
lower-overhead sanitization filter that is still capable enough to prevent admittance of 
malicious input (to avoid satisfying performance requirements at the expense of 
security requirements), it might be easier to simply change the specification to require 
defensive blocking of unacceptable input at its point of entry into the system rather than 
admitting the unacceptable input, then attempting to intelligently sanitize it.   

NOTE: In component-based software development, the products of any life cycle phase 
may, in fact, be acquired from external sources (e.g., COTS or OSS suppliers) rather 
than custom-developed. The checkpoint evaluations performed on such artifacts fall under 
the rubric of supplier assurance. Supplier assurance is an element of secure software 
acquisition and project management, for which resources are listed at the end of this 
section.  

2. Secure software principles and practices: All development processes and their artifacts 
conform to secure architecture, design, coding and integration, and testing principles 
and practices, such as those described in later sections of this document. 

3. Adequate requirements: Elicitation, derivation, and specification of requirements 
includes adequate, complete requirements for constraints on the software’s 
functionality and behavior (“negative” requirements) as well as non-functional 
requirements pertaining to development and evaluation processes, operational 
constraints, etc., to ensure the software’s dependability, trustworthiness, and resilience.  

4. Adequate architecture and design: The architecture and design are carefully reviewed 
to ensure that they: 

a. Reflect correct developer assumptions about all possible changes that might arise 
in the software’s environment, including changes in the inputs the software 
receives from the environment and changes in the states of environment 
components on which the software relies for its correct operation under normal 
conditions. The anticipated changes should include changes associated with 
likely attempts to attack and compromise the software, as well as simple 
anomalies in the environment’s behaviors and outputs.  

b. Reflect correct developer assumptions about all possible state changes in the 
software itself were its active defenses against environment changes to fail. These 
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assumptions should include assumptions about the software’s behavior under all 
possible operating conditions, not just those associated with “normal usage”, and 
should anticipate not only external attacks and anomalies, but also the expected 
results of the execution of various types of malicious logic embedded within the 
software itself;  

c. Form an adequate basis for implementing software that will: 

i. Operate in a dependable and trustworthy manner in its intended 
operational environment(s);  

ii. Use only appropriate and secure interfaces to external 
components/services, administrator consoles, and users; 

iii. Anticipate all of the different state changes that could result from errors or 
failures triggered by misuse and abuse (e.g., the latter could be 
characterized by attack patterns that manifest as errors or anomalies in 
input streams); 

d. Address security concerns associated with COTS and OSS components, such as 
determining means for preventing the inadvertent or maliciously intentional 
triggering of functions (dormant code) that are not expressly intended to be 
executed during the operation of the software system. Similarly, in open source 
and legacy-with-source code components, a determination of how to deal with 
dead code should be made, i.e., weighing the practicality of removing the 
unnecessary code vs. attempting to wrap or otherwise isolate/constrain it to 
prevent an attacker (or an anomaly) from accessing and executing it. 

5. Secure coding: Includes both coding and integration of software components. Coding 
follows secure coding practices and adheres to secure coding standards. Static security 
analysis of code is performed iteratively throughout the coding process, to ensure that 
security issues are found and eliminated before code is released for unit testing and 
integration.  

6. Secure software integration: Software units/modules/components are integrated with 
the following considerations in mind:  

a. Ensuring that all programmatic interfaces and procedure calls are inherently 
secure or that security mechanisms are added to secure them; 

b. Minimizing the exposure to external access of high-risk and known-vulnerable 
components.  

Integration security testing should focus on exercising the software thoroughly enough 
to gain a good idea of any unanticipated non-secure behaviors or vulnerabilities that 
may arise due to interactions among components. 
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7. Security testing: Appropriate security-oriented reviews and tests are performed 
throughout the SDLC. Tests plans include scenarios include abnormal and hostile 
conditions among “anticipated conditions” under which the software may operate, and 
test criteria include those that enable the tester to determine whether the software 
satisfies its requirements for dependability, trustworthiness, and survivability under all 
anticipated conditions. The review and test regime includes a broad enough variety and 
combination of tests to enable the tester to determine whether the software satisfies its 
requirements for dependability, trustworthiness, and survivability under all anticipated 
conditions. 

8. Secure distribution and deployment: Distribution and deployment follows secure 
practices, which include: 

a. Fully “sanitizing” the software executable(s) to remove unsafe coding constructs 
and embedded sensitive data, developer backdoors, etc., before transfer to 
download site(s) and/or distribution media;  

b. Distribution on media or via communications channels that adequately protect 
the software from tampering when it is en route to its purchaser or installer; this 
may include application of digital signatures or digital rights management 
mechanisms to prevent tampering or unauthorized/ unlicensed installation;  

c. Default configuration settings that are maximally restrictive, with the 
configuration guide sufficiently informative and detailed that it enables the 
installer to make informed risk-based decisions about reconfiguring the software 
with less-restrictive settings if necessary;  

d. Readable, accurate user, administrator, and installer documentation that clearly 
explains all required constraints and security features of the software. 

9. Secure sustainment: Maintenance, vulnerability management, and patch issuance and 
distribution conform to secure sustainment principles and practices. Software 
customers are encouraged to apply patches and keep software updated, to minimize 
unnecessary exposure of vulnerabilities. 

10. Supportive development tools: Development, testing, and deployment tools and 
platforms that enhance security of produced artifacts and support secure development 
practices are used throughout the SDLC. 

11. Secure configuration management systems and processes: Secure software 
configuration management and version/change control of the development artifacts 
(source code, specifications, test results, etc.) as a countermeasure against subversion of 
those artifacts by malicious developers, testers, or other SDLC “insiders”; 

12. Security-knowledgeable developers: The security the knowledge the developer needs 
will clarify the direct relationship between security principles and software engineering 
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practices. Security education and training of developers needs to go beyond simply 
explaining what security concepts and principles are relevant. It needs to address the 
practical ways in which those concepts and principles directly apply to the engineering 
practices by which software is conceived, implemented, and sustained. The 
education/training should be sufficient to enable the developer to distinguish between 
security-enhancing and security-threatening software practices, and to confidently and 
skillfully embrace the former.  

13. Secure project management and upper management commitment: Just as software 
engineering practices are adapted to include considerations and activities to ensure the 
security of their resulting artifacts, the process and practices for oversight, monitoring, 
and control of the software project should be similarly security-enhanced. The 
suggested resources at the end of this section include resources on security-enhanced 
software project management. 
 
The software organization’s upper management needs to commit to providing adequate 
support (in terms of resources, time, business priorities, and organizational culture 
changes) the adoption and consistent use of secure software processes and practices. 
This includes providing appropriate tools, mandating secure development standards, 
promoting secure SDLC practices, providing adequate resources for developer 
education and training, and institutionalizing management verification of and 
incentives for secure software practices, as well as discouragement of non-secure 
practices. 

Organizations can insert secure development practices into their SDLC process either by 
adopting a codified secure software development methodology, such as those discussed in 
Section 3.6, or through the evolutionary security-enhancement of their current practices. 
Sections 3-10 of this document provide information that should help organizations identify 
and begin to integrate secure development practices into their current SDLC process. 

SUGGESTED RESOURCES 

• Polydys, Mary Linda and Stan Wisseman. Software Assurance in Acquisition: Mitigating 
Risks to the Enterprise, Draft Version 1.0, 10 September 2007. Accessed 30 May 2008 
at: https://buildsecurityin.us-cert.gov/daisy/bsi/908.html?branch=1&language=1  

• National Defense Industrial Association System Assurance Committee. Engineering for 
System Assurance, Version 0.90, 22 April 2008. Accessed 30 May 2008 at: 
http://www.acq.osd.mil/sse/ssa/docs/SA+guidebook+v905-22Apr08.pdf  

• Fedchak, Elaine, Thomas McGibbon, and Robert Vienneau. Software Project Management 
for Software Assurance: A DACS State-of-the-Art Report, Data & Analysis Center for 
Software Report Number 347617, 30 September 2007. Accessed 7 July 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/dhs/906-BSI.html  

• Allen, Julia H., Sean Barnum, Robert J. Ellison, Gary McGraw, and Nancy R. Mead. 
Software Security Engineering: A Guide for Project Managers. Upper Saddle Ridge, New 
Jersey: Addison-Wesley Professional, 2008. 
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2.5 THREATS THAT TARGET SOFTWARE 

A threat to a software-intensive system is any actor, agent, circumstance, or event that has the 
potential to cause harm to that system or to the data or resources to which the system has or 
enables access. Threats can be categorized according to their intentionality: they can be 
unintentional, intentional but non-malicious, or malicious (intentionality is a prerequisite of 
maliciousness).  

While threats in all three categories have the potential of compromising the security of 
software, only malicious threats are realized by attacks. The majority of attacks against 
software take advantage of, or exploit, some vulnerability or weakness in that software; for this 
reason, “attack” is often used interchangeably with “exploit”, though the BuildSecurityIn 
Attack Pattern Glossary makes a clear distinction between the two terms, with attack referring to 
the action against the targeted software and exploit referring to the mechanism (e.g., a 
technique or malicious code) by which that action is carried out.  

Threats to software may be present throughout its life cycle—during its development, 
deployment, and operation. For software in development and deployment, most threats will 
be “insider” threats, e.g., the software’s developers, testers, configuration managers, and 
installers/administrators. The threats they pose may be unintentional, intentional but non-
malicious, or malicious. Table 2-1 provides examples of threats in each category at the three 
main stages of the software’s life cycle. 
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Table 2-1. Examples of threats to software throughout its life cycle 

Threat 
Category 

Development Deployment Operation 

Unintentional Typo in source code 
by incautious 
developer changes 
the specified 
functionality of the 
software compiled 
from that source 
code.  
 
Programmer ignorant 
of secure coding 
practices writes a C 
module that makes 
unsafe library calls. 

Administrator 
accidentally assigns 
“world” write 
permissions to the 
directory in which the 
software will be 
installed. 

User is able to enter 
overlong input because 
the HTML input form 
did not validate and 
truncate the excess 
characters. 

Intentional but 
not malicious 

To satisfy customer’s 
directive to make 
performance the #1 
priority, developer 
eliminates input 
validation functions 
that add performance 
overhead. 
 
Programmer 
pressured by 
management to 
deliver source code 
under a tight deadline 
foregoes security code 
review. 

Administrator assigns 
“root” privileges to a 
software program that 
was implemented in 
such a way that it can 
only run as root. 

Frustrated user 
repeatedly enters 
unusual command 
combinations in an 
effort to bypass a time-
consuming pull-down 
menu data entry 
interface; 
 
Frustrated user 
repeatedly refreshes 
and resubmits the 
same input data to an 
application that was 
not designed to return 
an acknowledgement 
that the user’s input 
data had been 
received. 

Malicious Programmer 
intentionally includes 
three exploitable 
flaws and a backdoor 
in his source code.  
 
Integrator appends a 
logic bomb to an open 
source program. 

Installer leaves the 
application’s default 
password unchanged to 
make life easier for 
attacker with whom she 
is colluding. 
 
Administrator 
intentionally configures 
the application firewall 
to allow inbound 
Uniform Resource 
Locators (URLs) that 
contain executable 
content. 

Attacker launches a 
Structured Query 
Language (SQL) 
injection attack against 
a Web-based database 
application. 
 
Developer submits a 
predefined data string 
to a Web application 
that he knows will 
trigger execution of the 
logic bomb he planted 
in that application.  
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It has been observed that generally good software engineering intended to reduce the number 
and impact of unintentional and non-malicious threats to software such as honest coding 
errors, will coincidentally reduce the number of threat-exploitable vulnerabilities in that 
software to some extent—albeit usually not enough to mitigate risk to an acceptable level.  

Similarly, when applied throughout the life cycle with the intention of minimizing the 
software’s vulnerability to malicious threats, the secure development principles and practices 
in this document should have the coincidental benefit of making the software less susceptible 
to unintentional and non-malicious threats as well.  

Not all attacks directly target the software itself. Table 2-2 lists targets of “indirect attacks”, i.e., 
attacks on elements other than the software itself; the compromise of such elements will likely 
enable the sabotage or subversion of the software itself. 

Table 2-2. Targets for indirect attacks 

Target Attack and objective 

Software boundary or 
“surface” 

Intentional triggering of an external fault (e.g., in an interface 
mechanism) at the software boundary (or surface) can leave 
the software vulnerable to direct attack. 

Execution environment Intentional changes of execution environment state from 
correct/expected to incorrect/unexpected can result in a 
misbehavior by the software; such a misbehavior can be 
exploited as a vulnerability.  

Trigger for malicious code Various events may trigger the execution of malicious code 
such as time bombs, logic bombs, and Trojan horses may be 
triggered. These include such innocuous events as the 
computer clock reaching a certain time, a particular file being 
opened or closed, or a certain parameter value being received. 

External services Most software today relies on other software services to 
perform functions on its behalf, such as authentication of users 
or validation of code signatures, or to provide defense in depth 
protections (e.g., application firewalls). The compromise or 
unintentional failure of these external services could cause the 
software to behave unpredictably, while a compromise or 
failure of external protections may leave the software 
vulnerable to direct attack.  

Multiple target series A series of exploits may target a particular combination of 
known vulnerabilities in one or more software components. 
This type of attack is particularly effective when the 
components are assembled in a way that emphasizes one 
component’s reliance on a vulnerable function of another. The 
vulnerabilities most likely to be targeted are in the 
components’ external interfaces, which provide the attacker 
with direct access to the vulnerabilities. 
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2.5.1 Attacks that exploit software vulnerabilities 

The most common categories of attacks against software-intensive systems and their software 
components are described below. In most cases, tools exist that can be used by the attacker to 
automate these techniques.  

• Reconnaissance attacks: Help the attacker find out more about the software and its 
environment, so other attacks can be crafted to be more effective; attackers are 
particularly interested in release and version information about the software’s and 
environment’s COTS and OSS components, because such information reveals whether 
the software/environment includes components with known vulnerabilities that can be 
exploited.  
 
A specific concern is the “zero day” vulnerability, i.e., the window of opportunity that is 
created for attackers when a vulnerability in a specific software version is discovered 
and exploited before the software’s supplier is able to issue a patch (let alone the delay 
that often occurs in the application of patches after they are issued). The less 
information that is readily available to zero-day attackers about the type of software 
being run, the less easily they can craft targeted attacks.  
 
This said, there is clearly a balance that needs to be struck between not revealing too 
much information to attackers, and the need to provide certain information to enable 
diagnostics, patching, automated support, etc. There are high-risk and high-
consequence systems for which direct vendor access via the network to installed 
software creates an unacceptable level of risk. For such systems, the acquisition 
language for COTS software needs to include provisions whereby the supplier agrees to 
accommodate alternative, offline approaches to providing support, patches, etc.; 

• Enabling attacks: Make it easier to deliver other attacks. Examples of enabling attacks 
are buffer overflow exploits for delivering malicious code, and privilege escalation 
attacks; 

• Disclosure attacks: Reveal data that shouldn’t been seen by the attacker (compromise of 
confidentiality); 

• Subversion attacks: Tamper with and corrupt the software to change the way it 
operates (compromise of integrity); 

• Sabotage attacks: Cause the software to fail, or prevent it from being accessed by its 
intended users; also known as “denial of service” (compromise of availability); 

• Malicious code attacks: Insert malicious logic into the software, trigger the execution of 
malicious code already embedded in the software, or deliver/execute malicious code in 
the software’s execution environment. 
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NOTE: Appendix A of the National Institute of Standards and Technology (NIST) Special 
Publication 800-95, Guide to Secure Web Services,8 provides informative descriptions of common 
attacks within these categories that target Web applications and Web services.  

Attackers can tamper with many different types of input data in order to deliver malicious 
payloads to targeted applications. These are the types of input that should always be vetted by 
input validation to prevent such attack input from reaching the application; they include: 

• Command line parameters, 

• Environment variables, 

• Universal Resource Locators (URLs) and Identifiers (URIs), 

• Other filename references, 

• Uploaded file content, 

• Flat file imports, 

• Hyper Text Transfer Protocol (HTTP) headers, 

• HTTP GET parameters, 

• Form fields (especially hidden fields), 

• Selection lists, drop-down lists, 

• Cookies, 

• Java applet communications. 

There are several conduits, or “attack paths”, by which an attacker may deliver spurious input 
or malicious code to targeted software systems. The developer needs to be aware of these so as 
to minimize their unnecessary exposure in the software system’s architecture and design. They 
include: 

• Network elements, such as the network services and Transmission Control Protocol 
ports used to enable communications by or with the targeted system, or network 
security devices relied on to block or filter undesirable input before it reaches the 
system; 

• Software elements of the system itself (application-level and middleware-level), 
including software services, application programmatic interfaces (APIs), remote 
procedure calls (RPCs), third-party software components, or embedded back doors, 
Trojan horses, or malicious code; 

                                                 

8 Singhal, Anoop, Theodore Winograd, and Karen Scarfone. Guide to Secure Web Services. NIST Special Publication 
800-95, August 2007. Accessed 26 January 2008 at: http://www.csrc.nist.gov/publications/nistpubs/800-
95/SP800-95.pdf 
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• Execution environment elements, such as vulnerabilities in the operating system, 
runtime system (including any runtime code interpreters), or virtual machine, 
interference channels, covert channels, and backdoors and rootkits. 

The potential impacts of successful attacks on software-intensive systems and their 
components include: 

• Unexpected or unauthorized software execution; 

• Unauthorized access to the software, the resources it relies on, or the data it handles; 

• Unauthorized changes to the software, the resources it relies on, or the data it handles; 

• Denial of service (the software itself, its resources, and/or its data). 

Table 2-3 provides a number of examples, derived from the NIST National Vulnerability 
Database (NVD),9 of real-world software security vulnerabilities discovered in 2008 and 2007. 
These vulnerabilities are particularly noteworthy because they all appear in software 
components that implement system-level security protections, including firewalls, anti-virus 
scanners, virtual machines, encryption mechanisms, intrusion detection systems, and others. 

                                                 

9 Accessed 11 September 2008 at: http://nist.nvd.gov 
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 Table 2-3. Real-world software vulnerabilities in system security components 

CVE Entry Description CVSS Severity 
Buffer, Heap, and Stack Overflow Vulnerabilities 

CVE-2008-1518 Stack-based buffer overflow in kl1.sys in Kaspersky 
Anti-Virus 6.0 and 7.0 and Internet Security 6.0 
and 7.0 allows local users to gain privileges via an 
IOCTL 0x800520e8 call.  

7.2 (HIGH) 

CVE-2008-0858 Buffer overflow in the Visnetic anti-virus plug-in in 
Kerio MailServer before 6.5.0 might allow remote 
attackers to execute arbitrary code via unspecified 
vectors.  

7.5 (HIGH) 

CVE-2008-0312 Stack-based buffer overflow in the AutoFix Support 
Tool ActiveX control 2.7.0.1 in SYMADATA.DLL in 
multiple Symantec Norton products, including 
Norton 360 1.0, AntiVirus 2006 through 2008, 
Internet Security 2006 through 2008, and System 
Works 2006 through 2008, allows remote attackers 
to execute arbitrary code via a long argument to 
the GetEventLogInfo method. NOTE: some of these 
details are obtained from third party information.  

9.3 (HIGH) 

CVE-2007-6386 Stack-based buffer overflow in PccScan.dll before 
build 1451 in Trend Micro AntiVirus plus 
AntiSpyware 2008, Internet Security 2008, and 
Internet Security Pro 2008 allows user-assisted 
remote attackers to cause a denial of service 
(SfCtlCom.exe crash), and allows local users to 
gain privileges, via a malformed .zip archive with a 
long name, as demonstrated by a .zip file created 
via format string specifiers in a crafted .uue file.  

7.2 (HIGH) 

CVE-2007-4620 Multiple stack-based buffer overflows in Computer 
Associates (CA) Alert Notification Service 
(Alert.exe) 8.1.586.0, 8.0.450.0, and 7.1.758.0, as 
used in multiple CA products including Anti-Virus 
for the Enterprise 7.1 through r11.1 and Threat 
Manager for the Enterprise 8.1 and r8, allow 
remote authenticated users to execute arbitrary 
code via crafted RPC requests.  

9.0 (HIGH) 

CVE-2007-3969 Buffer overflow in Panda Antivirus before 20070720 
allows remote attackers to execute arbitrary code 
via a crafted EXE file, resulting from an "Integer 
Cast Around."  

9.3 (HIGH) 

CVE-2007-3951 Multiple buffer overflows in Norman Antivirus 5.90 
allow remote attackers to execute arbitrary code 
via a crafted (1) ACE or (2) LZH file, resulting from 
an "integer cast around."  

7.5 (HIGH) 

CVE-2008-0365 Multiple buffer overflows in CORE FORCE before 
0.95.172 allow local users to cause a denial of 
service (system crash) and possibly execute 
arbitrary code in the kernel context via crafted 
arguments to (1) IOCTL functions in the Firewall 
module or (2) SSDT hook handler functions in the 
Registry module.  

7.2 (HIGH) 
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CVE Entry Description CVSS Severity 
Buffer, Heap, and Stack Overflow Vulnerabilities 

CVE-2007-6092 Buffer overflow in libsrtp in Ingate Firewall before 
4.6.0 and SIParator before 4.6.0 has unknown 
impact and attack vectors. NOTE: it is not clear 
whether this issue crosses privilege boundaries.  

10.0 (HIGH) 

CVE-2007-1005 Heap-based buffer overflow in SW3eng.exe in the 
eID Engine service in CA (formerly Computer 
Associates) eTrust Intrusion Detection 3.0.5.57 and 
earlier allows remote attackers to cause a denial of 
service (application crash) via a long key length 
value to the remote administration port (9191/tcp).  

7.8 (HIGH) 

CVE-2008-2935 Multiple heap-based buffer overflows in the rc4 (1) 
encryption (aka exsltCryptoRc4EncryptFunction) 
and (2) decryption (aka 
exsltCryptoRc4DecryptFunction) functions in 
crypto.c in libexslt in libxslt 1.1.8 through 1.1.24 
allow context-dependent attackers to execute 
arbitrary code via an XML file containing a long 
string as "an argument in the XSL input."  

7.5 (HIGH) 

CVE-2008-2541 Multiple stack-based buffer overflows in the HTTP 
Gateway Service (icihttp.exe) in CA eTrust Secure 
Content Manager 8.0 allow remote attackers to 
execute arbitrary code or cause a denial of service 
via long FTP responses, related to (1) the file 
month field in a LIST command; (2) the PASV 
command; and (3) directories, files, and links in a 
LIST command.  

10.0 (HIGH) 

CVE-2005-3768 Buffer overflow in the Internet Key Exchange 
version 1 (IKEv1) implementation in Symantec 
Dynamic VPN Services, as used in Enterprise 
Firewall, Gateway Security, and Firewall /VPN 
Appliance products, allows remote attackers to 
cause a denial of service and possibly execute 
arbitrary code via crafted IKE packets, as 
demonstrated by the PROTOS ISAKMP Test Suite 
for IKEv1.  

7.5 (HIGH) 

CVE-2007-2454 Heap-based buffer overflow in the VGA device in 
Parallels allows local users, with root access to the 
guest operating system, to terminate the virtual 
machine and possibly execute arbitrary code in the 
host operating system via unspecified vectors 
related to bitblt operations.  

6.8 (MEDIUM) 

CVE-2007-2438 The sandbox for vim allows dangerous functions 
such as (1) writefile, (2) feedkeys, and (3) system, 
which might allow user-assisted attackers to 
execute shell commands and write files via 
modelines. 

7.6 (HIGH) 
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CVE Entry Description CVSS Severity 
Inadequate Input Validation 

CVE-2008-1736 Comodo Firewall Pro before 3.0 does not properly 
validate certain parameters to hooked System 
Service Descriptor Table (SSDT) functions, which 
allows local users to cause a denial of service 
(system crash) via (1) a crafted 
OBJECT_ATTRIBUTES structure in a call to the 
NtDeleteFile function, which leads to improper 
validation of a ZwQueryObject result; and 
unspecified calls to the (2) NtCreateFile and (3) 
NtSetThreadContext functions, different vectors 
than CVE-2007-0709. 

7.2 (HIGH) 

CVE-2007-4967 Online Armor Personal Firewall 2.0.1.215 does not 
properly validate certain parameters to System 
Service Descriptor Table (SSDT) function handlers, 
which allows local users to cause a denial of service 
(crash) and possibly gain privileges via unspecified 
kernel SSDT hooks for Windows Native API 
functions including (1) NtAllocateVirtualMemory, 
(2) NtConnectPort, (3) NtCreateFile, (4) 
NtCreateKey, (5) NtCreatePort, (6) NtDeleteFile, 
(7) NtDeleteValueKey, (8) NtLoadKey, (9) 
NtOpenFile, (10) NtOpenProcess, (11) 
NtOpenThread, (12) NtResumeThread, (13) 
NtSetContextThread, (14) NtSetValueKey, (15) 
NtSuspendProcess, (16) NtSuspendThread, and 
(17) NtTerminateThread. 

4.4 (MEDIUM) 

CVE-2006-7160 The Sandbox.sys driver in Outpost Firewall PRO 
4.0, and possibly earlier versions, does not validate 
arguments to hooked SSDT functions, which allows 
local users to cause a denial of service (crash) via 
invalid arguments to the (1) 
NtAssignProcessToJobObject,, (2) NtCreateKey, (3) 
NtCreateThread, (4) NtDeleteFile, (5) 
NtLoadDriver, (6) NtOpenProcess, (7) 
NtProtectVirtualMemory, (8) NtReplaceKey, (9) 
NtTerminateProcess, (10) NtTerminateThread, (11) 
NtUnloadDriver, and (12) NtWriteVirtualMemory 
functions. 

4.9 (MEDIUM) 

CVE-2006-5721 The \Device\SandBox driver in Outpost Firewall 
PRO 4.0 (964.582.059) allows local users to cause 
a denial of service (system crash) via an invalid 
argument to the DeviceIoControl function that 
triggers an invalid memory operation. 

4.9 (MEDIUM) 
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CVE Entry Description CVSS Severity 
Inadequate Input Validation 

CVE-2008-0928 Qemu 0.9.1 and earlier does not perform range 
checks for block device read or write requests, 
which allows guest host users with root privileges 
to access arbitrary memory and escape the virtual 
machine. 

4.7 (MEDIUM) 

Race Conditions 
CVE-2007-3970 Race condition in ESET NOD32 Antivirus before 

2.2289 allows remote attackers to execute 
arbitrary code via a crafted CAB file, which triggers 
heap corruption. 

5.0 (MEDIUM) 

CVE-2007-1973 Race condition in the Virtual DOS Machine (VDM) in 
the Windows Kernel in Microsoft Windows NT 4.0 
allows local users to modify memory and gain 
privileges via the temporary 
\Device\PhysicalMemory section handle, a related 
issue to CVE-2007-1206. 

6.9 (MEDIUM) 

Cross-Site Scripting Vulnerabilities 
CVE-2008-2333 Cross-site scripting (XSS) vulnerability in 

ldap_test.cgi in Barracuda Spam Firewall (BSF) 
before 3.5.11.025 allows remote attackers to inject 
arbitrary Web script or HTML via the email 
parameter. 

4.3 (MEDIUM) 

CVE-2008-3082 Cross-site scripting (XSS) vulnerability in 
UPM/English/login/login.asp in Commtouch 
Enterprise Anti-Spam Gateway 4 and 5 allows 
remote attackers to inject arbitrary Web script or 
HTML via the PARAMS parameter. 

4.3 (MEDIUM) 

CVE-2008-1775 Cross-site scripting (XSS) vulnerability in 
mindex.do in ManageEngine Firewall Analyzer 4.0.3 
allows remote attackers to inject arbitrary Web 
script or HTML via the displayName parameter. 
NOTE: the provenance of this information is 
unknown; the details are obtained solely from third 
party information. 

4.3 (MEDIUM) 

Use of Non-Secure Methods 
CVE-2008-1116 Insecure method vulnerability in the Web Scan 

Object ActiveX control (OL2005.dll) in Rising 
Antivirus Online Scanner allows remote attackers to 
force the download and execution of arbitrary code 
by setting the BaseURL property and invoking the 
UpdateEngine method. NOTE: some of these details 
are obtained from third party information. 

9.3 (HIGH) 

CVE Entry Description CVSS Severity 
(Not-so-)Simple Coding Mistakes 

CVE-2007-1366 QEMU 0.8.2 allows local users to crash a virtual 
machine via the divisor operand to the aam 
instruction, as demonstrated by "aam 0x0," which 
triggers a divide-by-zero error. 

4.9 (MEDIUM) 
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CVE Entry Description CVSS Severity 
(Not-so-)Simple Coding Mistakes 

CVE-2008-1596 Trusted Execution in IBM AIX 6.1 uses an incorrect 
pathname argument in a call to the 
trustchk_block_write function, which might allow 
local users to modify trusted files, related to 
missing checks in the TSD_FILES_LOCK policy for 
modifications performed via hard links, a different 
vulnerability than CVE-2007-6680. 

7.2 (HIGH) 

Non-Secure Software Distribution 
CVE-2007-3849 Red Hat Enterprise Linux (RHEL) 5 ships the rpm 

for the Advanced Intrusion Detection Environment 
(AIDE) before 0.13.1 with a database that lacks 
checksum information, which allows context-
dependent attackers to bypass file integrity checks 
and modify certain files. 

CVSS Severity: 
1.9 (LOW) 

CVE-2006-1117 nCipher firmware before V10, as used by (1) 
nShield, (2) nForce, (3) netHSM, (4) payShield, (5) 
SecureDB, (6) DSE200 Document Sealing Engine, 
(7) Time Source Master Clock (TSMC), and possibly 
other products, contains certain options that were 
only intended for testing and not production, which 
might allow remote attackers to obtain information 
about encryption keys and crack those keys with 
less effort than brute force. 

CVSS Severity: 
2.6 (LOW) 

SOURCE: National Vulnerability Database 

SUGGESTED RESOURCES 

• Software Assurance Common Body of Knowledge (CBK),10 Sections 2.4-2.7. 

• McGraw, Gary and Greg Hoglund. Exploiting Software: How to Break Code. Indianapolis, 
Indiana: Addison-Wesley Professional, 2004. 

• Dwaikat, Zaid. “Attacks and Countermeasures”. CrossTalk: The Journal of Defense 
Software Engineering, October 2005. Accessed 21 December 2007 at: 
http://www.stsc.hill.af.mil/crosstalk/2005/10/0510Dwaikat.html 

• NIST, National Vulnerability Database (NVD). Accessed 8 September 2008 at: 
http://nist.nvd.gov 

 

                                                 

10 Software Assurance Workforce Education and Training Working Group. SoftwareAssurance: A Curriculum 
Guide to the Common Body of Knowledge to Produce, Acquire and Sustain Secure Software. Draft Version 1.2, 29 October 
2007. Accessed 10 March 2008 at: https://buildsecurityin.us-
cert.gov/daisy/bsi/940/version/1/part/4/data/CurriculumGuideToTheCBK.pdf?branch=main&language=def
ault 
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2.5.2 Causes of weaknesses and vulnerabilities 

The main reasons that security weaknesses and vulnerabilities are introduced into software by 
its developers include: 

1. Malicious developers, integrators, testers: Specifying, designing, implementing, and 
testing the software so that weaknesses, vulnerabilities, and/or malicious logic are 
intentionally included and/or allowed to remain in the software when it is 
distributed/deployed. The problem of malicious software practitioners holds true 
throughout all the SDLC phases discussed below;  

2. Software practitioner ignorance or negligence: Failure of developers, integrators, 
testers, configuration managers, etc., who fail to take advantage of opportunities to 
learn how to recognize and analyze the security implications of their SDLC choices, 
assumptions, and practices, to correct the choices that are deterrents to secure software 
production, and to identify and use tools to support their secure SDLC practices is both 
irresponsible and unprofessional. So is failure by the development organization to 
actively provide such opportunities.  
 
Such knowledge will not only improve the developers’ secure software engineering 
skills, it will enable them to appreciate that the secure software engineering, which on 
first superficial glance may seem inconvenient and time-consuming, actually makes it 
easier for them to produce specifications, designs, and code that are better overall, to 
avoid many integration problems, to get their software through testing more smoothly, 
and to increase its ease of maintenance—all this in addition to increasing its 
dependability, trustworthiness, and survivability. The problem of inadequately 
prepared software practitioners affects all of the SDLC phases discussed below; 

3. Failure to place real value on security: This goes hand in hand with knowledge, 
because understanding what’s at stake is a key motivator for caring about preventing 
security problems in the first place. A software organizational culture that values 
security as much as it values productivity, quality, etc., is more likely to produce secure 
software than one that sees security as an afterthought or merely a matter of regulatory 
conformance. This cultural mind shift must extend to the people actually responsible 
for conceiving, producing, and sustaining the software. This is another problem that 
affects the entire SDLC;  

4. Inadequate tools: Use of tools and programming languages that discourage (or at best, 
do not encourage) secure development practices. This problem pervades all of the 
SDLC phases discussed below; 

5. Requirements problems:  

• Specification of incorrect, incomplete, or spurious requirements; 

• Failure to specify requirements for constraining unsafe behaviors; 
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• Failure to specify requirements for safe behaviors; 

• Specification of requirements based on inaccurate or incomplete risk assessments 
or attack models; 

• Inappropriate consideration of business risks (e.g., address cost, schedule, other 
project constraints) in what are intended to be security-driven trade-off choices;  

6. Architecture and design problems:  

• Non-secure choices in the architecture and design of the software; 

• Failure to design according to secure design principles; 

• Failure to include security criteria in the design review; 

7. Component assembly/integration problems: 

a. Incorrect or ineffective use of environment-level and other extra-component 
security protections and services; 

b. Establishment of inappropriate trust relationships among components, or 
between components and human users; 

c. Acceptance of COTS and OSS components that contain known vulnerabilities or 
embedded malicious logic; 

8. Implementation problems: 

• Failure to program according to secure coding principles and practices; 

• Sloppy coding that introduces bugs into the code; 

9. Testing problems: 

• Failure to include security test cases and criteria in the software’s test plan; 

• Failure to perform security tests sufficient to establish software’s satisfaction of 
security test criteria; 

• Lack of automated tools to increase efficiency and accuracy of security testing; 

• Incorrect interpretation of security test results; 

• Failure to eliminate or mitigate weaknesses, vulnerabilities, and malicious logic 
discovered during testing; 

• Lack of a test environment that is similar enough to the target operational 
environment to ensure meaningful security test results; 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
29 

10. Distribution and deployment problems: 

• Failure to remove residual backdoors, embedded sensitive data, etc., before 
handing off executables for distribution and deployment; 

• Failure to define and implement adequately restrictive default configurations for 
the software and its environment; 

• Failure to produce clear, accurate installer, administrator, and user 
documentation; 

• Inclusion of security vulnerabilities and other evidence of non-secure coding 
practices in sample code delivered with the software documentation; 

• Failure to encourage customers to abandon non-supported old versions and 
upgrade to newer, supported versions of the software as they become available; 

11. Sustainment problems: 

• Failure to issue patches for custom software to address vulnerabilities discovered 
post-release; 

• Failure to perform security impact analyses before issuing patches and other 
changes to the software during its sustainment; 

• Failure to perform security impact analyses on supplier patches/updates to the 
software’s COTS and OSS components; 

• Failure to perform root-cause analyses of problems that arise during the 
software’s operation. (NOTE: In the software safety community, such root-cause 
analyses ensure that safety-related problems are identified and fixed so they 
cannot happen again. The same should be done for security problems.) 

Inadequacies on software project management are another significant source of security 
problems for the software produced or maintained by those projects. As noted in Section 1.1, 
software project management security falls outside of the scope of this document. 

Various vulnerability databases, taxonomies, and listings online and in print (several of which 
are identified in Software Security Assurance) enumerate and describe vulnerabilities commonly 
found in popular execution environment and application components (e.g., operating systems, 
Web servers); most notable among these is The MITRE Corporation’s Common Weakness 
Enumeration (CWE).11  

                                                 

11 The MITRE Corporation. Common Weakness Enumeration Website. Accessed 28 January 2008 at: 
http://cwe.mitre.org 
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Such vulnerability information resources should be of particular interest to developers of 
component-based software systems as a basis for vulnerability modeling, and for establishing 
criteria for security evaluation of third-party components and popular/standard technologies; 
in the latter case “absence of known vulnerabilities” could be an important evaluation 
criterion.  

2.5.2.1 Does vulnerability avoidance equate to security? 

When examined by a reviewer or tester, vulnerabilities often appear identical with other 
“benign” flaws and defects. The characteristics that distinguish them as vulnerabilities are: 

1. Their ability to be exploited in a way that prevents (temporarily or permanently) the 
software’s dependable, trustworthy operation; 

2. Their exposure to external access by an attacker. 

Recognizing and eliminating or mitigating vulnerabilities in software—and doing so as early 
in the SDLC as possible—has long been considered the cornerstone of secure software 
development, and it is important that the software developer be able to recognize the potential 
of certain design flaws and coding errors (“bugs”) to be exploited by an attacker, or to 
themselves cause execution failures that could leave the software vulnerable.  

In particular, it is critical that the developer develop an awareness of known vulnerabilities in 
the COTS and OSS components and technologies that he/she hopes to use in building the 
software system, and that he/she avoid using components/technologies that contain known 
vulnerabilities—or, at least, if there are no better alternatives, implement an effective 
vulnerability mitigation strategy to minimize the potential for those vulnerable 
components/technologies to be accessed and their vulnerabilities exploited.  

There is a limit, however, to how much “vulnerability avoidance” alone actually contributes to 
the production of secure software. For one thing, the ability to determine the exploitability of a 
particular design flaw or coding error is an inexact science at best. Moreover, even if it were 
possible to accurately flag certain flaws and bugs as vulnerabilities, 100% vulnerability 
avoidance would still be unachievable, because any attempt to eliminate exploitable flaws and 
bugs would necessarily address only those that were already recognized as being exploitable. 
It would not address the multitude of flaws, bugs, features, coding constructs, etc., that no-one 
has yet tried to exploit…which does not mean that someone won’t try to exploit them in 
future. It is a truism that new, unanticipated threats will continue to emerge faster than 
anyone’s ability to identify, locate, and mitigate the flaws and bugs that might be targeted and 
exploited by those threats.  

It would appear, then, that the only hope lies in considering all design flaws and coding errors 
as potentially exploitable, and in striving to produce software that us 100% free of all flaws 
and bugs. Unfortunately, this is even less realistic than attempting to eliminate only the 
exploitable subset of flaws and bugs. Apart from of a very, very few small safety-critical 
systems and embedded systems, statistically error-free software has never been achieved. 
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Obviously, vulnerability avoidance, while an admirable goal, should not be the sole objective 
in the attempt to produce secure software. A second objective, both more realistic and more 
achievable, is to produce software that is able to resist most anticipated attacks, to tolerate the 
majority of attacks it cannot resist, and to quickly and with minimal damage recover from the 
very few attacks it can neither resist nor tolerate. This requires both developer and tester to 
learn to recognize not only straightforward attack patterns, but also the subtle, complex attack 
patterns that are intended to trigger sequences of interactions among combinations of 
components or processes that the developer never intended to interact. 

A third objective for the developer of secure software is ensuring that the software itself is both 
dependable in its execution and trustworthy in its behavior.  

To be secure software must attain not just one or two but all three of these objectives; focusing 
on any one objective, such as vulnerability avoidance, to the exclusion of the others will not 
result in software that is secure. 

Fortunately, the security principles and practices described (and the many resources 
referenced) in this document will go a long way to helping developers produce software that: 

1. Is likely to contain far fewer exploitable and non-exploitable flaws and errors than most 
software; 

2. Can resist, tolerate, and recover from attacks that exploit any residual vulnerabilities the 
developer has not managed to avoid. 

SUGGESTED RESOURCES 

• Software Security Assurance,12 Sections 3.1, 3.1.1, and Appendix C.  

• Thompson, Herbert H. and Scott G. Chase. The Software Vulnerability Guide. Boston, 
Massachusetts: Charles River Media, 2005. 

• The MITRE Corporation. Common Weakness Enumeration Website. Accessed 21 January 
2008 at: http://cwe.mitre.org/ 

• Fortify Software. Fortify Taxonomy: Software Security Errors Webpage. Accessed 21 
January 2008 at: http://www.fortifysoftware.com/vulncat/ 

• Johansson, Jesper M. and E. Eugene Schultz. “Dealing with contextual vulnerabilities in 
code: distinguishing between solutions and pseudosolutions”. Computers and Security, 
Volume 22 Number 2, 2003, pages 152-159. 

2.6 SECURITY TRAINING, EDUCATION, AND PROFESSIONAL 
CERTIFICATION FOR SOFTWARE PRACTITIONERS 
                                                 

12 Op. cit. Goertzel, Karen Mercedes, et al. Software Security Assurance. 
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Requirements analysts, architects, designers, programmers, integrators, and testers must all be 
motivated to accept responsibility for the security of the software they are involved in 
producing or maintaining, and rewarded when they do so. Part of this motivation should take 
the form of security training sufficient to prepare them to model attacks, recognize 
vulnerabilities that make software susceptible to compromise by those attacks and architecture 
and design weaknesses that expose those vulnerabilities, and to specify, design, and 
implement software that will not be unacceptably vulnerable.  

Fortunately, the amount of professional training available to teach software practitioners how 
to produce software that is dependable, trustworthy, and survivable (i.e., secure) is steadily 
growing. So is the inclusion of software security and assurance concepts and techniques in 
academic computer science and information systems curricula.  

Moreover, several organizations have established professional certification programs for 
software developers that provide evidence of the developer’s knowledge of and expertise in 
the development of secure software.  

The following is a list of professional certifications available in the realm of secure software 
development.  

• SANS Software Security Institute GIAC Secure Programmer certifications. Accessed 21 
January 2008 at:  http://www.sans-ssi.org/ 

• International Council of Electronic Commerce Consultants (EC-Council) Certified 
Secure Programmer (CSP) and Certified Secure Application Developer (CSAD)  
certifications. Accessed 21 January 2008 at: http://www.eccouncil.org/ecsp/index.htm  

• Secure University Software Security Expert Boot Camp certification. Accessed 21 
January 2008 at: 
http://www.securityuniversity.net/classes_SI_SoftwareSecurity_Bootcamp.php  

• International Institute of Training, Assessment, and Certification Certified Secure 
Software Engineering Professional certification. Accessed 17 December 2007 at: 
http://www.iitac.org/content/view/146/lang,en/ 

• Ciphent Certified Secure Software Developer certification. Accessed 21 January 2008 at: 
http://www.ciphent.com/training/certification 

• Stanford University Center for Professional Development Software Security 
Foundations Certificate. Accessed 21 January 2008 at: 
http://scpd.stanford.edu/scpd/courses/ProEd/compSec/ 

In addition to these, ISC(2), the organization that sponsors the Certified Information Systems 
Security Professional (CISSP) certification, is in the process of developing a broader software 
assurance certification that will be comparable to the CISSP in technical depth and scope. 
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SUGGESTED RESOURCES 

• BuildSecurityIn Training and Awareness resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/training.html 

• Software Security Assurance, Section 7.2. 
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3 INTEGRATING SECURITY INTO THE SDLC 
“Security enhancement” of the software development life cycle (SDLC) process mainly 
involves the adaptation or augmentation of existing SDLC activities, practices, and 
checkpoints, and in a few instances, it may also entail the addition of new 
activities/practices/checkpoints not currently included in the SDLC process. In a very few 
instances, it may also require the elimination or wholesale replacement of certain activities or 
practices that are known to obstruct the ability to produce secure software. 

Creating a secure development community using collaboration technologies and a well 
integrated development environment promotes a continues process of improvement and a 
focus on secure development life cycle principles and practices that will result in the 
production of more dependable, trustworthy, and resilient software-based systems. 

The rest of this section is devoted to describing the life cycle activities and practices that need 
to be “security-enhanced” to contribute to the production of secure software.  

NOTE: The SDLC process and constituent phases implied in this discussion are notional only. 
Neither they, nor the order and linearity with which they are presented should be interpreted as 
prescriptive or as constituting a particular SDLC process model or methodology. The authors 
recognize that different methodologies and process models assign different names to these phases. 
Some omit some of the phases, while others include additional phases.  
 
This said, the authors feel that virtually every software practitioner will understand what we intend 
by the phases we have designated requirements, architecture and design, implementation, 
testing, distribution and deployment, and sustainment, and will recognize the activities, 
practices, and checkpoints commonly included in those phases, whether or not they are called 
something else, or excluded from the particular methodology/process model used on the reader’s 
software projects. 

SUGGESTED RESOURCES 

• Zulkernine, Mohammad and Sheikh Iqbal Ahamed. “Software security engineering: 
toward unifying software engineering and security engineering”. Chapter 14 of 
Enterprise Information Systems Assurance and System Security: Managerial and 
Technical Issues (Warkentin, Merrill and Rayford B. Vaughn, editors). Hershey, 
Pennsylvania: Idea Group Publishing, 2006.  

• Mouratidis, Haralambos and Paolo Giorgini, editors. Integrating Security and Software 
Engineering: Advances and Future Vision. Hershey, Pennsylvania: Idea Group 
Publishing, 2007. 
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3.1 INFLUENCE OF HOW SOFTWARE COMES TO BE ON ITS SECURITY 

Software comes into existence in one of four different ways: 

1. Acquisition: Acquisition refers to purchase, licensing, or leasing of non-developmental 
software packages and components13 produced by entities other than the acquirer. Such 
non-developmental software may be used “as is,” or may be integrated or reengineered 
by the acquirer (or by a third party under contract to the acquirer). Non-developmental 
software includes shrink-wrapped COTS, GOTS (Government-off-the-Shelf), and 
Modified-off-the-Shelf software packages, and OSS, shareware, and freeware 
components. For purposes of this document, obtaining and reusing legacy components 
is also considered “acquisition” of non-developmental software, even though it does 
not involve acquisition as defined by the Federal Acquisition Regulation and Defense 
FAR Supplement.  

2. Integration or assembly: If software items must be combined to achieve the desired 
functionality of the system, that system comes into existence through integration or 
through assembly. The software items to be combined may be non-developmental or 
custom, or a combination of the two. In some cases, integration may entail custom-
development of code to implement interfaces between software items. In other cases, 
non-developmental items may need to be modified or extended through reengineering 
(see below). If the software items to be combined are components (i.e., self-contained 
with standard interfaces), the integration process is referred to as component assembly.  

3. Custom development: Custom-developed software is purpose-built for the specific 
system in which it will be used. It is written by the same organization that will use it, or 
by another organization under contractor to the user organization. Very few large 
information systems are completely custom-developed; most are the result of 
integration and include at least some non-developmental components. 

4. Reengineering: Existing software is modified so that one or more of its components can 
be modified/extended, replaced, or eliminated. 

Each of the above approaches to software conception (specification through design) and 
implementation (coding and integration) has its own advantages and disadvantages with 
regards not only to the software’s cost, support, and functional effectiveness, but to the ability 
to mitigate security risk associated with the software.  

                                                 

13 The term “acquisition. in the context of this specific discussion, focuses on how software comes into existence 
within a given organization or system. For this reason, it does not include acquisition of contractor development 
services. However, contractors may be responsible for the integration, assembly, custom development, and/or 
reengineering of software. 
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The less an organization responsible for generating a final software product is able to establish 
visibility into all of that product’s components, and the less control it has over the how those 
components are conceived and implemented, the more risk it must assume. The higher the 
risk, the more ingenious the organization must be about how to mitigate it, because less 
visibility and control over the components of a software product necessarily means that fewer 
options are available to mitigate that risk. 

3.2 GENERAL SOFTWARE SECURITY PRINCIPLES 

The following principles apply to secure software generally, and should guide the decisions 
made in producing artifacts at every phase of the software life cycle: 

• Minimize the number of high-consequence targets. The software should contain as few 
high-consequence targets (critical and trusted components) as possible. High-consequence 
targets are those that represent the greatest potential loss if the software is compromised, 
and therefore require the most protection from attack. Critical and trusted components are 
high-consequence because of the magnitude of impact if they are compromised. (This 
principle contributes to trustworthiness and, by its implied contribution to smallness and simplicity, 
also to dependability.) 

• Don’t expose vulnerable and high-consequence components. The critical and trusted 
components the software contains should not be exposed to attack. In addition, known-
vulnerable components should also be protected from exposure because they can be 
compromised with little attacker expertise or expenditure of effort and resources. (This 
principle contributes to trustworthiness.) 

• Deny attackers the means to compromise. The software should not provide the attacker 
with the means by which to compromise it. Such “means” include exploitable weaknesses 
and vulnerabilities, dormant code, backdoors, etc. Also provide the ability to minimize 
damage, recover, and reconstitute the software as quickly as possible following a 
compromising (or potentially compromising) event to prevent greater compromise. In 
practical terms, this will require building in the means to monitor, record, and react to how 
the software behaves and what inputs it receives. (This principle contributes to dependability, 
trustworthiness, and resilience.) 

• Always assume “the impossible” will happen. Events that seem to be impossible rarely 
are. They are often based on an expectation that something in a particular environment is 
highly unlikely to exist or to happen. If environment changes or the software is installed in 
a new environment, those events may become quite likely. The use cases and scenarios 
defined for the software should take the broadest possible view of what is possible.  
 
The software should be designed to guard against both likely and unlikely events. 
Developers should make an effort to recognize assumptions they are not initially conscious 
of having made, and should determine the extent to which the “impossibilities” associated 
with those assumptions can be handled by the software. Specifically, developers should 
always assume that their software will be attacked, regardless of what environment it may 
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operate in. This includes acknowledgement that environment-level security measures such 
as access controls and firewalls, being composed mainly of software themselves (and thus 
equally likely to harbor vulnerabilities and weaknesses), can and will be breached at some 
point, and so cannot be relied on as the sole means of protecting software from attack. 
Developers who recognize the constant potential for their software to be attacked will be 
motivated to program defensively, so that software will operate dependably not only 
under “normal” conditions, but under anomalous and hostile conditions as well. Related to 
this principle are two additional principles about developer assumptions: 

1. Never make blind assumptions. Validate every assumption made by the software or 
about the software before acting upon that assumption. 

2. Security software is not the same as secure software. Just because software performs 
information security-related functions does not mean the software itself is secure. 
Software that performs security functions is just as likely to contain flaws and bugs as 
other software. However, because security functions are high-consequence, the 
compromise or intentional failure of such software has a significantly higher potential 
impact than the compromise/failure of other software. 

Two documents developed by the Software Assurance Forum’s Working Group on Workforce 
and Education, Software Assurance: A Curriculum Guide to the Common Body of Knowledge to 
Produce, Acquire, and Sustain Secure Software and Principles Organization: Towards an 
Organization for Software System Security Principles and Guidelines list, explain, and attempt to 
further clarify through organization a number of other software security principles. These 
documents can be downloaded from the DHS BuildSecurityIn portal’s Software Assurance 
CBK/Principles Organization Webpage, accessed 28 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/927.html 

3.2.1 Software assurance, information assurance, and system security 

This sub-section provides the reader with the background necessary to identify the different 
requirements of software assurance on the one hand and information assurance and 
information system security on the other. 

Software assurance and information system assurance are inherently related.  As software is 
an integral part of a information systems, the security of the software itself is critical to 
assuring the security of the system.  However, the view of security for information systems 
virtually always focuses on how the information processed by those systems is adequately 
protected, with little or no consideration given to whether the mechanisms and safeguards 
relied upon to provide that protection are in and of themselves dependable, trustworthy, and 
survivable. Security principles at the system level, and the mechanisms that are implemented 
according to those principles, have become increasingly robust over time, so much so that the 
attackers who wish to compromise information systems are now switching their attention to 
that level of the system that remains rich with exploitable vulnerabilities: the software. 
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So, while software security and system security can be said to be inherently related and 
mutually supportive—many of the principles discussed in the context of one are equally 
relevant for the other—the actual implementation and verification of those principles differs, 
often significantly, at the software level vs. the system level. For example, software security 
relies heavily on the absence of exploitable defects in the source code and the non-exposure of 
defects in the binary executable. By contrast, system security relies heavily on safeguards and 
countermeasures, such as cryptography, access controls, and enforcement of security 
boundaries.   

It is important to understand that without assuring the security of the software that 
implements the vast majority of system-level safeguards and countermeasures, it will not be 
possible to truly assure the effectiveness of those safeguards and countermeasures. For an 
illustration of this reality, refer back to Table 2-3, which includes numerous examples of real-
world software security vulnerabilities—many of which are considered to have high 
severity—found in system security components such as antivirus and firewalls.  

As noted above, the main goal of information system security is to protect the information 
processed by the information system from unauthorized disclosure (breach of confidentiality), 
unauthorized modification (breach of integrity), or unauthorized denial of service (breach of 
availability). The reason IT, and specifically information systems, must be protected are 
because it is the technology/system that provides the conduit by which people access, 
manipulate, and transport information.  

From the point of view of an information system’s security model, information exists in the 
form of computer data, which is considered an object.14 That is, data is something passive that 
gets acted upon by a subject, which is something active. A subject can be a human user or a 
software, firmware, or hardware process acting independently or on a human user’s behalf. At 
any given time, a data object is in one of in four different states: 

• At rest, i.e., stored on a computer hard drive or other digital medium, from which it 
may be read by a subject; 

• In transit, i.e., moving from one physical location to another, most often over a network, 
via a transmission mechanism such as an email message or file transfer; 

• In creation, i.e., being written to a digital medium for the first time; 

• In transition, i.e., being overwritten (modified) on or removed (deleted) from the digital 
medium on which it has been stored.  

Information security policy is concerned, in large part, with defining the set of rules by which 
system subjects are allowed to change the states of data objects in the system. In practical 

                                                 

14 Not to be confused with an “object” in object-oriented terms. 
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terms, this means defining for every system subject whether, and if so how, it may store, 
transmit, create, modify, or delete a given data object (or type of data object).  

To the extent that the information system allows or prevents that access and manipulation, or 
performs it on behalf of another actor, the system can be seen as playing the role of 
“information protector”, with its actions governed by the information security policy. To do 
this effectively, the system must also have a governing policy that defines how the system 
itself is allowed and not allowed to be accessed and operated as a conduit to the information, 
and which also defines the ways in which the security mechanisms and countermeasures built 
into the system must be configured and operate to accomplish the system’s role as information 
protector. 

There are three main objectives common to all system security policies and the mechanisms 
and countermeasures used to enforce those policies: 

1. They must allow authorized access and connections to the system while preventing 
unauthorized access or connections, especially by unknown or suspicious actors; 

2. They must enable allowable reading, modification, destruction, and deletion of data 
while preventing unauthorized reading (data leakage), modification (data tampering), 
destruction (denial of service), or deletion (denial of service); 

3. They must block the entry of content (user input, executable code, system commands, 
etc.) suspected of containing attack patterns or malicious logic that could threaten the 
system’s ability to operate according to its security policy and its ability to protect the 
information. 

In summary, information system security is primarily about protecting information. Any 
concern about protecting the system is expressed solely in terms of the system’s relationship to 
and responsibility for protecting that information. 

Information system security is achieved mainly through use of a combination of security 
mechanisms and countermeasures at the network, operating system, middleware, and 
application layers. Such mechanisms and countermeasures may be preventive or reactive. 
Preventive measures are intended allow acceptable information access and manipulation to 
occur while preventing unacceptable access and manipulation. Reactive measures are intended 
to minimize and recover from the damage that results from the inability to prevent. Preventive 
measures may include: 

• Network-level and data-level encryption; 

• Digital signature; 

• Firewalls, proxy filters, and security gateways; 

• Honeypots, honeynets, and honeybots; 

• Intrusion detection and prevention systems; 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
40 

• Virus scanners and spyware detectors; 

• Network traffic monitoring and trend analysis; 

• Identification, authentication, and authorization of users; 

• Access control of data and resources; 

• User activity logging/auditing and non-repudiation measures; 

• Mobile code containment; 

• Platform virtualization (hardware or software). 

Reactive measures may include: 

1. Malicious code containment and eradication; 

2. Component-level redundancy that allows for automatic switchover from a 
compromised to a non-compromised version of the redundant component; 

3. Patching of vulnerabilities. 

Unlike data, software is both an object and a subject, or actor. The executable files containing 
the software code and stored in the file system are objects, with the same four possible states, 
making it possible to use many of the same data security mechanisms to protect those files. 
Executing software, however, is an active entity analogous to a human user in terms of the 
ability to access and manipulate (and disclose, subvert, or sabotage) data, including other 
software files.  

Software as an actor has a very large number of possible states. It also as an access mode that 
data does not: execution. Note that “executable data” and “active content” are really 
misnomers for what is, in fact, data in which executable logic – or software – has been 
embedded. It is only the embedded software portion of active content or executable data that 
has the potential to become, through its execution, an active subject, or actor. The rest is just 
data (and thus a passive object).  

The fact that software in execution is an actor changes the relationship of that software to data: 
rather than being data itself, the software becomes an actor upon data. As such, the software 
must be seen as a potential threat to the data. But because it is also responsible for acting as a 
conduit to the data, and a manipulator and protector of the data, it is particularly important 
that the software’s operations be dependable, trustworthy, and resilient.  

These requirements for software-as-actor are what software assurance is concerned with. 
These requirements have no direct analogy in information and IT security (though there are 
similarities in the emerging discipline of Information Integrity Assurance, in which the 
validity and trustworthiness of the actual semantics/meaning of information’s content are 
what is assured, not just the information’s physical/structural integrity, which is what 
traditional information assurance has meant by “integrity”). Traditionally, practitioners of IT 
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security and information system security seldom if ever considered the potential for the 
technology/system itself to act in an untrustworthy manner. 

Because of its schizophrenic nature – it is both object and subject – software is made vulnerable 
not only in its passive state as a set of files, but also in its active state as an executing actor. The 
vulnerabilities in executing software originate in the poor judgment and mistakes of its 
developers – the decisions they make about how it is designed, and the errors they introduce 
as it is implemented.  

To a great extent, software assurance focuses on how software behaves in response to its own 
state changes, which are triggered by external inputs or stimuli or internal triggers, such as the 
execution of a code segment. Because such states can be triggered by internal events, 
information system security approaches, which focus on how the system interacts with 
external entities, are insufficient to correct or mitigate software security problems, which 
usually originate with flaws, bugs, and weaknesses built into the software itself. This is why 
the main objective of software assurance is to avoid including such flaws, bugs, and 
weaknesses in software. 

For software developers and testers concerned about software assurance to work effectively 
with their system engineers concerned about information assurance, they need to: 

1. Recognize the subtle differences in how terms shared by the two disciplines need to be 
interpreted when they refer to “information” and “software-as-object” vs. “software-as-
actor”; 

2. Help system engineers understand the software assurance counterparts to terms unique 
to information assurance. 

NIST FIPS 20015 identifies core security properties for information systems. These same 
properties can also interpreted as applying to software in the following ways: 

1. Availability: The software must be operational and accessible to its intended, 
authorized users (humans and processes) whenever they need it to be; 

2. Integrity: At all points in the software’s life cycle, the software must be protected from 
unauthorized modifications (corruption, tampering, overwriting, insertion of 
unintended logic, destruction, or deletion) by valid entities (persons or processes) and 
from all modifications by invalid, unauthorized entities; 

3. Confidentiality: Details of the nature of the operational software – its configuration 
settings, its logic, its interfaces, and in some cases its very existence must not be 

                                                 

15 NIST Computer Security Division. Minimum Security Requirements for Federal Information Systems. FIPS 
Publication 200, March 2006. Accessed 28 January 2008 at: http://csrc.nist.gov/publications/fips/fips200/FIPS-
200-final-march.pdf 
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disclosed to entities not explicitly authorized to know those details. In practical terms, 
this means the software must be protected from both reconnaissance attacks and 
reverse engineering. In addition, all software artifacts (specification, source code, binary 
code, test plans and reports, etc.) must be protected from unauthorized disclosure. 

Two properties associated with the relationship between an information system and its human 
users and administrators can also be extended to software-as-actor when it interacts with an 
external entity. For example, a Web service that interacts with another Web service or portal, 
an autonomous agent interacting with other autonomous agents, a client interacting with a 
server, or a peer process interacting with another peer process. In short, these properties apply 
to “software-as-user”: 

4. Accountability: All security-relevant actions of the software-as-user must be recorded 
and tracked, with enough information collected to enable attribution of responsibility 
for those actions. This tracking must be possible both while and after the recorded 
actions occur; 

5. Non-repudiation: The software-as-user must not be able to plausibly deny or disprove 
having performed any action.  

For many, the basis for defining system security requirements is the Common Criteria (in the 
U.S. government, the main basis for such requirements is the governing information assurance 
and/or information system security standards, directives, etc., to which the government entity 
is required, by mandate, to conform. For DoD, this is DoD Directive 8500.52. For other federal 
agencies (outside the Intelligence Community), it is the Federal Information Processing 
Standards and NIST Special Publications that delineate the system security requirements that 
will enable systems to satisfy the requirements of the 2002 Federal Information Security 
Management Act (FISMA). Many non-U.S. government and private sector entities have similar 
mandates.  

What the Common Criteria and these and other information assurance/information system 
security mandates share in common is that none of them provide explicit guidance on how to 
address software security aspects of an information system. However, since an Evaluation 
Assurance Level (EAL) in the Common Criteria captures a specific set of security assurance 
requirements, it is possible to deduce some general properties that software must exhibit to 
attain the three highest possible EALs: 

• EAL 5: The system must be semi-formally designed and tested. This property should 
also apply to the software design. 

• EAL 6: Same as EAL 5, plus the design must be semi-formally verified. As above, this 
property should also apply to the software design. 
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• EAL 7: Same as EAL 6, plus the design must be formally verified and formally tested.16 
As above, this property should also apply to the software design. 

The suggested resources below include several good introductions to information security and 
IT security concepts. 

                                                 

16 See Section 3.6.3 for a discussion of the use of formal methods in secure software development. 
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SUGGESTED RESOURCES 

• Software Security Assurance, Sections 4 and 5. 

• DHS National Cyber Security Division. IT Security Essential Body of Knowledge. Final 
Draft Version 1.1, October 2007. Accessed 28 January 2008 at: http://www.us-
cert.gov/ITSecurityEBK/EBK2007.pdf  

• NSA. “National Information Security Education and Training Program: Introduction to 
Information Assurance”. Online presentation, 1998. Accessed 28 January 2008 at: 
http://security.isu.edu/ppt/shows/information_assurance_files/frame.htm —or— 
http://security.isu.edu/ppt/pdfppt/information_assurance.pdf 

• NIST. Information Security Handbook: A Guide for Managers.  Special Publication 800-
100, October 2006.  Accessed 29 August 2008 at: 
http://csrc.nist.gov/publications/nistpubs/800-100/SP800-100-Mar07-2007.pdf  

• NIST. Security Considerations in the Information System Development Life Cycle.  
Special Publication 800-64 DRAFT Rev 2, June 2004.  Accessed 29 August 2008 at: 
http://csrc.nist.gov/publications/drafts/800-64-rev2/draft-SP800-64-Revision2.pdf 

• NIST. Recommended Security Controls for Federal Information Systems. Special 
Publication 800-53 Rev. 2, December 2007.  Accessed 29 August 2008 at: 
http://csrc.nist.gov/publications/nistpubs/800-53-Rev2/sp800-53-rev2-final.pdf  

• NIST.  Generally Accepted Principles and Practices for Securing Information Technology 
Systems. Special Publication 800-14, September 1996.  Accessed 29 August 2008 at: 
http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf  

• NIST. An Introduction to Computer Security: The NIST Handbook. Special Publication 
800-12, October 1995. Accessed 28 January 2008 at: 
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf 

• Congressional Research Service. Creating a National Framework for Cybersecurity: An 
Analysis of Issues and Options. Report for Congress, Order Code RL32777, 22 February 
2005. Accessed 28 January 2008 at: 
http://fpc.state.gov/documents/organization/43393.pdf 

• National Academy of Sciences Computer Science and Telecommunications Board. 
Cybersecurity Today and Tomorrow: Pay Now or Pay Later (excerpts). Washington, 
D.C.: National Academies Press, 2002. Accessed 28 January 2008 at: 
http://books.nap.edu/openbook.php?isbn=0309083125 —or—
http://books.nap.edu/html/cybersecurity/ 

• Gansler, Jacques S. and Hans Binnendijk, editors: “Information Assurance: Trends in 
Vulnerabilities, Threats and Technologies”. National Defense University Working Paper, 
May 2003. Accessed 28 January 2008 at: http://www.ndu.edu/ctnsp/IAverMay03.pdf 
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• Esterle, Alain, Hanno Ranck, and Burkard Schmitt. “Information Security: A New 
Challenge for the European Union”. European Union Institute for Security Studies 
Chaillot Paper Number 76, March 2005. Accessed 28 January 2008 at: http://www.iss-
eu.org/chaillot/chai76.pdf 

• Bidgoli, Hossein. Handbook of Information Security. New York, NY: Wiley, 2005. 

• Saltzer, Jerome H. and Michael D. Schroeder. “The protection of information in computer 
systems.”  Proceedings of the IEEE, 1975, Volume 63 Issue 9, pages 1278-1308. 
Accessed 11 September 2008 at: 
http://www.acsac.org/secshelf/papers/protection_information.pdf —and— 
http://www.ece.rutgers.edu/~parashar/Classes/03-04/ece572/papers/protection.pdf 
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3.3 SECURE DEVELOPMENT LIFE CYCLE ACTIVITIES AND PRACTICES 

The activities, practices, and checkpoints listed in Table 3-1 pertain to individual SDLC phases, and are elaborated upon in 
Sections 4-9 of this document. 

Table 3-1. Activities, practices, and checkpoints to be added to SDLC phases 

Phase Responsible 
role(s)* 

Current 
Activities 

Additional/Enhanced Activities for Secure 
Software 

Section 2.5.2 issues addressed by 
added/enhanced activities 

Whole SDLC Configuration 
manager 

Version 
control, 
change control 

Secure CM practices 

Secure CM tools 

Malicious developers, integrators, 
testers 

Requirements Requirements 
analyst 

Use Case 
development 

Security use case development 

Misuse Case and Abuse Case development 

Requirements based on 
inaccurate/incomplete risk 
assessments/attack models 

  Requirements 
modeling 

Attack Modeling (also referred to as Threat 
Modeling) 

Requirements based on 
inaccurate/incomplete risk 
assessments/attack models 

  Functional 
requirements 
specification 

Specification of requirements for constraints on 
functionality, with mapping to associated 
functional requirements (e.g., “All mobile code 
must be digitally signed. The code signature must 
be validated before the mobile code is executed. 
If the code signature cannot be validated, the 
code must not be executed.”) 

Specification of requirements for additional 
software security functions (e.g., for code 
signature validation, input validation, etc.)  

Specification of non-functional requirements to 
ensure the security of software (e.g., specification 
of how the software should be built, e.g., through 
use of formal methods, secure coding standards, 
etc.) 

Lack of requirements for safe 
behaviors 

Lack of requirements for constraining 
unsafe behaviors 

  Test case 
definition 

Definition of additional test cases for verifying 
software security 

Lack of security test cases in test plan 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
47 

 

Phase Responsible 
role(s)* 

Current 
Activities 

Additional/Enhanced Activities for Secure 
Software 

Section 2.5.2 issues addressed by 
added/enhanced activities 

  Definition and 
selection of 
coding 
standards 

Definition and selection of secure coding 
standards, secure programming languages, and 
secure development tools 

Inadequate tools and languages 

Architecture & 
Design 

Architect 

Designer 

Architecture 
and design 
reviews 

Addition of security criteria in architecture and 
design reviews 

Non-secure design choices 

Failure to design according to secure 
principles 

Failure to include security criteria in 
architecture/design reviews 

Inappropriate trust relationships 
between software and users 

Malicious developers 

Component 
assembly/ 
integration 

Integrator Architecture-
level trade-off 
analyses 

Security considerations in trade-off analyses Non-secure choices in architecture 

Incorrect/ineffective use of extra-
component security protections/ 
services 

Inappropriate component-component 
and component-user trust 
relationships 

  Component 
selection 

Security criteria in component evaluation Acceptance of vulnerable or malicious 
COTS/OSS components 

  Integration 
testing 

Security criteria in integration testing Incorrect/ineffective use of extra-
component security protections/ 
services 

Inappropriate component-component 
and component-user trust 
relationships 
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Phase Responsible 
role(s)* 

Current 
Activities 

Additional/Enhanced Activities for Secure 
Software 

Section 2.5.2 issues addressed by 
added/enhanced activities 

Implementatio
n 

Programmer Code reviews Static code security analyses 

Other source code security analyses 

Failure to program according to 
secure principles/practices 

Bugs in code 

Malicious developers 

  Unit testing Security criteria in unit testing Failure to place value on security 

  Build process 
testing 

Security criteria build process testing Failure to place value on security 

Testing Tester Functional 
integration 
and system 
tests  

Binary security tests (e.g., fault injection, fuzzing, 
binary code scanning, reverse engineering) 

Automated vulnerability scans 

Penetration tests 

Failure to perform sufficient security 
tests 

Lack of tools to support security 
testing 

  Code reviews Code security reviews (automated/semi-
automated whenever possible) 

Other white box security tests 

Failure to perform sufficient security 
tests 

Lack of tools to support security 
testing 

Distribution & 
deployment 

Tester 

Configuration 
manager 

Distribution 
manager 

Installer 

Deployment 
testing 

Distribution 
(online/ 
offline) 

Installation 
configuration 

Automated vulnerability scans 

Penetration tests 

Secure distribution techniques and technologies 

Secure installation configuration 

Failure to perform sufficient security 
tests 

Lack of tools to support security 
testing 

Failure to remove backdoors, etc. 

Non-secure configuration defaults 
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Phase Responsible 
role(s)* 

Current 
Activities 

Additional/Enhanced Activities for Secure 
Software 

Section 2.5.2 issues addressed by 
added/enhanced activities 

Sustainment Maintainer 
Vulnerability 
manager 
Auditor 

Issues 
tracking and 
resolution 

Security incident response 

Vulnerability management, including vulnerability 
tracking and reporting 

Failure to perform root-cause 
analyses 

  Quality 
assurance/ 
support 
meetings 

Security experts involved in quality 
assurance/support meetings 

Security criteria included in quality assessment 
criteria 

Failure to place value on security 

  Maintenance 
regression 
testing 

Regression tests of security-critical and high-
consequence software 

Vulnerability scans, penetration tests, etc. of 
updated software 

Security impact analyses of maintenance changes 

Failure to perform security impact 
analyses of all updates 

 

  Test, release, 
and 
distribution of 
updates and 
patches  

Vulnerability management, including vulnerability 
reporting and patch issuance 

Security impact analysis of updates and patches 
prior to release  

Failure to perform security impact 
analyses of all patches 

Failure to issue timely patches to fix 
vulnerabilities 

Failure to encourage customers to 
abandon old, non-secure versions 

  System, code, 
and 
operational 
audits 

Security audits of system, code, and operations Failure to perform root-cause 
analyses 

  (no 
counterpart) 

Forensic analysis of security incidents, including 
root cause analyses of operational security 
incidents 

Failure to perform root-cause 
analyses 

*In any or all cases, a security expert may assist the responsible party or parties. 

The software assurance community is increasingly engaged with defining methods and associated artifacts for formally 
establishing the assurance that secure development practices have been followed, secure software principles have been 
conformed with, and that security has, in fact, been exhibited as a property of the software. The key artifact being defined for 
this purpose is the software security assurance case. Section 3.5 discusses the purpose of the assurance cases, emerging processes 
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associated with developing and validating software security assurance cases, and the software developer’s role in those 
processes. 

SUGGESTED RESOURCES 

• Gilliam, David P. “Security risks: management and mitigation in the software life cycle”. Proceedings of the 13th 
International Workshop on Enabling Technologies, Modena, Italy, 14-16 June 2004, pages 211-216. 

• Dickson, John B. “Application Security: What does it take to build and test secure software?”. Presented at Information 
Systems Audit and Control Association  North Alabama Chapter meeting, 6 November 2006. Accessed 16 January 2008 at: 
http://www.bham.net/isaca/downloads/20061106_DenimGroup_Secure_SW_LG_Org.ppt 
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3.4 SECURE VERSION MANAGEMENT AND CHANGE CONTROL OF SDLC 
ARTIFACTS 

One practice that pertains to the entire SDLC is secure configuration management, which 
includes version management and change control. The artifacts of the software development 
process—documentation, software code, and developer notes—are generated throughout the 
SDLC, and may all be susceptible to tampering and malicious insertions unless kept under 
strict version control that is managed in ways expressly intended to minimize the likelihood, 
and to maximize the detection, of any attempts to inappropriately access them.  

Using a secure Software Configuration Management (SCM) system, strong authentication and 
authorization of developers, testers, and others who require access SDLC artifacts can be 
combined with granular access controls to prevent inappropriate accesses. Role-based access 
control together with separation of duties will prevent programmers from modifying test 
results (to erase evidence of their software’s test failures). Access can be further controlled 
based on the relationship of the artifact to the life cycle phase in which the person attempting 
to access it is involved: for example, once the final version of an artifact has been checked into 
the SCM system, access privileges for the person who developed that artifact can be reset to 
read-only, to prevent that person from being able to modify the artifact while it is undergoing 
review or testing. 

As each development artifact is completed, the developer is responsible for checking it into the 
secure SCM system according to the secure check-in process, which includes digitally signing 
and timestamping the artifact. This checked-in version is then “baselined”: critical metadata 
about the artifact is added which enables the configuration manager to compare the baseline 
with each subsequent version of the artifact that is checked in. This comparison verifies that 
only expected portions/areas of the later artifact version have been changed. The timestamp 
and digital signature also aid in the detection of later, possibly inappropriate substitutions or 
modifications.  

By ensuring that each new version delivered to the SCM can be easily compared against the 
most recent previous version or baseline, secure version management ensures that as each 
artifact is modified after peer reviews, other reviews, or tests, the new version can be easily 
compared against the previous baseline to verify that the only changes in the new version are 
those that correct problems found during review/testing. If the developer has made any 
changes that do not directly address review findings/test results, these can be flagged and 
analyzed, and the developer can be asked to explain and justify them. In this way, version 
management minimizes the window of opportunity in which malicious developers can tamper 
with development artifacts (e.g., by inserting malicious logic or intentional vulnerabilities). 

In addition to increasing control over development artifacts and minimizing opportunity for 
malicious tampering and insertions, secure version management also: 

• Increases accountability for and traceability of modifications to SDLC artifacts; 
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• Supports clear identification and security impact analysis of changes from one version 
to the next of each SDLC artifact; 

• Minimizes the likelihood that undesirable changes will “slip in” to the artifact that 
would ultimately increase the vulnerability of the software. 

It is the job of the configuration manager to verify the validity of changes between versions, 
and also to periodically perform SCM audits. 

All tools used to produce and review/test SDLC artifacts also need to be kept under strict 
secure change control to minimize the chance that they can be tampered with, or that such 
tampering will go undetected. 

Despite being authored in the late 1980s and early 1990s, many of the configuration 
management (CM) practices for high assurance software described in the National Computer 
Security Center’s Guide to Understanding Configuration Management in Trusted Systems, and the 
CM practices for high integrity software in Section 3.4 of NIST’s Framework for the Development 
and Assurance of High Integrity Software, provide an excellent basis for establishing secure 
version management and change control practices, and for specifying requirements for 
supporting SCM tools.  

A few secure configuration management repositories and toolsets are available commercially, 
including Oracle Developer Suite 10g Software Configuration Manager, the Secure Protected 
Development Repository from Sparta, Inc., and MKS Integrity from MKS Inc. SCM tools such 
as these incorporate many of the strong authentication and authorization, access control, time-
stamping, accountability, and other security features not provided in most standard CM 
systems. 

SUGGESTED RESOURCES 

• Software Security Assurance, Section 5.1.6.  

• National Computer Security Center. A Guide to Understanding Configuration 
Management in Trusted Systems (the “Amber Book”). NCSC-TG-006, 28 March 1988. 
Accessed 19 December 2007 at: http://handle.dtic.mil/100.2/ADA392775 - and - 
http://www.fas.org/irp/nsa/rainbow/tg006.htm 

• Wallace, Dolores R. and Laura M. Ippolito. A Framework for the Development and 
Assurance of High Integrity Software. NIST Special Publication 500-223, December 
1994, Section 3.4 “Software Configuration Management Process”. Accessed 26 January 
2008 at: http://hissa.nist.gov/publications/sp223/ 

3.5 SECURITY ASSURANCE CASES FOR SOFTWARE 

There is an increasing emphasis, in the software assurance community, on defining standards 
for the content and evaluation of security assurance cases for software. The only claim that can 
be realistically made for software security assurance cases at this point is that they will provide 
a useful mechanism for communicating information about software risk.  
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An assurance case is intended to provide a basis for justified confidence may take the form of an 
assurance case, which may be defined as:  

…a documented body of evidence that provides a convincing and valid argument that a specified 
set of critical claims regarding a system’s properties is adequately justified for a given application 
in a given environment.17 

Assurance cases are intended to document arguments and claims to a degree that is sufficient 
to reduce uncertainty about the described software’s exhibition of its required property. 
Assurance cases are also intended to provide the evidence necessary to prove the validity of 
those arguments and claims, to whatever level of confidence that validity must be proved.  

Assurance cases as artifacts should be developed in parallel with the other SDLC activities, 
with artifacts of those activities providing much of the evidence for the assurance case.  

The developer’s role in assurance case production will be to create development artifacts that 
are not only adequate for their intended purpose, i.e., producing software, but which also 
provide evidence that is sufficient and appropriate to support the assurance claims that will be 
made about that software. Development artifacts contribute to quantifiable statements of 
evidence that the software achieves its assurance goals. Moreover, the review and testing 
artifacts generated throughout the lifecycle provide evidence that stakeholders adequately 
reviewed the development artifacts and processes and evaluated against standards related to 
the assurance case itself (i.e., secure architecture or coding guidelines). 

SDLC artifacts that might be included as evidence to support the assurance case include: 

• The software’s semi-formal or formal architecture specification; 

• The result of a formal or semi-formal requirements traceability analysis and proof that 
the architecture fulfills the software’s specified requirements; 

• The software’s semi-formal or formal detailed design specification; 

• The result of a formal or semi-formal requirements traceability analysis and proof that 
the detailed design fulfills the software’s specified requirements; 

• Results of a vulnerability analysis of the software architecture; 

• Documentation of the secure SDLC process/methodology in use, including 
environment, physical security, and personnel controls; 

                                                 

17 Ankrum, T. Scott, and Alfred H. Kromholz. “Structured assurance cases: three common standards”. Slides 
presented at the Association for Software Quality (ASQ) Section 509 Software Special Interest Group meeting. 
2006 January 23; McLean, VA. Accessed 31 July 2007 at: 
http://www.asq509.org/ht/action/GetDocumentAction/id/2132 
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• Evidence of the consistent use of secure configuration management practices and tools 
that prevent unauthorized modifications, additions, or deletions to the SDLC artifacts. 

As of July 2007, the most mature of the emerging software security assurance case standards, 
SafSec (developed by Praxis High Integrity Systems for the UK Ministry of Defence), had only 
been tested in two case studies, with the next stage of evaluation (which involved applying the 
methodology on a system under development) still underway.  

To date, assurance case proponents have based their expectation of the effectiveness of 
security assurance cases on an extrapolation from the success of safety cases and to a lesser 
extent from Common Criteria Security Targets. At present, few if any software vendors use 
formal methods as a standard development practice, or generate development artifacts that 
security evidence extensive or detailed enough to form the basis for proving the assurance 
argument in a software assurance case. 

It is understandable that most software practitioners are waiting for empirical evidence that 
assurance cases can or will improve the security of software and/or increase the level of trust 
between users and software suppliers before taking on the labor-intensive development of 
these artifacts.  

For organizations that develop high-consequence software, assurance cases even in their still-
evolving form have the potential to provide a robust and disciplined means of security 
verification and validation. For these organizations, early adoption of assurance cases may be 
warranted, using an emerging methodology and supporting tools.  

Some significant research efforts are underway to produce methodologies and tools, or to 
extend, adapt, and refine safety case methodologies/tools to address requirements specific to 
security assurance cases. In the international standards community (ISO/IEC), there are efforts 
underway to define a standard for a software assurance process and the required content and 
structure of assurance cases. 

The reader is encouraged to review Section 5.1.4, “Software Security Assurance Cases” in 
Software Security Assurance for a more complete discussion of emerging software security 
assurance case methodologies and tools support. 

SUGGESTED RESOURCES 

• BuildSecurityIn Assurance Case resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/assurance.html 

• Software Security Assurance, Section 5.1.4. 

• Praxis High Integrity Systems. SafSec: Integration of Safety and Security Certification 
webpage. Accessed 21 January 2008 at: http://www.praxis-his.com/safsec/index.asp 

• McDermott, John. “Abuse-case-based assurance arguments”. Proceedings of the 17th 
Annual Computer Security Applications Conference, New Orleans, Louisiana, 10-14 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
55 

December 2001, pages 366-374. Accessed 11 September 2008 at: 
http://www.acsac.org/2001/abstracts/thu-1530-b-mcdermott.html 

 

3.6 SDLC METHODOLOGIES THAT AID IN SECURE SOFTWARE 
PRODUCTION 

A number of “secure SDLC methodologies” have been published to take the guesswork out of 
how to security-enhance one’s software development process. Several such methodologies are 
introduced in 3.5.1. 

In addition, some standard development methods have been demonstrated to increase the 
likelihood that software produced by them will be secure. Most notable among these are 
Formal Methods, discussed in 3.5.2. 

There are also some methods that have been promoted as aiding in secure software 
development when, in fact, what they have actually been demonstrated to assist in is the 
specification and implementation of security functionality. The most notable of these, Aspect 
Oriented Software Development, is discussed in 3.2.5.3. 

Finally, because of their popularity, particularly in the private sector, agile methods and the 
security issues that arise when they are used are also discussed in 3.2.5.4. 

3.6.1 Secure SDLC methodologies 

Instead of attempting to determine what security activities, checkpoints and considerations 
need to be added to their current SDLC process, a development team may want to encourage 
their organization and/or project manager (whichever has the authority to decide such things) 
to adopt a “security-enhanced” software development methodology that already defines these 
things.  

Development teams who use secure SDLC methodologies should almost immediately notice 
an improvement in their ability to detect and eliminate vulnerabilities and weaknesses in the 
software they produce before that software goes into distribution/deployment. As 
development teams become expert at following a secure SDLC methodology, and codify the 
methodology’s practices over time, they should also notice a marked reduction in the number 
of vulnerabilities and weaknesses that appear in their software in the first place. The proof will 
be in the software’s ability to pass its various security checkpoints (reviews and tests, such as 
design and code security reviews, fault injection tests, penetration tests, vulnerability scans, 
etc.). 

For development teams that work in organizations and/or for project managers unwilling to 
adopt a security-enhanced methodology, the practices described in Sections 4-9 of this 
document should be able to be integrated into any standard life cycle methodology in order to 
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“security enhance” that methodology in a more ad hoc way to enable the team to improve the 
security of software produced by their project. 

Table 3-2 lists some “ready-to-use” SDLC methodologies, with associated information 
resources, that are intended expressly to produce secure software. The suggested resources at 
the end of this section also provide more information about these methodologies, and about 
security-enhanced methodologies in general. 
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Table 3-2. Secure SDLC methodologies 

Methodology Resources 

CLASP Secure Software Inc. CLASP: Comprehensive Lightweight Application Security 
Process. Version 2.0, 2006. Accessed 17 December 2007 at: 
http://searchappsecurity.techtarget.com/searchAppSecurity/downloads/clasp
_v20.pdf 

 Open Web Application Security Project (OWASP) CLASP Project Webpage. 
Accessed 17 December 2007 at: 
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project 

Security 
Development 
Lifecycle 
(SDL) 

Howard, Michael and Steve Lipner. The Security Development Lifecycle. 
Redmond, Washington: Microsoft Press, 2006. 

 Lipner, Steve and Michael Howard. “The Trustworthy Computing Security 
Development Lifecycle”. Microsoft Developer Network, March 2005. Accessed 
17 December 2007 at: http://msdn2.microsoft.com/en-
us/library/ms995349.aspx 

 Microsoft SDL Weblog. Accessed 17 December 2007 at: 
http://blogs.msdn.com/sdl/ 

McGraw’s 
Seven 
Touchpoints 

McGraw, Gary. Software Security: Building Security In. Boston, 
Massachusetts: Addison-Wesley Professional, 2006.  

 Software Security: Building Security In Webpage. Accessed 17 December 
2007 at: http://www.swsec.com/ 

TSP-Secure Over, James W. “TSP for Secure Systems Development” (presentation). 
Accessed 17 December 2007 at: http://www.sei.cmu.edu/tsp/tsp-secure-
presentation/tsp-secure.pdf 

 Dustin, Elfriede. “The Software Trustworthiness Framework”. 30 January 
2007. Accessed 11 December 2007 at: 
http://www.veracode.com/Weblog/?p=22 

Secure 
Software 
Engineering 
(S2e) 

Schneider, Thorsten. (S2e) Integrated: Process Oriented Secure Software 
Development Model. Version 1.0, 2007 [in German]. Accessed 17 December 
2007 at: http://model.secure-software-engineering.com/ 

Schneider, Thorsten. “Secure Software Engineering Processes: Improving the 
Software Development Life Cycle to Combat Vulnerability”. Software Quality 
Professional. Volume 8 Issue 1, December 2006. Available (with free 
registration) from: 
http://www.asq.org/pub/sqp/past/vol9_issue1/sqpv9i1schneider.pdf 

Secure Tropos Mouratidis, Haralambos and Paolo Giorgini (2007) “Secure Tropos: A 
Security-Oriented Extension of the Tropos Methodology”. International 
Journal of Software Engineering and Knowledge Engineering, Volume 17 No. 
2, April 2007, pages 285-309. Accessed 25 August 2008 at: 
http://www.dit.unitn.it/~pgiorgio/papers/IJSEKE06-1.pdf 

 
NOTE: The Rational Unified Process (RUP) is a widely-used structured development 
methodology. Several noteworthy efforts to extend RUP so it can explicitly address security as a 
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quality-property have focused mainly on the requirements and architecture modeling phases of 
the life cycle. Papers on security enhancements to RUP are listed in the suggested resources 
below, as is a case study demonstrating the graceful integration of CLASP with RUP to achieve 
a secure life cycle methodology. 

 

SUGGESTED RESOURCES 

• BuildSecurityIn SDLC Process resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/sdlc.html 

• Software Security Assurance, Section 5.1.8 and Appendix G.  

• Reza Ayatollahzadeh Shirazi, Mohammad, Pooya Jaferian, Golnaz Elahi, Hamid Baghi, 
and Babak Sadeghian. “RUPSec: An Extension on RUP for Developing Secure Systems—
Requirements Discipline”. Proceedings of the World Academy of Science, Engineering, 
and Technology, Volume 4, February 2005. Accessed 7 July 2008 at: 
http://www.waset.org/pwaset/v4/v4-51.pdf. Original Farsi version accessed 7 July 2008 
at: 
http://hamkelasy.com/files/pdfarticles/fani_moh/61013860203_(www.hamkelasy.com).
pdf 

• Jaferian, Pooya, Golnaz Elahi, Mohammad Reza Ayatollahzadeh Shirazi, and Babak 
Sadeghian, “RUPSec: Extending Business Modeling and Requirements Disciplines of RUP 
for Developing Secure Systems”. Proceeding of the 31th IEEE Conference of EuroMicro, 
Porto, Portugal, 31 August-2 September 2005. 

• Paes, Carlos Eduardo de Barros and Celso Massaki Hirata. “RUP Extension for the 
Development of Secure Systems”. International Journal of Web Information Systems. 
Volume 3 Issue 4, 2007, pages 293-314. 

• Shiva, Sajjan G. and Lubna Abou Shala. “Adding Security to the Rational Unified 
Process”. Proceedings of the First Annual Computer Security Conference, Myrtle Beach, 
South Carolina, 11-13 April 2007. Accessed 7 July 2008 at: 
http://computersecurityconference.com/Papers2007/CSC2007Shala.doc  

• OWASP. Guide to Building Secure Web Applications, Version 2.0. Accessed 8 September 
2008 at:  
http://www.owasp.org/index.php/Category:OWASP_Guide_Project#OWASP_Developme
nt_Guide_2.0_Downloads 

3.6.2 Can agile methods produce secure software? 

Much discussion and debate has occurred over whether it is possible for software projects 
using agile methods to produce secure software. Some of the issues in secure software 
development that seem to run contrary to the objective of agile development are: 

• Whenever a functional requirement changes, an analysis should be done to understand 
the security impact of that change. 
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• Changes to functional requirements are likely to spawn changes to requirements for 
security constraints on those functions. 

• Agile methods approach system development by producing individual components of 
functionality, then integrating them together. Software security is a whole-system 
property, and even if individual components are secure, the aggregation of those 
components will not necessarily result in a measurably secure software system. 

• To be able to use agile methods to develop secure software will require the extension or 
adjustment of the existing agile methods to accommodate the necessary security 
practices and checkpoints. It will also require adapting those security practices and 
checks so that they more easily “fit” into the agile process.  

As characterized by the Agile Manifesto, all agile methods have a single overriding goal: to 
produce functionally correct software as quickly as possible. For this reason, agile methods are 
averse to life cycle activities that: 

• Do not directly involve the planning of development activities and production of 
software vs. other activities and artifacts, such as security reviews, requirements and 
design specifications, independent verification and validation (IV&V), etc., which are 
crucial for most security evaluations and validations. Moreover, the preference for face-
to-face over written communication clashes with the requirements of Certifications and 
Common Criteria evaluations for extensive software documentation and makes IV&V 
impractical, because independent testers rely on written documentation to understand 
the system and must, to maintain their independence, avoid any direct contact with the 
system’s developers; 

• Require specialist expertise that software developers do not have. Agile methods make 
it difficult to include security experts or other non-developer personnel on software 
teams. Moreover, the requirement that anyone involved with the software must be a 
member of the development team conflicts with the need for security reviewers and 
testers to be independent from the development team (separation of roles and duties); 

• Cannot be performed concurrently with other life cycle activities. For example, agile 
methods do not easily accommodate IV&V;  

• Require security modeling (though agile methods should accommodate “misuser” and 
“abuser” story development at the same time as user story development, to assist in 
requirements capture), as well as capture of negative and non-functional requirements; 

• Reject late in the lifecycle changes to requirements that prevent the establishment of a 
security baseline for purposes of Certification and Accreditation or Common Criteria 
evaluation; 
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• Focus on any objective other than producing correct software quickly. It is difficult to 
incorporate other non-functional objectives, such as dependability, trustworthiness, and 
resilience, into agile projects; 

• Cannot accommodate security impact analyses of development decisions throughout 
the life cycle; 

• Limits test case definition and test execution to the context of TDD, not allowing for 
software security (vs. functional security) tests; 

• Constrain who works on the project, in what role, and in what environment. Agile 
projects assume that all developers are trustworthy, and should have equal access to all 
software and development artifacts, contrary to the security principles such as 
separation of roles, separation of duties, least privilege, and role-based access control. 
Furthermore, in an “all developers have same role/access” environment, all developers 
will require the same (highest possible) level of security background checks and 
clearances, which can result in additional costs. Finally, Pair Programming (a standard 
practice in eXtreme Programming and other agile methods) in which one developer sits 
with another at the same workstation to continually review the second developer’s code 
as it is being written, may not be allowed in certain work environments in which 
workstation-sharing is not permitted.  

Table 3-3 summarizes, for each Core Principle in the Agile Manifesto, whether that Core 
Principle contributes to secure software development, or whether it obstructs the ability to 
produce secure software. 
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Table 3-3. Security implication of Agile Manifesto core principles 

 Core Principle Implication Explanation 
1 The highest priority of agile 

developers is to satisfy the 
customer. This is to be achieved 
through early and continuous 
delivery of valuable software. 

Obstructive Unless the customer is highly security-
aware. Security testing, if done at all, will 
probably be inadequate unless (1) security is 
an explicit, high-priority customer 
requirement; (2) the customer is willing to 
delay “early delivery” to ensure that 
sufficient time is given to specifying, 
verifying, and testing security requirements. 

2 Agile developers welcome changing 
requirements, even late in the 
development process. Indeed, agile 
processes are designed to leverage 
change to the customer’s 
competitive advantage. 

Obstructive Unless the customer is willing to allow the 
necessary time to assess the security impact 
of each new/changing requirement, and to 
add or change the security constraint 
requirements and risk mitigations associated 
with each functional requirement. 

3 Agile projects produce frequent 
working software deliveries. Ideally, 
there will be a new delivery every 
few weeks or, at most, every few 
months. Preference is given to the 
shortest delivery timescale possible.  

Obstructive Unless the customer prioritizes the need for 
security higher than the need for rapid 
delivery. 

4 The project will be built around the 
commitment and participation of 
motivated individual contributors. 

Neutral Could be obstructive if the individual 
contributors either resist or are ignorant of 
security priorities. 

5 Customers, managers, and 
developers must collaborate daily, 
throughout the development project. 

Neutral Could be contributory if the development 
team includes include security experts and 
the customer team includes security 
stakeholders (e.g., risk managers). 

6 Agile developers must have the 
development environment and 
support they need. 

Neutral Could be contributory if the development 
environment includes tools, platforms, 
processes, and practices expressly intended 
to produce secure software. 

7 Both management and customers 
will trust developers to get the job 
done. 

Obstructive Unless the developers are strongly 
committed and able to ensure (1) their own 
security knowledge; (2) security practices 
and checkpoints in their life cycle process, 
and security tools in their development 
toolkit. 

8 The most efficient and effective 
method of conveying information to 
and within a development team is 
through face-to-face communication. 

Obstructive The assurance process for software is 
predicated on documented evidence that can 
be independently assessed by experts 
outside of the software project team.  

9 The production of working software 
is the primary measure of success. 

Obstructive Unless “working” means not just 
“functionally correct” but also “dependable, 
trustworthy, and resilient”. If “working” is 
purely a matter of functional correctness, 
agile testing cannot allow for vulnerability 
scanning, penetration testing, or any other 
non-functional security tests. 
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 Core Principle Implication Explanation 
12 Agility is enhanced by continuous 

attention to technical excellence and 
good design. 

Contributory Especially when “technical excellence and 
good design” reflect strong expertise in and 
commitment to secure software development.  

13 Simplicity, which is defined as the 
art of maximizing the amount of 
work not done, is essential to 
successful projects and good 
software. 

Contributory If simplicity is a property of both the design 
and code of the software, which will make 
them easier to analyze and their security 
issues easier to recognize.  

Source: Software Security Assurance 

Proponents of test-driven development (TDD, also referred to as continuous testing)—a 
cornerstone of all agile methods—believe TDD can contribute to software security by ensuring 
that software is examined continuously throughout its development and problems are fixed as 
early in the development process as possible. TDD approaches testing by using automated 
tools to run a continuous, iterative series of test cases against the code as it is developed.  

It has been noted that automation of testing creates a high degree of acceptance, though 
manual testing is still required to verify some requirements. The problem, however, is that the 
types of testing that can be practically accommodated “on the fly” in this way does not include 
the more sophisticated software security tests, such as fault injection with propagation analysis 
and dynamic code analysis. Even addition of static code security analysis may be seen as 
impractical within the typical agile development process due to the security expertise and 
specialized tools it requires. 

Some of the researchers who identified these security enhancements are working to codify 
“secure agile methods”. Their approach has been to combine agile software engineering values 
with a security risk mitigation mentality, enabling secure software engineering to be 
performed in an agile manner.  

One such process (that of Norwegian researcher Gustav Boström) proposes that agile methods 
in general, and eXtreme Programming (XP) in particular, can and should be adapted to 
conform to the security engineering practices defined in the SSE-CMM and identified in the 
Common Criteria. Boström also suggests that the resulting security-enhanced agile method be 
combined with AOSD to reduce the burden imposed by the continuous refactoring 
emphasized in all agile methods, thereby offsetting the additional effort imposed by the 
security engineering practices. 

While software security is an important aspect of any software intensive system, there is a 
danger that the software practitioner will get a false sense of security from the erroneous belief 
that fixing software security is all that is required to ensure that the software-intensive system 
is secure. The inherent security—dependability, trustworthiness, survivability—of software 
components is only one level of security concern: security at the whole-system level, including 
correctness and effectiveness of security functionality, conformance to Saltzer and Schroeder 
principles, and all other system-level security concerns become no less critical just because 
security issues specific to software are finally being addressed. 
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The question of how well a particular agile development method can be adapted to achieve the 
objectives of secure software often requires the addition to the method of security training for 
developers, attack modeling and risk analysis, documentation and review of architecture and 
design before coding starts, and non-functional security testing.  

Table 3-4 lists security enhancements for agile development processes that researchers have 
investigated and found to be practical and not onerous. 

Table 3-4. Recommended security extensions to agile methods 

SDLC 
Phase 

Enhancement Source18 

General Increase security awareness of development team, as well as their 
acknowledged responsibility for producing secure software. 

Kongsli 

 Add a security expert role to the development team. The security 
expert will provide ongoing security education, mentoring, and 
subject matter expert support to other team members. 

Wäyrynen et al. 

Require-
ments 

Identify and list all high-consequence software components of the 
system.  

 

 Develop “misuser” and “abuser” stories or misuse and abuse cases 
that intentionally or unintentionally compromise those components. 
These misuser/abuser stories should be developed by defining 
deviations from user stories/use cases such that the deviations 
include modeled attacks.  

Wäyrynen et 
al., Kongsli 

 Based on the misuser and abuser stories, perform threat analyses, 
vulnerability analyses, and identify risk to the high-consequence 
components, to include the estimated cost of recovery from each 
compromise documented in the misuse/abuse scenarios. Prioritize the 
scenarios according to level of risk; determine the maximum 
acceptable level of risk. Identify all scenarios whose compromises 
exceed that maximum level. 

 

 Specify requirements that will prevent the each of the misuse and 
abuse scenarios that exceeds the maximum acceptable level of risk 
from compromising the software (through prevention, tolerance, or 
recovery). Define acceptance test cases that verify the effectiveness 
of the specified preventive measures. 

Wäyrynen et 
al., Kongsli 

Architec-
ture and 
Design 

Integrate any security functions required for secure software, such as 
code signing, sandboxing/virtual machines, etc., into the customer’s 
environment as early in the project as possible.  

Beznosov 

 Adhere to secure design principles. Davidson 

                                                 

18 See “Suggested Resources” at the end of this section for complete references. 
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SDLC 
Phase 

Enhancement Source19 

Coding Extend pair programming reviews to consider the security 
implications of design assumptions/decisions and to seek out and 
eradicate security flaws in code. 

Wäyrynen et al. 

 Adhere to secure coding standards and principles. Davidson 

Testing Add code scanners and other security test tools to the testing 
“arsenal” tools and security testing tools. Ensure that security criteria 
are included in every test case. 

Davidson, 
Beznosov 

 Use the misuse/abuse scenarios as the basis for defining the test case 
strategy. Use the risk analysis to prioritize the tests to be performed, 
testing the highest risk/highest consequence items first. 

 

 When closing an iteration, augment automated customer acceptance 
tests with “negative testing” for threats identified in the abuse/misuse 
scenarios. 

Davidson 

Because agile development is as much a philosophy as a methodology, agile developers who 
do not already understand the importance of security may overlook security imperatives that 
are neither explicit nor implicit in the Core Principles of the Agile Manifesto (with which all 
agile methods except eXtreme Programming are said to be consistent). Appendix C:C.3.2 
elaborates the key points in the debate over whether agile methods can ever successfully be 
security-enhanced. 

A methodology that follows the same general principles as agile development is Feature-
Driven Development (FDD). FDD differs from agile methods, however, in providing better 
scalability and support for planning. Table 3-5 summarizes recommended security 
enhancements for FDD.  

                                                 

19 See “Suggested Resources” at the end of this section for complete references. 
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Table 3-5. Recommended security enhancements to FDD 

SDLC Phase Enhancements to FDD 

Requirements 
Analysis 

• Capture requirements with use cases with security subjects and 
security objects are identified and added to use cases 

• Identify and document abuse cases 

• Develop an Overall Model of the system 

• Construct candidate classes from use cases 

• Derive security levels of classes from use cases and incorporate into 
classes 

• Build a feature list 

• Specify abuse case scenarios 

• Specify countermeasures to prevent abuse cases 

• Relate use cases to abuse cases to features 

• Classify features into feature sets based on activity 

Design • Plan by feature 

• Define order of features to be developed and tested 

• Prioritize security countermeasures (features) 

• Design by Feature 

• Incorporate security elements and security classification into 
objects as attributes 

• Sketch sequence diagram of each security feature 

Implementation  • Build by feature 

• Implement in security countermeasure feature priority order, 
adding the most important security measures first. 

Testing • Test abuse case scenarios that are most sensitive first 

• Test based on security countermeasure feature priority list 

 

SUGGESTED RESOURCES 

• Software Security Assurance, Sections 5.1.8.1 and Appendix G. 

• Beznosov, Konstantin and Philippe Kruchten. “Towards agile security assurance”. 
Proceedings of the 11th Workshop on New Security Paradigms, Nova Scotia, Canada, 
September 2004. Accessed 21 January 2008 at: 
http://konstantin.beznosov.net/professional/works/shared/biblio_view.php?bibid=10&ta
b=home - and - http://konstantin.beznosov.net/old-
professional/papers/Towards_Agile_Security_Assurance.html 

• Peeters, Johann. “Agile Security Requirements Engineering”. Presented at the 
Symposium on Requirements Engineering for Information Security, Paris, France, 29 
August 2005. Accessed 21 January 2008 at: 
http://johanpeeters.com/papers/abuser%20stories.pdf 
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• Kongsli, Vidar. “Towards agile security in Web applications”. Proceedings of the ACM 
SIGPLAN International Conference on Object-Oriented Programming, Systems, 
Languages, and Applications, Portland, Oregon, 22-26 October 2006.  

• Wäyrynen, J., Bodén, M., and G. Boström. “Security engineering and eXtreme 
Programming: an impossible marriage?”. In Zannier, C., Erdogmus, H., and L. 
Lindstrom, editors. Extreme Programming and Agile Methods—XP/Agile Universe 2004. 
Berlin, Germany: Springer-Verlag, 2004. pages 117-128. Accessed 11 September 2008 
at: http://is.dsv.su.se/PubsFilesFolder/612.pdf 

• Beznosov, Konstantin. “Extreme security engineering: on employing XP practices to 
achieve “good enough security” without defining it”. Presented at the First ACM 
Workshop on Business Driven Security Engineering, Washington, D.C. (District of 
Columbia), 31 October 2003. Accessed 4 April 2007 at: 
http://konstantin.beznosov.net/professional/doc/papers/eXtreme_Security_Engineering-
BizSec-paper.pdf  

• Davidson, Michelle. “Secure agile software development an oxymoron?” Application 
Security Tech Target, 25 October 2006. Accessed 4 April 2007 at: 
http://searchappsecurity.techtarget.com/originalContent/0,289142,sid92_gci1226109,0
0.html 

• Tappenden, A., P. Beatty, J. Miller, A. Geras, and M. Smith. “Agile security testing of 
Web-based systems via HTTPUnit”. Proceedings of the AGILE 2005 Conference, Denver, 
Colorado, 24-29 July 2005. 

• Heckman, Rocky. “Is Agile Development Secure?”. CNET Builder.au. 8 August 2005. 
Accessed 4 April 2007 at: 
http://www.builderau.com.au/manage/project/soa/Is_Agile_development_secure_/0,39
024668,39202460,00.htm - and - 
http://www.builderau.com.au/architect/sdi/soa/Is_Agile_development_secure_/0,39024
602,39202460,00.htm 

• Siponen, M., R. Baskerville, and T. Kuivalainen. “Extending Security in Agile Software 
Development Methods”. In Mouratidis, Haralambos and Paolo Giorgini, editors. 
Integrating Security and Software Engineering: Advances and Future Visions. Hershey, 
Pennsylvania: IGI Global Publishing, 2007. 

• Ge, X., R.F. Paige, F.A.C. Polack, H. Chivers, and P.J. Brooke. “Agile Development of 
Secure Web Applications”. Proceedings of the ACM International Conference on Web 
Engineering, Palo Alto, California, 11-14 July 2006. 

• Williams, L., R.R. Kessler, W. Cunningham, and E. Jeffries. “Strengthening the Case for 
Pair-Programming”. IEEE Software. Volume 17 Issue 4, July/August 2000, pages 19-25. 
Accessed 11 September 2008 at: 
http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware.PDF —and— http://rockfish-
cs.cs.unc.edu/COMP290-agile/ieeeSoftware.pdf 

• Boström, Gustav. Simplifying development of secure software—Aspects and Agile 
methods. Licentiate Thesis for the Stockholm (Sweden) University and Royal Institute of 
Technology. undated. Accessed 9 April 2008 at: http://www.diva-
portal.org/diva/getDocument?urn_nbn_se_kth_diva-3913-3__fulltext.pdf 

3.6.3 Formal methods and secure software development 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
67 

To the extent that vulnerabilities may result from the functional incorrectness of software 
implementations, formal methods, by improving software correctness, can also contribute to 
the improvement of software security. An example of a successful implementation of formal 
methods to improve software security is type checking, which is an integral feature of Java, 
C#, Ada95, and other modern programming languages. Type checking increases the detection 
rate of many flaws and faults at compile time and runtime. 

Use of formal methods does not, in and of itself, guarantee that secure software will be 
produced. What formal methods do provide are a more precise way of specifying and 
modeling the requirements and design of software, and of verifying that the requirements and 
design adequately exhibit a given property or set of properties. Formal methods have proven 
successful in specifying and checking small, well-structured systems such as embedded 
systems, cryptographic algorithms, operating system reference models, and security protocols. 
For example, formal proofs were provided for the integrity property of the Trusted 
Computing Bases of the Honeywell Secure Communication Processor, the Boeing Multi-Level 
Secure Local Area Network device, and the Gemini Secure Operating System [used in the 
Gemini Trusted Network Processor] when these systems underwent National Computer 
Security Center’s A1 level-of-assurance evaluations against the Trusted Computer Security 
Evaluation Criteria) in the mid- and late 1980s. 

The research community is striving to automate formal methods more fully, to make them 
more practical for general use, at this point formal methods remain labor-intensive, even with 
tool support. For this reason, their practicality is limited to software in which a high level of 
trust and confidence must be placed (i.e., security critical, safety critical, and other extremely 
mission-critical and high-consequence software).  

There are some formal methods with tool support that have been used successfully to verify 
the security properties of safety-critical and security-critical software (mainly embedded 
systems software). These are listed in Table 3-6. 

Table 3-6. Formal methods with tool support 

Tool Developer Website 

Correctness 
by 
Construction 

Praxis High 
Integrity 
Systems Ltd. 

https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/sdlc/613.html?la
youtType=plain —and— http://www.praxis-
his.com/services/software/approach.asp 

AutoFocus 
and Quest 

Munich 
University of 
Technology 

http://autofocus.in.tum.de/index-e.html —and— 
http://www4.informatik.tu-muenchen.de/proj/quest/ 

B-Method Jean-Raymond 
Abrial 

http://vl.fmnet.info/b/ 

While their labor-intensiveness and required level of expertise make formal methods 
impractical for most general-purpose software development, those readers who are interested 
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in further discussion of how formal methods can be used throughout the SDLC to produce 
secure software should consult Appendix C:C.3, as well as the suggested resources below.  

SUGGESTED RESOURCES 

• Software Security Assurance, Section 5.1.2. 

• Heitmeyer, Constance, Myla Archer, Elizabeth Leonard, and John McLean. “Applying 
Formal Methods to a Certifiably Secure Software System”. IEEE Transactions on 
Software Engineering, Volume 34 Number 1, January 2008, pages 82-98. Accessed 26 
February 2007 at: http://chacs.nrl.navy.mil/publications/CHACS/2008/2008heitmeyer-
TSE.pdf 

• Wing, Jeannette M. A Symbiotic Relationship between Formal Methods and Security. 
Technical Report CMU-CS-98-188, December 1998. Accessed 4 April 2007 at: 
http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-188.html 

• Croxford, Martin and Roderick Chapman. “Correctness by Construction: a manifesto for 
high-integrity software”. CrossTalk: The Journal of Defense Software Engineering, 
Volume 18 Number 12, December 2005. Accessed 21 January 2008 at: 
http://www.stsc.hill.af.mil/CrossTalk/2005/12/0512CroxfordChapman.html  

• Hall, Anthony and Roderick Chapman. “Correctness by Construction: developing a 
commercial secure system”. IEEE Software, January-February 2002, pages 18-25. 
Accessed 26 February 2008 at: http://www.anthonyhall.org/c_by_c_secure_system.pdf  

• Srivastava, Amitabh. “Engineering Quality Software”. Presented at the 6th International 
Conference on Formal Engineering Methods, Seattle, Washington, November 2004. 
Accessed 26 February 2008 at: 
http://research.microsoft.com/conferences/icfem2004/Presentations/AmitabhSrivastava.
ppt 

• Association for Computing Machinery (ACM) Workshops on Formal Methods in Security 
Engineering. Accessed 26 February 2008 at: 
http://www.cs.utexas.edu/~shmat/FMSE08/ 

• Heitmeyer, Constance Heitmeyer. Automatic Construction of High Assurance Systems 
from Requirements Specifications Web page. Accessed 26 February 2008 at: 
http://chacs.nrl.navy.mil/personnel/heitmeyer.html 

• Breu, Ruth, Klaus Burger, Michael Hafner, Jan Jürjens, Gerhard Popp, Guido Wimmel, 
and Volkmar Lotz. “Key Issues of a Formally Based Process Model for Security 
Engineering”. Proceedings of 16th International Conference on Software and Systems 
Engineering and their Applications, Paris, France, 2-4 December 2003. Accessed 7 July 
2008 at: http://www4.informatik.tu-
muenchen.de/~popp/publications/workshops/icssea03.pdf 
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4 REQUIREMENTS FOR SECURE SOFTWARE 
NOTE: This section presumes that the reader is already familiar with good requirements 
engineering practices, and thus focuses only on the additional considerations associated with the 
need for software to be secure. The Suggested Resources list at the end of this section includes 
resources on good requirements engineering. 

It is said that most vulnerabilities and weaknesses in software-intensive information systems 
can be traced to inadequate or incomplete requirements. While this truism really refers to 
inadequate requirements as the reason why many information systems lack adequate security 
functionality to protect the information they process, it can also be seen in the context of failure 
to specify requirements that specify the functions, constraints, and non-functional properties 
of software that must be dependable, trustworthy, and resilient.  

All software shares these three overarching security needs: 

• It must be dependable under anticipated operating conditions, and remain dependable 
under hostile operating conditions. 

• It must be trustworthy in its own behavior, and in its inability to be compromised by an 
attacker through exploitation of vulnerabilities or insertion of malicious code. 

• It must be resilient enough to recover quickly to full operational capability with a 
minimum of damage to itself, the resources and data it handles, and the external 
components with which it interacts. 

Frankly, if software cannot satisfy these three needs, it is of dubious value. What good is 
software that cannot be relied on to operate as and when it is needed? Thus, these three needs 
should be addressed by, and should inform, all of the requirements for the software’s 
functionality, behaviors, and constraints. Moreover, the need for security is so inherent to all 
software that the system development practice of defining security requirements separate 
from all other requirements is quite absurd when it comes to software requirements. In all 
cases, “operate securely” is no less imperative than “operate correctly”. What constitutes 
“secure” may differ depending on the criticality of the software’s function, and the nature of 
its intended operational environment. But there is no modern software for which security is 
not a concern at some point in its life cycle.  

Even non-networked embedded software may be subject to sabotage by malicious code 
insertion during its development. While the prevention of such sabotage clearly drives a 
requirement for secure software development and security analysis practices, the possibility 
that embedded malicious code may not be detected before the software is deployed drives a 
direct requirement for the software’s own survivability, i.e., to enable it to continue 
dependable operation even if the embedded malicious code is executed. 
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In their paper, “Core Security Requirements Artefacts”,20 Jonathan Moffett et al. observe that, 
“Although security requirements engineering has recently attracted increasing 
attention,...there is no satisfactory integration of security requirements engineering into 
requirements engineering as a whole.”  

It is critical that the software’s security requirements be as complete, accurate, and internally 
consistent, and traceable as possible. At the start, a complete and accurate statement of system-
level security goals and needs will be needed; this statement can then be explicitly 
“decomposed” to derive requirements for secure software. The authors go on to describe a 
requirements specification process that uses a series of iterative risk analyses and models to 
decompose system-level security goals into as complete and accurate a set of secure software 
requirements as possible. 

Recognizing that software requirements specifications can be considered complete only if they 
are sufficient to distinguish desired behavior from undesired behavior, it is important for the 
requirements analyst to consider the impact that anticipated and unanticipated external 
stimuli and inputs may have on the software’s behavior, not just during normal operation, but 
also when the software or any of its environment resources is in partial or full failure, and 
when the software comes under attack.  

Understanding and anticipating the various hostile conditions to which the software may be 
subjected is critical to anticipating requirements that will enable the software to remain 
dependable, trustworthy, and resilient under those conditions. Gaining this understanding is 
the objective of the various threat/attack modeling techniques described later in this section. 

Requirements traceability is an imperative generally for ensuring that all software 
requirements are not watered-down or lost in the design or implementation phases. As such, 
requirements traceability is a best practice of all good software development. This said, there is 
an important consideration for secure software: establishment of traceability between the 
artifacts that identify and model the threats, attacks, and vulnerabilities that form basis for 
defining the software’s security requirements.  

Just as traceability must be established and maintained between the hazard analyses 
performed for safety-critical systems and the requirements specification for the software 

                                                 

20 Moffett, Jonathan D., Charles B. Haley, and Bashar Nuseibeh. “Core Security Requirements Artefacts”. Open 
University Technical Report Number 2004/23, 21 June 2004. Accessed 26 January 2008 at: http://computing-
reports.open.ac.uk/index.php/content/download/166/999/file/2004_23.pdf 
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components of those systems,21 traceability needs to be maintained between software 
specifications and the threat/attack and vulnerability analyses and models that informed the 
security requirements in those specifications.  

The software safety community has produced a number of robust tools for providing 
automated support in the traceability of complex requirements for safety-critical systems. 
Examples include Praxis High Integrity Systems’ REVEAL, Telelogic’s DOORS, ChiasTek’s 
REQTIFY, Safeware Engineering’s SpecTRM, etc. These tools should be investigated for their 
adaptability to provide requirements traceability for secure software systems. 

SUGGESTED RESOURCES 

• BuildSecurityIn Requirements Engineering resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements.html 

• Software Security Assurance, Section 5.2. 

• Firesmith, Donald G. Security and Safety Requirements for Software-Intensive Systems. 
Boca Raton, Florida: Auerbach Publications, 2008. 

• Araujo, Rudolph. “Security Requirements Engineering: A Road Map”. Software Mag.com, 
July 2007. Accessed 13 December 2007 at: 
http://www.softwaremag.com/L.cfm?Doc=1067-7/2007 

• Khan, R.A. and K. Mustafa. “Secured Requirement Specification Framework (SRSF)”. 
American Journal of Applied Sciences, Volume 5 Number 12, 2008, pages 1622-1629. 
Accessed 7 July 2008 at: http://www.scipub.org/fulltext/ajas/ajas5121622-1629.pdf  

• Petrovic, Mark. “Discovering a Java Application’s Security Requirements”. OnJava, 3 
January 2007. Accessed 11 December 2007 at: 
http://www.onjava.com/pub/a/onjava/2007/01/03/discovering-java-security-
requirements.html 

4.1 THE CHALLENGE OF NEGATIVE AND NON-FUNCTIONAL 
REQUIREMENTS 

                                                 

21 For a methodology for requirements traceability  in complex safety-critical systems development, see Section 
4.0, “Commercial Aircraft Process Relationships”, in Mathers, Greg, Joseph K. Simpson, et al. “Framework for the 
Application of Systems Engineering in the Commercial Aircraft Domain”, DRAFT Version 1.2a, 28 July 2000. 
Accessed 25 August 2008 at: http://www.incose.org/ProductsPubs/pdf/techdata/SEApps-
TC/FrameworkForApplicOfSEToCommercialAircraftDomain.pdf. A particularly robust methodology is 
described in USPTO Patent Application 20070250297 (accessed 28 August 2008 at: 
http://www.freshpatents.com/Method-for-reducing-hazards-
dt20071025ptan20070250297.php?type=description). Unfortunately, it is not clear from the publicly-accessible 
patent description and claims data whether this methodology has been implemented in any requirements 
management product as of yet. 
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The following are challenges associated with the capture of negative security requirements, i.e., 
requirements for security constraints on functionality, and non-functional security 
requirements, e.g., requirements for software properties or for guidelines or standards 
governing with software development: 

• Perceived security risks posed by certain requirements for functionality as well as 
interoperability, usability, or performance; 

• Perceived security risks posed by other negative or non-functional requirements, e.g., 
the “use COTS” imperative; 

• Security and other policy statements mandating certain functional constraints (e.g., a 
Web service must be authenticated before being allowed to communicate with another 
Web service) or development practices (e.g., no use of unsigned mobile code); 

• Standards mandating certain technical constraints (e.g., Web service security standards) 
or development practices (e.g., development process compliance with SSE-CMM); 

• Tendency to think about and express security requirements in terms of things to be 
avoided or prevented.  

Attempting to verify that something is avoided or prevented is essentially attempting to prove 
a negative: it is difficult (if not impossible) to prove that there can be no exceptions to what is 
demonstrated during testing, i.e., that software will never do a certain thing. Moreover, the 
degree of non-satisfaction of a security requirement that can be tolerated is usually very low 
(approaching zero). Stakeholders want criteria for security requirements to be very close to 
“yes/no”.  

This said, requirements analysts should not self-impose limitations on their imaginations: the 
though process by which they conceive security requirements should allow for identifying 
both “actionable, testable” requirements and “non-actionable, non-testable” requirements, i.e., 
negative and non-functional requirements. Allowing the mental step of specifying such 
requirements is a critical step towards defining the correlated positive, testable requirements 
for additional functionality, constraints on specified functional requirements, and SDLC 
process improvements that will satisfy those “non-actionable, non-testable” requirements.  

Negative requirements exist because software’s functionality must not be allowed to behave in 
a way that could lead to the software failing in an insecure state, or otherwise becoming 
vulnerable to exploitation or compromise. An example of a constraint on a function is “The 
software must not use input data it has not validated.” 

Constraints on software functions are intended to minimize the likelihood of non-secure 
software behaviors and the interactions that are likely to trigger those behaviors. Constraints 
do this by placing controls on how the software interacts, and on how it behaves in response to 
interactions.  
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Such constraints can be said to be violated when the software fails to enforce them, or 
commands one of its components/processes to behave in a way that violates them. Constraint 
violations most frequently arise as a result of (1) interactions between software components; 
(2) interactions between the software and entities in its environment; and (3) the software’s 
failure. Such violations are particularly likely to occur when the external entity the software 
interacts with is an intelligent malicious adversary (human or malicious process). 

It is the developer’s job to make sure that such interactions cannot cause or contribute to a 
constraint violation. As part of the requirements definition process, then, the developer should 
identify all constraints that are needed to ensure the software always behaves securely. (Later, 
the developer must also be sure to design the software to enforce those constraints.) 

The following is a suggested two-stage process for moving from negative constraint 
requirements to positive, testable functional security requirements: 

• Map each negative and non-functional requirement to one or more positive functional 
requirements that will enable the negative or non-functional requirement to be satisfied. 

• Recast as many negative/constraint requirements as possible positively, describing 
what is supposed to happen (not what isn’t), and providing binary satisfaction 
criteria—i.e., the function happens or it doesn’t—and clear test criteria by which to 
determine what “the function happens” means.  

For example, given the negative requirement “The software must not accept overlong input 
data”, conceive of positive functional requirement(s) that will enable that negative 
requirement to be satisfied. Such a requirement might be “The software must validate all input 
to ensure it does not exceed the size specified for that type of input.” 

Non-functional security requirements specify: 

1. Properties the software must exhibit (e.g., its behavior must be correct and predictable; 
it must remain resilient in the face of attacks); 

2. Required level of assurance or risk-avoidance of individual security functions and 
constraints;  

3. Controls and rules governing the processes by which the software will be built, 
deployed, and operated (e.g., it must be designed to operate within a virtual machine, 
its source code must not contain certain function calls).  

In many cases, non-functional security requirements will be translated not into elements of the 
software’s design, but into guidelines for its development process, or criteria for its testing. 

During software requirements analysis decisions can begin to be made about which 
requirements can probably be satisfied using COTS or OSS components. In this context, both 
functional and non-functional security requirements need to be analyzed, particularly as 
COTS/OSS components often fall short of the level of dependability, trustworthiness, and 
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survivability required in medium- and high-consequence software systems. Recognizing that 
COTS/OSS components will be used will allow the requirements analyst to specify 
requirements for additional protections and countermeasures that will enable such 
components to be used without compromising the security of the system overall. The 
requirements analyst can also use these requirements as the basis for defining the security 
evaluation criteria for such components, with the criteria intended to verify that any candidate 
components do, in fact, achieve at least the minimum acceptable level of security as defined in 
the requirements specification. 

4.2 ORIGINS OF REQUIREMENTS FOR SECURE SOFTWARE 

Eliciting requirements from the stakeholders should involve direct communication, e.g., 
structured interviews, but is also likely to require reviews of artifacts identified or provided by 
the stakeholders. In the case of security, such artifacts will probably include organizational 
security policies, standards, etc., which may have to be carefully interpreted to understand 
their specific implications for software. For example, requirements for authentication, 
authorization, and accountability of users may need to address both human users and 
software entities—especially (semi-)autonomous entities such as Web services and mobile 
agents—that act as, or on behalf of, users.  

The most common sources of security requirements for software are: 

• Stakeholders’ expressed security concerns. 

• Security implications of the functional specification: A functional specification is 
intended to answer the question “What does the software need to do to accomplish x?” 
whereas the question that should be answered is “What does the software need to do to 
accomplish x securely?” The resulting answers are, in fact, secure requirements (contrast 
this with security requirements, which are requirements for security-relevant functions. 
In short, functional requirements need to be stated in a way that makes it clear that the 
functions must not: (1) be vulnerable to anticipated attacks; (2) operate in a way that 
compromises any part of the software system or any external software entities 
(environment-level or application-level) with which the system interacts. 
 
When finding the answer to the “how to do it securely?” question seems difficult (or 
impossible) it is because the function desired is too dangerous to be performed securely, 
so that the basic functional requirement conflicts with the secure functional 
requirement. When such conflicts emerge, the requirements analyst must identify the 
trade-offs that will allow the dangerous functions to be performed without introducing 
excessive levels of risk to the system. Clearly, a risk assessment is needed to identify 
what level of risk would be excessive. 
 
Unfortunately, most requirements analysts are not software security experts, so their 
trade-offs often favor preserving basic functional requirements at the expense of 
security. For this reason, the inclusion in the development team of a software security 
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expert is important. The security expert can then collaborate with the requirements 
analyst, who will thereby gain security knowledge, as a protégé from a mentor. 

• Requirements for security functions: Such requirements should be treated in the same 
way as all other functional requirements, except that in the prioritization that occurs 
during the trade-off analyses described above. The analyst needs to clearly understand 
the level of risk that arises when any security function relied on to protect a system, its 
assets, and resources, is not itself adequately secure in terms of dependability, 
trustworthiness, and robustness. The requirements should reflect this understanding: 
i.e., security-critical and other high-consequence functions, and indeed all software 
functions, should be specified in a way that ensures that they do not an unacceptably 
high level of risk to the software system. For security-critical and high-consequence 
functions, the maximum level of risk acceptable will be significantly lower than it is for 
other functions.  

• Compliance and conformance mandates: The need to comply with security-relevant 
laws such as Sarbanes-Oxley, the Federal Information Security Management Act 
(FISMA), and the Health Insurance Portability and Accountability Act (HIPAA), 
policies such as , directives such as DoD Directive 8500.1, “Information Assurance (IA)” 
and DCID 6/3, standards such as ISO/IEC 15408:1999, “The Common Criteria for 
Information Technology Security Evaluation”, the National Aeronautics and Space 
Administration (NASA) Software Assurance Standard, and the World Wide Web 
Consortium WS-Policy Framework standard, can result in requirements both for 
security functions and for secure software behavior. For example, there are a number of 
requirements implicit in Web service security standards regarding how service-to-
service interactions should be secured. 

• Secure development and deployment standards, guidelines, and “best practices”: 
There may be a mandate that the developers must comply with certain coding, security, 
or deployment standards, such as a requirement that the Java Virtual Machine’s 
security features be leveraged whenever Java is the language used. A mandated set of 
guidelines for “locking down” the platform on which the software will run carries 
implicit requirements for how the software is expected to interact with its platform, and 
the fact that it should not require resources or services that are made unavailable by the 
secure platform configuration. Even if a development “rule” is not codified in a 
standard or guideline, the development organization may choose to follow certain 
accepted “best practices” that can influence the software’s requirements, such as a 
requirement that a Web application not use persistent or unencrypted cookies as 
authentication tokens. The monitoring of an organization’s SDLC processes verify 
consistent, correct use of secure system and software development standards, 
guidelines, and practices is a key concern of security-enhanced continuous process 
improvement models such as MSSDM and SSE-CMM.   

• Attack models and environment risk analysis: Models of the attacks to which the 
software is likely to be subjected, along with the findings of a risk analysis of the 
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environment in which it will run (to include the data it will handle and the larger 
system of which it will be a component) provide the requirements analyst with a clear 
picture of the security context in which the software will operate, including the threats 
the software needs to be guarded against, and the anticipated environment-level 
security protections and services the developer may be able to leverage (1) to reduce the 
exposure of the software’s vulnerabilities (its “attack surface”) to those threats, and (2) 
to assist in achieving the software’s secure operation. Section 2.2.1 discussed attack 
modeling in detail. 

• Known and likely vulnerabilities in the technologies and COTS and OSS 
components that, due to preexisting commitments, must be used: Requirements can 
emerge from the need to implement countermeasures in the software to minimize 
exposure of such vulnerabilities. Vulnerability databases, such as the National 
Vulnerability Database (NVD) operated by NIST, are a good source of information 
about such vulnerabilities. 

SUGGESTED RESOURCES 

• Wu, Dan. “Security Functional Requirements Analysis for Developing Secure Software”. 
Qualification Exam Report for University of Southern California, December 2006. 
Accessed 17 December 2007 at: 
http://sunset.usc.edu/csse/TECHRPTS/2006/usccse2006-622/usccse2006-622.pdf 

4.3 DERIVING REQUIREMENTS THAT WILL ENSURE SECURITY OF 
SOFTWARE 

In developing detailed functional and non-functional non-security requirements questions 
should be asked to identify associated security requirements. An example of this question-
driven process for deriving security requirements appears below. 
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Example of Question-Driven Requirements Elicitation 

Given the following high level functional requirement: “The server should store both public-
access and restricted Web pages.” 

• Derive the detailed functional requirements, e.g., “The server should return public-
access Web pages to any browser that requests those pages.”  

• Identify the related constraint requirements, e.g., “The server should return restricted 
Web pages only to browsers that are acting as proxies for users with authorized 
privileges sufficient to access those Web pages.” 

• Derive the functional security requirements, e.g., “The server must authenticate every 
browser that requests access to a restricted Web page.” 

• Identify the related negative requirements, e.g., “The server must not return a 
restricted Web page to any browser that it cannot authenticate.” 

• Derive more functional security requirements, e.g., “After authenticating the browser, 
the server must determine whether that browser is authorized (i.e., has necessary 
privileges) to access the requested restricted Web page.” 

• Identify the related negative requirement, e.g., “The server must not return a restricted 
Web page to a browser whose privileges do not authorize it to access restricted Web 
content.” 

• Identify any additional implied requirements, e.g., “The server and browser must 
support the necessary security mechanisms to enable the server to (1) authenticate the 
browser; (2) determine the browser’s authorized privileges and whether those privileges 
are sufficient for the browser to access the restricted Web content.” 

The requirements engineering methodology used for specifying secure software should define 
a systematic approach that does not require onerous security knowledge on the requirements 
analyst’s part to use.  

The methodology used to define requirements should support the analyst in: 

1. Determining how difficult it will be for each component (actor) of the system to achieve 
the system’s collective security requirements; 

2. Determine which components should be assigned which security requirements, 
avoiding “overloading” any component with more security requirements than it can 
satisfy; 

3. Identifying the most security-critical components of the system (those responsible for 
satisfying the most security requirements); 

4. Performing trade-offs between security requirements that invalidate the system’s ability 
to satisfy its other functional and non-functional requirements. For high-consequence 
software, this trade-off analysis should include a quantitative analysis of residual 
security risk to which the system as a whole will be subject if certain security 
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requirements are waived or otherwise not satisfied. Alternate requirements that reduce 
that residual risk to an acceptable level can then be defined. 

The resulting requirements specification should define as secure a software-intensive system 
as possible given all other system imperatives (e.g., functionality, performance, usability, etc.) 

Table 4-1 lists some requirements methodologies that have been used successfully in the 
specification of secure software. For each methodology, a resource providing information is 
also provided. 

Table 4-1. Requirements engineering methodologies for secure software 

Methodology Resource(s) 

Requirements 
Engineering 
VErification and 
VAlidation (REVEAL) 

• Praxis High Integrity Systems. REVEAL Webpage. Accessed 19 
December 2007 at: http://www.praxis-his.com/reveal/ 

Security Quality 
Requirements 
Engineering 
(SQUARE) 

• Mead, Nancy R., Eric D. Hough, Theodore R. Stehney, II. “Security 
Quality Requirements Engineering (SQUARE) Methodology”. 
Technical Report CMU/SEI-2005-TR-009|ESC-TR-2005-009, 
November 2005. Accessed 19 December 2007 at: 
http://www.cert.org/archive/pdf/05tr009.pdf 

Trustworthy 
Refinement through 
Intrusion-Aware 
Design (TRIAD) 

• Ellison, Robert J. and Andrew P. Moore. “Trustworthy Refinement 
through Intrusion-Aware Design”. Technical Report CMU/SEI-
2003-TR-002, March 2003. Accessed 22 March 2008 at: 
http://www.sei.cmu.edu/publications/documents/03.reports/03tr0
02.html  

Appropriate and 
Effective Guidance 
in Information 
Security (AEGIS) 

• Fléchais, Ivan, Cecilia Mascolo, and M. Angela Sasse. “Integrating 
security and usability into the requirements and design process”. 
Proceedings of the Second International Conference on Global E-
Security, London, United Kingdom, April 2006. Accessed 21 
January 2008 at: 
http://www.softeng.ox.ac.uk/personal/Ivan.Flechais/downloads/ic
ges.pdf 

 • Fléchais, Ivan. Designing Secure and Usable Systems. University 
of London doctoral thesis, February 2005. Accessed 19 December 
2007 at: 
http://www.softeng.ox.ac.uk/personal/Ivan.Flechais/downloads/th
esis.pdf  
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Methodology Resource(s) 

Knowledge 
Acquisition in 
autOmated 
Specification 
(KAOS) 

• Haley, Charles B. Arguing Security: A Framework for 
Analyzing Security Requirements. Open University doctoral 
thesis, March 2007. Accessed 23 January 2008 at: 
http://www.the-haleys.com/chaley/papers/Thesis-Final-
DS.pdf 

• Haley, Charles, Jonathan D. Moffett, Robin C. Laney, and 
Bashar Nuseibeh. “A Framework for Security Requirements 
Engineering”. Proceedings of the 2006 Software 
Engineering for Secure Systems Workshop, Shanghai 
China, 20-21 May 2006, pages 35-42. Accessed 17 January 
2008 at: http://www.the-haleys.com/chaley/papers/Haley-
SESS06-p35.pdf  

 • Haley, Charles B., Robin Laney, Jonathan D. Moffett, and Bashar 
Nuseibeh, “Security Requirements Engineering: A Framework for 
Representation and Analysis”. IEEE Transactions on Software 
Engineering, October 2007.  

 • Haley, Charles B., Robin C. Laney, and Bashar Nuseibeh. “Deriving 
security requirements from crosscutting threat descriptions”. 
Proceedings of the Third International Conference on Aspect-
Oriented Software Development, Lancaster, United Kingdom, 22-
26 March 2004, pages 112-121. Accessed 19 January 2008 at: 
http://oro.open.ac.uk/2491/01/AOSD04-Haley-final.pdf 

Aspect Oriented 
Modeling (AOM) 

• Xu, Dianxiang, Vivek Goel and K. Nygard. “An Aspect-Oriented 
Approach to Security Requirements Analysis”. In Proceedings of 
the 30th Annual International Computer Software and Applications 
Conference, Chicago, Illinois, 17-21 September 2006, Volume 2, 
pages 79-82. 

 
4.4 SECURE SOFTWARE REQUIREMENTS VERIFICATION CHALLENGES 

The analyses performed to verify the correctness, completeness, and consistency of the 
requirements specification should include: 

• Internal analysis: Determines whether the requirements for the software’s non-
functional properties, and security constraints and positive functional requirements 
derived from them are complete, correct, and consistent with the other functional and 
non-functional requirements in the specification (the former include requirements 
pertaining to safety, performance, usability, etc.).  

• External analysis: Will answer the following questions: 

o Do the software’s requirements adequately address the concerns of stakeholders, 
and the relevant mandates of law, regulation, policy, etc.? 
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o Do the constraint and non-functional security requirements represent a valid 
refinement of the overall system security goals? Do any security-related 
requirements conflict with those goals? 

Exhibiting required properties (“the software must be” vs. “the software must do”) requires 
careful test planning to determine what types and combinations of software behaviors and 
actions can be said to demonstrate each required property (i.e., what must the software do—or 
not do—for it to demonstrate that it is resilient?) 

The following is an example of a multi-stage requirement validation process. 

1. Flag each functional requirement in the specification. 

2. Search the specification to find one or more constraint (“negative”) requirements 
directly pertinent to each functional requirement. For example, given a requirement 
that “This function must accept Social Security Numbers from users,” there should 
be a constraint requirement along the lines of “This function must reject all inputs 
that exceed nine digits (i.e., the length of a Social Security Number).” 

3. For each constraint requirement, search the specification for at least one 
corresponding positive requirement for functionality needed to satisfy the constraint 
requirement. In our example, this might be “The function must perform bounds 
checking of all input to ensure its length does not exceed nine digits.”  

If there is not at least one constraint requirement for a function, the lack of constraints needs to 
be analyzed and justified or the appropriate constraint requirement should be added to the 
specification. Similarly, if there is not at least one positive functional requirement for every 
constraint requirement, this lack needs to be analyzed and justified or remedied. 

For high assurance and high confidence software, more comprehensive analyses of security 
requirements, including inspections and peer reviews, may be needed to assess whether the 
necessary non-functional and constraint requirements have been captured clearly, in terms 
that can be easily translated into design and test plan. Formal methods—which first entail use 
of a formal, often executable specification language, to capture the security requirements so 
that the analyst can later use proof checkers to run proofs and other formal tools to execute 
models of those requirements—are an effective, albeit resource- and expertise-intensive, 
method for validating the correctness, completeness, and internal consistency of requirements, 
as well as their effectiveness in capturing their intent in a realistic manner.  

However, formal methods will not be any more helpful than other methods in predicting the 
potential effectiveness of a given requirement in terms of its contribution to the dependability, 
trustworthiness, and/or resilience of the software that will be designed and built to that 
requirement. 
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4.5 REQUIREMENTS ENGINEERING AND SECURITY MODELING 
METHODOLOGIES AND TOOLS 

At a simplified level, all software programs include five key components, as illustrated in 
Figure 4-1. 

 

Figure 4-1. Components of software programs 

1. Input software: Reads data into an internal representation for processing. If the input is 
cryptographically protected, the input software functionality includes data decryption, 
integrity verification, etc. 

2. Output software: Software that writes data to an output medium (e.g., Random Access 
Memory, compact disc, socket) after processing. If the output data is cryptographically 
protected, then output software functionality includes data encryption, integrity 
protection, etc. 

3. Internal data: Data initialized by the application, read into an internal representation, or 
computed within the application (e.g. intermediate values or in preparation for output). 

4. Security-critical data: A subset of internal data of high value to an attacker, e.g., 
cryptographic keys, privilege-related data, and other security-critical data. 

5. Computations and algorithms: Internal program logic that processes the internal data. 

This building-block view of software programs clarifies the need to protect each of the five 
components from attacks in the categories discussed in Section 2.5.1. These protection needs 
can be decomposed into a set of high-level security requirements that are common to all 
software programs: 

• Secure the input as it is received and processed by the program: To protect it from 
unauthorized access and manipulation, including unauthorized disclosure, 
tampering, corruption, destruction, and deletion. 
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• Secure the output as it is processed and released by the program: To protect it from 
unauthorized access and manipulation, including unauthorized interception, 
rerouting, disclosure, tampering, corruption, destruction, and deletion. 

• Data hiding: To protect internal data from unauthorized disclosure. In the case of 
software, we are referring to types of data that tend appear in runtime interpretable 
source code and scripting code that has not been thoroughly sanitized prior to 
deployment. Traditional data hiding approaches such as encryption and file system 
access controls are useless for protecting such data, which should ideally be 
removed before the code is deployed, or if that is not possible, obfuscated using 
techniques that will not impede the runtime interpretation of that code. 

• Internal computation/algorithm hiding: To protect internal program logic from 
unauthorized disclosure. 

• Tamper resistance: To protect software code (source, runtime-interpretable, and 
executable) from unauthorized execution, tampering, corruption, destruction, and 
deletion. 

• Damage mitigation and recovery: Entails, at a minimum, ability of software to be 
isolated from the external cause of the software’s failure, then moving the software 
from a failed state to an acceptable operational state (ideally, this will be the 
software’s pre-failure state). At a system level, damage mitigation also entails 
terminating all interface and communication paths used by the external cause to 
access the software and its platform, and monitoring and preventing all further 
attempts by the external cause to initiate new interface/communication paths to the 
software or its platform. 

SUGGESTED RESOURCES 

• BuildSecurityIn Modeling tools resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/modeling.html 

• Shina, Michael E. and Hassan Gomaab. “Software requirements and architecture 
modeling for evolving non-secure applications into secure applications”. Science of 
Computer Programming, Volume 66, Issue 1, 15 April 2007, pages 60-70. 

• Haley, Charles B., Robin C. Laney, Jonathan D. Moffett, and Bashar Nuseibeh. “Using 
Trust Assumptions with Security Requirements”. Requirements Engineering Journal, 
Volume 11 Number 2, April 2006, pages 138-151. 

4.5.1 Attack modeling  

Software systems may be subjected to a wide variety of attacks that may lead to security being 
compromised. While numerous in variety, the majority of attacks follow one basic strategy: to 
build up an attack through a series of smaller and/or atomic attacks (or intrusions). Security 
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can be modeled as a quantifiable attribute (in the context of Quality of Service and/or of 
Quality of Protection). 

Attack modeling is used to model the nature of an attack. Good attack modeling requires the 
expertise of practitioners of cyber security, application security, information assurance, etc., 
particularly penetration testers. (Contrast this with expertise needed for true threat modeling.) 

Misuse cases, abuse Cases, security use cases, and other security modeling techniques such as 
attack trees, attack graphs, anti-models, and attack patterns, enable the analyst to gain a better 
understanding of the risk areas in the system under consideration by: 

• Identifying security objectives to be satisfied by the software system; 

• Exploring security threats to be countered by (or on behalf of) the software system; 

• Identifying points in the distributed software that are likely to be attacked; 

• Defining constraints (i.e., the software must not be able to be compromised by certain 
threats) needed to achieve the required countermeasures and security objectives; 

• Deriving testable (functional) security requirements that will ensure the software 
enforces the required constraints. 

Specifically, there is a need to model: 

• Attackers’ likely actions (attack graphs and attack trees are useful for this type of 
modeling; attack patterns can be used as a source for describing specific actions, with 
graphs/trees depicting the series of generic atomic attacks to which the particular 
software being considered is subject); 

• The software’s individual and collective responses to attacker actions (attack response 
graphs lend themselves best to this type of modeling). 

Attack modeling can be done separate from the risk analysis for a specific software system, i.e., 
one can develop an attack tree or graph that any sufficient threat could execute.  The following 
sections describe methodologies and tools that are useful for modeling the threat environment 
in which the software will operate. 

4.5.1.1 Security use cases, misuse cases, and abuse cases 

The same requirements gathering techniques employed to produce use cases that capture the 
tasks that users perform during “normal” usage of the system can be employed to produce 
security use cases that identify the users and user tasks associated with security, and to 
produce misuse cases that depict non-malicious (intentional or unintentional) threats to 
normal use cases (including security use cases) and abuse cases that depict malicious 
(intentional) threats to normal use cases. These misuse and abuse cases, in turn, form the basis 
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for additional security use cases that provide the means to counter or mitigate the threats 
captured in the misuse and abuse cases.  

Misuse cases and abuse cases describe what the software should not do in response to a user’s 
incorrect or malicious use of the system. For each functional use case, the developer should 
explore the ways in which that function could be deliberately abused or misused, and capture 
these in misuse/abuse cases. The developer then needs to identify all potential relationships 
between use cases and misuse/abuse cases, so that he/she can specify security constraints and 
requirements to prevent a misuse or abuse from compromising the security of each required 
capability identified in a use case. 

On projects in which use cases are used to define functional requirements, adding 
misuse/abuse cases provides a uniform approach to the specification and analysis of all usage, 
both intended and adversarial usage. 

SUGGESTED RESOURCES 

• Hope, Paco, Gary McGraw, and Annie I. Antón. Misuse and abuse cases: getting past the 
positive. IEEE Security and Privacy, May-June 2004, pages 32-34. Accessed 21 January 
2008 at: http://www.cigital.com/papers/download/bsi2-misuse.pdf 

• Damodaran, Meledath. “Secure Software Development Using use cases and Misuse 
Cases”. Issues in Information Systems, Volume VII, Number 1, 2006, pages 150-154. 
Accessed 13 December 2007 at: http://www.iacis.org/iis/2006_iis/PDFs/Damodaran.pdf 

• Sindre, Guttorm and Opdahl, Andreas L. “Eliciting security requirements by misuse 
cases”. Proceedings of the 37th International Conference on Technology of Object-
Oriented Languages and Systems, Sydney, Australia, 20-23 November 2000, pages 120-
131.  

• Sindre, Guttorm and Andreas L. Opdahl. “Capturing Security Requirements through 
Misuse Cases”. Proceedings of the Norsk Informatikkonferanse, Tromsø, Norway, 26-28 
November 2001. Accessed 21 January 2008 at: http://folk.uio.no/nik/2001/21-
sindre.pdf 

• Sindre, Guttorm and Andreas L. Opdahl.  “Templates for misuse case description”. 
Proceedings of the Seventh International Workshop on Requirements Engineering 
Foundation for Software Quality, Interlaken, Switzerland, 4-5 June 2001. Accessed 11 
September 2008 at: http://swt.cs.tu-
berlin.de/lehre/saswt/ws0506/unterlagen/TemplatesforMisuseCaseDescription.pdf 

• Alexander, Ian. “Modelling the interplay of conflicting goals with use and misuse cases”. 
Proceedings of 8th International Workshop on Requirements Engineering Foundation for 
Software Quality, Essen, Germany, 9-10 September 2002, pages 145-15. Accessed 11 
September 2008 at: http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
109/paper1.pdf 

4.5.1.2 Attack patterns 
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As defined in the Attack Pattern Glossary on the DHS BuildSecurityIn portal,22 an attack 
pattern is: 

…a general framework for carrying out a particular type of attack such as a particular method 
for exploiting a buffer overflow or an interposition attack that leverages architectural 
weaknesses…. [A]n attack pattern describes the approach used by attackers to generate an exploit 
against software.  

An attack pattern, then, describes and codifies the set of actions that constitute some type of 
attack. Attack patterns are intended as a generic mechanism for capturing and communicating 
the actionable details on specific types of common attacks that have the potential to affect one 
or more classes of software. By “generic” we mean that an attack pattern can be developed 
independent of the specific software system under consideration, resulting in a type of 
“generic” attack model that holds true for most (but not all) systems against which the attack 
may be launched. In fact, most existing attack patterns (such as those gathered in the Common 
Attack Pattern Enumeration and Classification [CAPEC]) are the product of in-depth analyses 
of specific examples of real world exploits against certain software products executed and 
used under certain environment and operational conditions. 

Derived from the concept of design patterns, but applied in a destructive rather than 
constructive manner, attack patterns can collectively provide the requirements analyst with a 
picture of the hostile environment in which the software is likely to operate, so that he/she 
can: 

• Specify the required secure software behavior in response to an attack described by an 
existing pattern; 

• Identify constraints that describe undesired behaviors in response to a described attack; 

• Identify positive functional requirements that enable the software to (1) resist or 
withstand, or (2) mitigate the impact of each described attack.  

Following are two examples of attack patterns being leveraged in the specification of 
requirements for secure software. 

Example 1 

Given the following high level functional requirement: “The Web server application shall 
enable the user to purchase merchandise online by submitting a valid credit card number.” 

Consider the following attack patterns: “buffer overflow” and “command injection”  

Identify the required constraint(s): “The software must not accept invalid user input.” 

                                                 

22 Barnum, Sean and Amit Sethi. “Attack Pattern Glossary”, 7 November 2006. Accessed 25 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack/590.html 
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Derive the associated functional requirement(s): “The application must validate the input in 
the credit card number form field to ensure it conforms to the following parameters: 

1. “Range: ≥ 13 but ≤ 19 characters 

2. “Format: numeric 

3. “Encoding: International ASCII” 

Identify any implied requirement(s): “The software must reject all input that deviates from 
the required parameters.” 

Determine any additional associated requirement(s): In the absence of specific 
requirements on how the rejection should be handled – e.g., should the input validation 
routine return an error messages to the user requesting resubmission of the input, with the 
message providing guidance on acceptable length and format, or should the application 
itself first determine whether excessive length/incorrect format is caused by inclusion of 
hyphens between groups of numbers, and if so, should the application filter the input to 
delete the hyphens and accept the sanitized number that results without returning an error 
message to the user? – such details will be left up to the designer. 

Example 2 

Given the following functional requirement: “The Web server application shall return Web 
pages in response to URLs submitted by browsers.”  

Consider the attack pattern: “SQL injection” 

Identify the required constraint(s): “The application must not accept invalid URLs from 
browsers.” 

Derive the associated functional security requirement(s): “The application must validate all 
URLs received from browsers to ensure that they conform to parameters defined for URLs. 
These parameters are: 

1. “Format: [specifies acceptable prefixes – http:// or https:// followed by an 
alphanumeric strings followed by a period, another alphanumeric string, followed by 
a period or a forward slash, followed by another alphanumeric string followed by a 
forward slash, etc.] 

2. “Encoding: International ASCII 

3. “Content (allowable characters): [specifies “alphanumeric” plus all allowable symbols 
and the position within a Uniform Resource Locator (URL) in which each symbol may 
appear]” 

Identify related constraint(s): “The input validation routine must reject any URL that does 
not conform to these parameters.” 

Determine any additional associated requirement(s): “Should a rejection cause the 
application to return a standard Hyper Text Markup Language (HTML) error message to the 
browser, or to simply ‘hang’ without returning a response?” 
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Attack patterns are, in fact, of use throughout the software life cycle, and their applicability to 
other life cycle phases will be discussed in the sections on those phases later in this document. 
Some specific examples of SDLC artifacts that attack patterns can be used in developing are: 

• Misuse and abuse cases; 

• Attack trees and attack graphs;  

• Test scenarios, especially penetration test scenarios. 

SUGGESTED RESOURCES 

• BuildSecurityIn Attack Patterns resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack.html 

• Barnum, Sean and Amit Sethi. “Attack Patterns as a Knowledge Resource for Building 
Secure Software” (whitepaper). Ashburn, Virginia: Cigital, Inc., 2007. Accessed 26 
December 2007 at: http://capec.mitre.org/documents/Attack_Patterns-
Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf 

• The MITRE Corporation. CAPEC-Common Attack Pattern Enumeration and Classification 
Website. Accessed 14 December 2007 at: http://capec.mitre.org/index.html 

• Kis, Miroslav. Information Security Antipatterns in Software Requirements Engineering. 
Proceedings of the Ninth Conference on Pattern Language of Programs, Monticello, 
Illinois, 8-12 September 2002. Accessed 19 December 2007 at: 
http://jerry.cs.uiuc.edu/~plop/plop2002/final/mkis_plop_2002.pdf 

4.5.1.3 Threat modeling 

Threat modeling identifies and analyzes threats to a system (rather than the attacks that are 
used against a system). In threat modeling, the specifics of attacks are not considered. Instead 
the focus is on identifying and understanding the following four aspects of each threat: 

• Capability (technical expertise, resources available, opportunity, etc.); 

• Intentions (objectives); 

• History of previous successful attacks against specific target(s); 

• Targeting plan for intended, imminent attack(s) against same or different specific 
target(s). 

A classic lesson from military history is “Where there is capability, an adversary may develop 
intent.” It is important that software developers understand this lesson. It is not meaningful to 
identify and model threats when operating under the false assumption that “nobody would 
ever do that.” Good threat modeling begins with the recognition that if it is possible, it is 
highly likely that somebody will do it. 

Threat modeling requires the expertise of the law enforcement or intelligence/ 
counterintelligence community. Most other organizations are not qualified to model or deal 
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with threats and should limit their focus to mitigating that vulnerabilities that may be 
exploited by any threat. In addition, when a threat is identified or suspected, they should take 
all steps necessary to get law enforcement and/or the intelligence community to do threat 
removal. 

At the software requirements level, true threat modeling is of limited value on its own; it can, 
however, provide information that forms an extremely useful basis for attack modeling. 

On of the most popular attack modeling methodologies was that developed by Microsoft. In 
reality, Microsoft’s Application Threat Modeling methodology combines aspects of attack 
modeling with that of system security risk analysis. What it does not include is true threat 
modeling. What Microsoft calls a “threat” is, in fact, an “attack”. The methodology focuses on 
identifying all likely attack patterns, their likelihood of success given the software’s 
vulnerability and exposure to those attacks, and the associated loss anticipated with successful 
attacks. Microsoft Threat Modeling, as well as the other software attack modeling/risk 
assessment methodologies in Table 4-1 model attacks, vulnerabilities, and outcomes for the 
software within the constraints of the following: 

• The particular execution environment in which it is expected to operate,  

• Its criticality/value to the enterprise, 

• Its user’s expectations,  

• Its requirements for assurance, including security assurance. 

The methodologies and tools listed in Table 4-2 are designed to support software and/or 
system attack modeling and security risk analysis. For each of these, a resource is listed that 
provides detailed information and (with one exception) access to documentation and, if 
available, the tool itself. 

Table 4-2. Threat modeling tools 

Tool Resource(s) 

Application Consulting 
& Engineering Threat 
Analysis and Modeling  

Microsoft Security Developer Center Application Threat Modeling Webpage. 
Accessed 25 January 2007 at: http://msdn2.microsoft.com/en-
us/security/aa570413.aspx 

Calculative Threat 
Modeling Methodology 

Practical Threat Analysis Website. Accessed 25 January 2008 at: 
http://www.ptatechnologies.com/ 

Trike  octotrike.org Tools Webpage. Accessed 25 January 2008 at: 
http://www.octotrike.org/ 

Consultative Object 
Risk Analysis System 
(CORAS) 

The CORAS Project Webpage. Accessed 25 January 2008 at: 
http://coras.sourceforge.net/ 

Threat Modeling based 
on Attacking Path (T-
MAP) 

University of Southern California Center for Systems and Software 
Engineering. Security Economics and Threat Modeling for Information 
Technology (IT) Systems—A Stakeholder Value Driven Approach project 
Webpage. Accessed 25 January 2008 at: 
http://sunset.usc.edu/csse/research/COTS_Security/index.html (NOTE: 
the T-MAP tool cannot be downloaded from this page; those interested in 
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use of T-MAP should send email or call the point of contact listed on the 
Webpage.)  

—and— 

Chen, Yue. Software Security Economics and Threat Modeling Based on 
Attack Path Analysis: A Stakeholder Value Driven Approach. University of 
Southern California Doctoral Dissertation, December 2007. Accessed 25 
January 2008 at: 
http://sunset.usc.edu/csse/TECHRPTS/PhD_Dissertations/files/ChenY_Diss
ertation.pdf 

 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
90 

SUGGESTED RESOURCES 

• Software Security Assurance, Section 5.2.3.1. 

• OWASP Threat Risk Modeling Webpage. Accessed 25 January 2008 at: 
http://www.owasp.org/index.php/Threat_Risk_Modeling 

• Daniel P.F. «Análisis y Modelado de Amenazas» [in Spanish], Version 1.0, 18 December 
2006. Accessed 25 January 2007 at: http://metal.hacktimes.com/files/Analisis-y-
Modelado-de-Amenazas.pdf 

4.5.1.4 Other modeling techniques 

The following are some additional attack modeling techniques that have been promoted for 
aiding in specification of secure software. 

4.5.1.4.1 Attack trees and attack graphs 

An attack tree (sometimes referred to as a “threat tree”) is, in essence, a fault tree that 
concentrates on faults with security impacts. In an attack tree, the attacker’s goal is placed at 
the top of the tree, then the analyst documents possible alternative ways in which that attacker 
goal could be achieved. For each alternative, the analyst may recursively add precursor 
alternatives for achieving various sub-goals that collectively achieve the main attacker goal.  

The attack tree analysis process is repeated for each attacker goal. By examining the lowest-
level nodes of the resulting attack tree, the analyst can identify all possible techniques that 
might be used by an attacker to compromise the system’s security, and can then specify the 
means of preventing or avoiding those attack techniques as security requirements for the 
system. 

Compared with the misuse/abuse case, the attack tree captures a greater level of detail, and 
thus may be more helpful in developing a detailed design. Tree and graph-based attack 
models: 

• Capture the steps of a successful attacks;  

• Range from simple tree models to formal Petri nets; 

• Can capture both general and system specific attack methods, and system properties 
and other preconditions that make a successful attack possible; 

• Focus on causes of vulnerabilities, but do not identify countermeasures;  

• Should be complemented by secure coding guidelines, security patterns, etc. 

Attack trees are represented both graphically and textually. A graphical representation is 
usually built with the root node, or goal, on the top. The tree then descends branches and sub-
goals until the leaves are finally reached at the bottom level.  
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The textual representation of an attack tree follows a numeric outline structure. The root node, 
or goal, is represented at the first level with no indentation. Each sub-goal is then numbered 
accordingly and indented one unit per level of decomposition. The representation below 
presents the textual view using the same example content found in Figure 4-2. 

Goal: Fake Reservation 

1. Convince employee to add reservation 

1.1 Blackmail employee 

1.2 Threaten employee 

2. Access and modify flight database 

2.1 SQL injection from Web page 

2.2 Log into database 

2.2.1 Guess password 

2.2.2 Sniff password 

2.2.3 Steal password from server 

2.2.3.1 Get account on server (AND) 

2.2.3.1.1 Exploit buffer overflow 

2.2.3.1.2 Get access to employee account 

2.2.3.2 Exploit race condition to access protected profile 

 

 

Figure 4-2. Conceptual view of a graphical attack tree 

Used in combination with attack patterns, attack trees can capture how the attack patterns are 
likely to be combined and sequenced, so that appropriate multi-action responses can be 
designed in to the software.  

An attack graph is a concise representation of the attack paths through the system that attack 
patterns may follow in order to achieve the end-state of the attacker’s ultimate goal. The attack 
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graph complements the attack tree by modeling all of the potential attack paths throughout the 
system that could be associated with a specific attack, while the attack tree focuses on the 
“stopping points” at which each attack goal and sub-goal is attained. 

Failure Modes and Effects Analysis (FMEA) is a bottom-up approach that can complement 
attack tree and attack graph analysis. In FMEA, the analyst examines all potential failures of 
the existing or planned security protections, mitigations, and countermeasures and models 
and documents the anticipated consequences of each failure, tracing that consequence to 
extrapolate how it could inhibit the ability of the system to achieve its mission or operational 
objectives. 

Manual attack tree and graph generation and FMEA are time-consuming and tend to be error-
prone when used to model and analyze large software systems. Researchers are pursing the 
use of formal modeling techniques and model-checking technology to automate the generation 
and analysis of attack trees and graphs. 

SUGGESTED RESOURCES 

• Edge, Kenneth S. A Framework for Analyzing and Mitigating the Vulnerabilities of 
Complex Systems via Attack and Protection Trees. Air Force Institute of Technology 
doctoral thesis, July 2007. Accessed 21 January 2008 at: 
http://handle.dtic.mil/100.2/ADA472310  

• Schneier, Bruce. “Attack trees: Modeling security threats”. Dr. Dobbs Journal, December 
1999. Accessed 21 January 2008: http://www.schneier.com/paper-attacktrees-ddj-
ft.html —and— http://www.ddj.com/184411129 

• Kortti, Heikki. “Input Attack Trees”. Presented at Black Hat Japan, 5-6 October 2006. 
Accessed 21 January 2008 at: http://www.blackhat.com/presentations/bh-jp-06/BH-JP-
06-Kortti-up.pdf 

• Gupta, Suvajit and Joel Winstead. “Using Attack Graphs to Design Systems”. IEEE 
Security and Privacy, July/August 2007, pages 80-83. 

• Carnegie Mellon University. Scenario and Attack Graphs project Webpage. Accessed 26 
January 2008 at: http://www.cs.cmu.edu/~scenariograph/ 

4.5.1.4.2 Anti-models 

As described by Axel van Lamsweerde, the anti-models are a type of formal model, i.e., they 
are captured in mathematical notation. Specification requires temporal logic that is first-order, 
realtime, and linear. Mathematically-notated semantics are used to define how to evaluate 
truth of a model. What are modeled are the goals of each component (or agent), along with the 
component’s role (what it does to achieve its goal), and properties of the domain (execution 
environment). Also captured are the “anti-goals”, i.e., the security goals of each component (or 
agent); along with these are modeled the environment, attackers, threats posed by the 
attackers, and assets threatened. Goals are refined to the level at which a single agent can 
realize a single goal.  
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Then specific benefits of anti-goals are:  

• They elicit answers to questions such as “Which attacks are likely threaten this asset?” 

• They capture the high level goals of such attacks; 

• They enable the refinement of attacker goals by expressing the negations of specified 
security requirements, then constructing AND/OR trees from the resulting anti-goal 
statements; 

• They can be analyzed with the assistance of an automated tool such as Objectiver23 to 
determine whether they can be realized. 

SUGGESTED RESOURCES 

• van Lamsweerde “A. Elaborating Security Requirements by Construction of Intentional 
Anti-Models”. Proceedings of the 26th International Conference on Software Engineering, 
Edinburgh, Scotland, May 2004, pages 148-157. Accessed 19 January 2008 at: 
http://www.info.ucl.ac.be/Research/Publication/2004/avl-Icse04-AntiGoals.pdf 

• van Lamsweerde, Axel, Simon Brohez, Renaud De Landtsheer, David Janssens. “From 
System Goals to Intruder Anti-Goals: Attack Generation and Resolution for Security 
Requirements Engineering”. Proceedings of the 2003 Workshop on Requirements for 
High Assurance Systems, Monterey, California, September 2003, pages 49-56. Accessed 
17 January 2008 at: http://www.cs.toronto.edu/~jm/2507S/Readings/avl-RHAS03.pdf 
—and— http://www.cs.ndsu.nodak.edu/~vgoel/Security-Engineering/avl-RHAS03.pdf —
and— http://www.info.ucl.ac.be/Research/Publication/2003/avl-RHAS03.pdf  

4.5.1.4.3 State transition diagrams 

In their paper “Building Security Requirements Using State Transition Diagram at Security 
Threat Location”,24 Seong Chae Seo, et al., describe an approach for threat modeling using 
state-transition diagrams.  

                                                 

23 This tools can be downloaded from: http://www.objectiver.com 

24 Seo, Seong Chae, Jin Ho You, Young Dae Kim, Jun Yong Choi, Sang Jun Lee, and Byung Ki Kim. “Building 
Security Requirements Using State Transition Diagram at Security Threat Location”. In Lecture Notes in Computer 
Science: Computational Intelligence and Security, Volume 3802/2005, pages 451-456. Heidelberg, Germany: Springer-
Verlag, 2005. 
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5 SECURE DESIGN PRINCIPLES AND PRACTICES 
“Many systems fail because their designers protect the wrong things, or protect the right things 
in the wrong way”. 25 

5.1 SECURE ARCHITECTURE CONSIDERATIONS 

At the architectural level, the software’s execution environment can be “provisioned” with a 
variety of security services and protections that will reduce the possibility of malicious input 
reaching the software, minimize the exposure of the software’s own vulnerabilities to the 
outside world, minimize the external visibility of trusted and high-consequence components to 
reduce their exposure to threats, and isolate untrustworthy components so that their execution 
is constrained and their misbehaviors do not threaten the dependable operation of other 
components. Such security services/protections may include: 

• Application-level firewalls and intrusion prevention systems to block known malicious and 
problematic input before it reaches the software; 

• Virtual “sandboxes” that provide an isolated environment in which untrustworthy 
components can be executed to prevent their potential misbehaviors from affecting 
trustworthy components; 

• Code signature validators (code signatures are digital signatures applied to executable 
code for validation either at time of delivery (mobile code) or installation, or at runtime, to 
determine one or both of the following:  

o Whether the code originated from a trusted source;  

o Whether the code’s integrity has been compromised since it was generated.) 

In the development of commercial software, it is often not possible for designers to make any 
reliable assumptions about the security services/protections that will be present or active in 
the execution environment. For this reason, engineers of commercial software need to be extra 
diligent in designing software that is capable of “looking after” its own dependability, 
trustworthiness, and survivability since the assurance of these properties cannot be depended 
upon from external sources. 

If the software is to be deployed in a variety of platforms, the design should include an 
interface abstraction layer that minimizes the software’s need to accommodate the differences 
between the platforms.  

                                                 

25 Anderson, Ross. J. Security Engineering: A Guide to Building Dependable Distributed Systems, Second Edition. New 
York, NY: John Wiley & Sons Inc., 2008. 
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NOTE: A Virtual Machine Monitor (VMM) is an increasingly popular implementation of an 
interface abstraction layer.26 

SUGGESTED RESOURCES 

• Software Security Assurance, Section 5.3. 

• Howard, Michael and David LeBlanc. Designing Secure Software. San Francisco, 
California: McGraw-Hill Osborne Media, 2007. 

• Aaby, Anthony A. “Security and the Design of Secure Software”. In Software: A Fine Art, 
Draft Version 1.0, 9 February 2007. Accessed 19 January 2008 at: 
http://cs.wwc.edu/~aabyan/FAS/book/node5.html#SECTION05500000000000000000 - 
and - http://moonbase.wwc.edu/~aabyan/FAS/book.pdf —and— 
http://cs.wwc.edu/~aabyan/FAS/book.pdf 

5.2 SECURE SOFTWARE DESIGN PRINCIPLES AND PRACTICES 

The first three general secure software principles in Section 3.1—(1) Minimize the number of 
high-consequence targets; (2) Don’t expose vulnerable or high-consequence components; and (3) Deny 
attackers the means to compromise—provide a framework by which to categorize the secure 
design principles discussed below.  

One general design principle falls outside these three categories:  

• Make sure that the design specification is easily comprehensible and traceable. 
Comprehensibility will make the design specification easier to analyze to reveal 
possible vulnerabilities and weaknesses. A specification that is fully traceable will make 
it easy to determine whether the design satisfies all of its requirements, including its 
security-relevant requirements. This traceability should be backward and forward, i.e., 
it should be possible to trace forward from a requirement to its manifestation in the 
design, and backward from a point in the design to derive the requirement(s) satisfied 
at that point. It should also be possible to trace forward from any point in the design to 
its manifestation in the implemented code, and backward from the code to the part of 
the design realized by that code. 

                                                 

26 The VMM hides the details of the underlying platform from the software running within the virtual machines 
provided by the VMM. Each virtual machine presents the software with an unchanging set of execution 
environment interfaces, with the VMM acting as a kind of “translator” between those interfaces and the actual 
interfaces of underlying platform (Windows, Linux, Mac OS X). As long as the VMM runs on a given platform, 
the software can be installed and executed on that platform without any modification. This portability extends to 
the software’s expectations of the environment-level security services/protections it will receive. Problems may 
arise, however, if a certain platform does not provide a certain expected service/protection. The VMM as conduit 
to the underlying platform cannot hide the fact that the relied-on service/protection is not there. It may, however, 
make it easier to add a third-party service/protection to the platform without having to change the software 
running in the virtual machine—as long as the VMM’s platform-level interfaces can be extended to address that 
third-party package. 
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NOTE: In practice, conformance to secure design principles presents a challenge because 
developers typically do not have the deep, detailed understanding of the target execution 
environment in which their software will run. This understanding is critical to the ability to 
define a detailed design of software that will conform to these principles. For example, the ability 
to design software that conforms to the principle of least privilege requires the developer to fully 
understand the operation of the privilege granting and revoking mechanisms in the underlying 
operating system on which the software will be hosted. In any case, the designer is always 
required to make assumptions about the execution environment. The likelihood of the designer’s 
security assumptions being correct will be greatly increased through consultation with the 
security expert assigned to the development team; this challenge is, in fact, one of the strong 
arguments supporting the need of such an expert.   

5.2.1 General Principle 1: Minimize the number of high-consequence targets 

The following principles and practices contribute to the design’s ability to conform to this 
general principle. 

5.2.1.1 Principle of least privilege 

According to the Software Assurance CBK: 

“Least privilege is a principle whereby each entity (user, process, or device) is granted the most 
restrictive set of privileges needed for the performance of that entity’s authorized tasks. 
Application of this principle limits the damage that can result from accident, error, or 
unauthorized use of a system. Least privilege also reduces the number of potential interactions 
among privileged processes or programs, so that unintentional, unwanted, or improper uses of 
privilege are less likely to occur.” 

Least privilege supports General Principle 1 by minimizing the number of actors in the system 
granted high levels of privilege, and the amount of time any actor holds onto its privileges. 

The essence of least privilege is “That which is not expressly permitted is forbidden.” Least 
privilege determines how access (read, write, delete, execute) privileges are granted to actors 
(users, software entities initiated by users, autonomous software entities). In many systems, 
privileges assigned to software entities initiated (and thus acting on behalf of) users are 
identical to those assigned to the users that initiate them; this is usually done because it is the 
most convenient way to design the system.  

However, the principle of least privilege requires privileges to be assigned based on the real 
need of the actor who needs the privilege to perform a task. The requirements of the task 
should determine the level of privilege assigned to the actor that will perform that task. If the 
task can only be performed by a software entity, and not by a human user, the privilege 
assigned to the software entity should differ from that assigned to the human user who 
initiated the software entity.  

The principle of least privilege requires the designer to think about the actual privilege 
required for each task a software entity may perform, rather than simply assigning a general 
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(user) set of privileges to that entity that will enable it to perform all tasks, including tasks it 
doesn’t ever need to perform. Software entities specified in the design should never request or 
receive privileges that exceed the minimum level of privilege needed to accomplish a given 
task.  

Nor should actors retain privileges indefinitely. In a truly secure design, each entity would 
retain the privilege it required to perform a given task only long enough to complete that task. 
The entity would then relinquish that privilege and, if it needed to perform the same task 
again later, it would be reissued the necessary privilege at that time. In practice, this is unlikely 
to be feasible, and for most low-privilege, “untrusted” tasks, it will be acceptable to assign the 
privilege to the software actor for some fixed duration (e.g., the length of a “session”), before 
requiring the entity to relinquish the privilege then provide whatever credentials it needs to 
request the privilege again. The more sensitive or critical a task, however, the less time the 
software entity that performs that task should be allowed to retain the privilege required to 
perform it. In the case of tasks associated with trusted functions (e.g., cryptographic and policy 
enforcement functions, program control/configuration update functions), the rule of “use then 
relinquish” should be enforced. 

Least privilege is made easier to enforce in a design in which the number of “sensitive” and 
trusted (i.e., highly privileged) functions is kept to a bare minimum. In a software system in 
which multiple functions will require different privileges, the functions should be designed 
and implemented as multiple discrete, small, simple (ideally single-purpose) executables that 
call each other, and not as a single, large, complex multifunction executable that requires a 
variety of privileges.  

Modularizing functions into separate simple executables minimizes the number of privilege 
changes that must occur during the software’s execution. It should be possible to decompose 
complex functions that on first glance appear to require a high level of privilege into multiple, 
simpler functions (or tasks), most of which will not require high level privileges. For example, 
a cross-domain solution that is used to review, reclassify, and release documents from a 
classified network to an unclassified network can be decomposed into a series of tasks that will 
collectively accomplish the file “downgrade” and “release”: 

Parsing of file text content; 

1 Determining whether parsed text is unclassified or classified; 

2 Changing the sensitivity label on the file if unclassified; 

3 Routing the downgraded file to its intended destination/recipient on the unclassified 
network. 

Only one of these tasks actually needs a high level of privilege that will enable it to violate the 
mandatory access control policy of the file system in which the file to be “downgraded” 
resides: the label-changing function. While it is crucial to protect the integrity of the other 
functions to ensure their trustworthiness, these functions do not require high levels of 
privilege.  
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Software that is comprised of small, simple functions (implemented by small, simple 
executables) will be easier to analyze and troubleshoot, and its security will be much easier to 
assure. 

Least privilege alone will not guarantee secure software. Other principles of secure design 
must also be followed, including avoiding single points of failure and not presenting high-
value targets to attackers. For this reason, highly privileged functions should never be 
centralized in a single component or module. 

The privileges a component/process requires should never conflict with known security 
policy and configuration constraints mandated for the organization and environment in which 
the software will operate. For example, the DoD Security Technical Implementation Guides 
(STIGs) define constraints that must be configured for various application 
frameworks/platforms and operating systems, and the architect and designer of software that 
is custom-developed for DoD should make himself/herself aware of these mandatory 
constraints to ensure that his/her assumptions about the software’s execution environment do 
not conflict with what will actually be provided in the “STIGed” execution environment. For 
example, if an operating system STIG prohibits the assignment of “root” or “superuser” 
privileges to untrusted software programs, the design should not require the software to be 
granted such privileges. Responsible architects and designers should always ask or research to 
determine whether mandatory constraints similar to those defined in DoD’s STIGs will apply 
in the environment/organization for which their software is being custom-developed.  

5.2.1.2 Principle of separation of privileges, duties, and roles 

These essence of separation of privileges is “No single entity (human or software) should have 
all the privileges required to modify, overwrite, delete, or destroy the system as a whole, or all 
components and resources that comprise the system.” Separation of privileges and 
duties/roles supports General Principle 1 by helping minimize the number of different 
privileges required by any single actor in the system. 

The way to make separation of privilege easier is to also enforce separation of duties or roles. 
What this means is that instead of all entities being able to access all parts or perform all 
functions, the entities are assigned roles or duties that require them to perform only a subset of 
the overall functions provided by the system.  

In terms of how software is designed, separation of roles and privileges is also consistent with 
simplicity: i.e., instead of designing one large, complex multifunction entity that requires 
“superuser” privileges in order to perform all of its functions, the system should include 
multiple simple, single-function entities that require only the privileges needed to accomplish 
their function.  

In a Web service/service oriented architecture (SOA) context, software entities (services) also 
take on different roles: there are consumers, providers, and intermediaries. The duties 
associated with each role are different:  
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• A consumer service needs to be able to generate and transmit Universal Description, 
Discover, and Integration (UDDI) and SOAP (formerly Simple Object Access Protocol) 
request messages and to receive and parse the content of Web Service Definition 
Language (WSDL) and SOAP response messages;  

• A provider service needs to be able to receive and parse the content of SOAP request 
messages, and to generate and transmit SOAP response messages;  

• An intermediary service acts as a message router, and therefore needs to be able to 
generate and transmit UDDI and SOAP messages and to receive and parse the content 
of WSDL response messages, but does not need to be able to parse the content of SOAP 
request or response messages. 

Similarly, the expectations for software systems’ users should also be governed by separation 
of privileges, duties, and roles (and by least privilege): end users of server-side systems will 
not require the same privileges or functions as those in administrator, Webmaster, and other 
such roles. A simple example of this is provided by how duties are separated and the 
associated privileges granted for a traditional Web portal application. The end user requires 
only the ability to read posted content and to enter data into HTML forms. The Webmaster, by 
contrast, needs to be able to read, write, and delete content and to modify the HTML forms’ 
software code. The privileges required by the user role and its duties, therefore, are 
significantly different from those required by the Webmaster role and its duties. 

5.2.1.3 Principle of separation of domains 

Separation of domains is a principle that supports General Principle 1 by making separation of 
roles and privileges easier to implement. It also supports General Principle 2 by reducing the 
exposure of different actors and objects in the system to each other, which minimizes the 
likelihood that non-malicious actors will interact with malicious actors, or that a malicious 
actor will be able to easily gain access to any memory locations or data objects on the system. 
Together, these two controls ensure that users and processes are able to perform only tasks 
that are absolutely required, and to perform them on only the data, in only memory space, and 
using only the functions that they absolutely must access to accomplish those tasks. In 
practical terms, this is achieved through compartmentalization of users, processes, and data. 
This compartmentalization also helps contain the impact of faults and failures.  

In Windows, Linux, and Unix (and its derivatives), access controls alone cannot isolate 
intentionally cooperating programs. If cooperation of malicious programs is a concern, the 
software should be implemented on a more secure platform, such as a trusted operating 
system or in a virtual machine reinforced by hardware isolation. 
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5.2.2 General Principle 2: Don’t expose vulnerable or high-consequence 
components 

The following practices contribute to the design’s ability to conform to this general principle. 

5.2.2.1 Keep program data, executables, and program control/configuration data separated 

This practice supports General Principle 2 by reducing the likelihood that an attacker who 
gains access to program data will easily locate and gain access to program executables and/or 
control/configuration data. 

The majority of techniques for separating program data from control data, and from 
executables at all levels of the system (processor up to application) are execution environment-
, and more specifically file system-, level techniques such as: 

• If possible, host the software only on platforms that implement the Harvard 
architecture, which ensures that program data and control data are stored in two 
physically separate memory segments.  

• Set permissions on program data and its associated metadata to be readable and 
writable only by the program that creates the data/metadata unless there is an explicit 
need for other programs/entities to be able to read and/or write that data/metadata. 
The exception to this rule is the data’s access permissions themselves (which could be 
seen as a type of metadata): these should be writable only by the program and the 
administrator, but readable by all users (human and software) unless the data is hidden, 
in which case its metadata and permissions should also be hidden. 

• A program’s control/configuration data should only be readable by that program, and 
should only be writable by the administrator. The exception is client application or 
browser configuration/preferences data that is expressly intended to be configurable by 
the user. In this case, the user should be allowed to read/write such data only via a 
purpose-built configuration or preferences interface.  

• In a Web server application, unless there is an explicit need for users to directly view 
data used by a script, all such data should be placed outside the Web server’s document 
tree.  

• Prohibit programs and scripts from writing files to world-writable directories such as 
the Unix /tmp directory. All directories to which programs write should be configured 
to be writable only by those programs. 

• Store data files, configuration files, and executable programs in file system directories 
that are separate from each other. An executable program or script should not be 
writable by anyone except the administrator (and the installer if that is a separate role). 
The deployed (operational/production) executable should not be readable by anyone; 
the program’s users should be granted only execute-only privileges to the executable.  
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• Programs and scripts that are configured to run as a Web server’s “nobody” user 
should be modified to run under a specific username, and the “nobody” account should 
be deleted. 

• If possible, encrypt all executable files, and implement a trusted decryption module that 
executes as part of program initiation to decrypt the executable so it can run. 

If file system access controls alone are not strong enough to isolate software’s 
control/configuration data from tampering and deletion/destruction, additional measures 
such as file encryption and digital signature should be implemented. These would require the 
software to include cryptographic logic to decrypt and validate the signature on the 
control/configuration file at program startup. 

If the software’s own host’s access controls are not considered adequately robust, it may be 
desirable to store the software’s control/configuration data on a remote trusted server (e.g., the 
server that hosts the single sign-on service used by the system, the Lightweight Directory 
Access Protocol directory used by the system’s public key infrastructure, or another such 
trusted system service. Each request to access the remote server should be transmitted over an 
encrypted (e.g., by Secure Socket Layer/Transport Layer Security [SSL/TLS]) connection to 
prevent the clear-text data from being “sniffed” in transit (e.g., as part of a reconnaissance 
attack, or in preparation for tampering with the configuration). If the software requires read-
back verification of the configuration data it receives, the connection over which verification is 
received should also be encrypted. 

For software components of a system that is likely to be cloned,27 when a remote server is used 
to store the software’s control/configuration data, if that data can be changed via the software, 
the changes should not be sent over the same communication channel by which the software 
earlier retrieved the configuration data from the server; instead, the software should send the 
changed data back to the remote server via a separate encrypted channel.  

Section 5.5 describes the wide variety of environment-level mechanisms that can be used to 
provide a constrained execution environment. 

5.2.2.2 Segregate trusted entities from untrusted entities 

This practice supports General Principle 2 by reducing the exposure of the software’s high-
consequence functions from its high-risk (vulnerable and untrustworthy) functions, which are 

                                                 

27 Cloning is the act of creating an identical copy of the existing system, including the software system and its 
execution platform. Cloning may be performed to create or refresh a test system to ensure it is identical to the 
production system, before testing software updates. Cloning may also be performed to move an existing software 
system to a new platform, or to duplicate it on another platform(s). Cloning does more than simply copy the 
executable; it also updates all of the software’s configuration files to accommodate its hosting on the new 
platform. Cloning of private cryptographic information (such as private X.509 certificates) may cause a security 
violation; for this reason, new private cryptographic information should be created for the clone. 
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susceptible to delivery of malicious code or corruption by attackers so that their execution 
threatens the dependable, trustworthy operation of the software as a whole.  

NOTE: High-consequence functions are those whose failure would have a high negative impact 
on the ability of the software’s users to accomplish their objectives or mission. 

An untrusted entity (component, agent, process) is one that is considered untrustworthy based 
on its inability to satisfy some predefined criterion/criteria for determining trustworthiness. 
Determination of trustworthiness (and thus “trust”) may be made at any point in the 
software’s development, or it may be determined during its operation. For example, a COTS 
component whose source code could not be reviewed during the system’s development may 
be deemed “untrusted” because its trustworthiness could not be adequately assessed before its 
deployment. By the same token, a mobile agent that cannot be authenticated during the 
system’s operation may be designated “untrusted”, as could a Java applet that is not digitally 
signed or whose code signature cannot be validated. 

By contrast, a trusted entity is able to satisfy the criteria by which trustworthiness is 
determined. Trusted entities are most often used to perform high-consequence functions, 
including those that involve security decisions or control/configuration transformations. 

All entities should be considered untrusted until expressly verified to be trustworthy (and thus 
trusted). An untrusted entity should never be granted privileges higher than those assigned to 
the end user that invoked the entity and/or on whose behalf the object is operating. This is 
true whether the object was invoked by direct execution or indirectly via a chain of directory or 
Web service requests that can ultimately be traced back to the user.  

Isolate trusted entities in their own execution area (with resources dedicated to that execution 
area) to minimize their exposure to untrusted entities and the software’s external interfaces 
(through which attack-patterned input, delivered malicious code, etc., may be delivered).  

The software’s high-risk untrusted entities should also be isolated to limit the potential for 
propagation of the impact and to minimize the damage that results from the execution of any 
malicious or attack-compromised logic embedded within those entities. In particular, 
remotely-sourced downloaded software, such as mobile code and mobile agents, and software 
that processes files/documents (e.g., word processing documents) containing embedded 
macros should (1) always be considered untrustworthy (and thus “untrusted”), and (2) 
isolated before execution.  

Many execution environments provide mechanisms for configuring restrictive “isolation 
areas” for this purpose. As with isolation of high-consequence functions, isolation of high-risk 
functions will prevent those functions from accessing other areas of the software and of its 
execution environment, including the portions of the file system that contain the rest of the 
software’s executable image(s), data files, and control/configuration file(s).  

The Java and Perl (Practical extraction and report language) security architectures include 
sandboxing functions. .NET includes a Code Access Security mechanism in its Common 
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Language Runtime (CLR). At runtime, the sandbox or CLR assigns a level privilege to the 
executable(s) contained within it. This privilege level should be the minimal needed by the 
function(s) the code is expected to perform during its normal, correct operation. If the 
executable operates in an unexpected way, i.e., performing any unexpected function, the 
sandbox/CLR will generate an exception, and the exception handler will prevent the 
executable from performing that unexpected operation and from accessing any resources 
outside the sandbox. On Unix systems, chroot jails can be configured to provide sandbox-like 
isolation. 

More robust isolation mechanisms include virtual machines, trusted operating systems, and 
trusted processor modules. These and other execution environments that provide software 
protection and isolation mechanisms are discussed in Section 5.5. 

Other than constrained execution environments, some mechanisms that can be used to protect 
and constrain the execution of software include: 

• Hardware initialization: Initialization of hardware memory to a bit pattern that will 
revert to a safe state if, for any reason, instructions start being read from random 
memory; 

• Program shepherding: A technique for monitoring control flow transfers, prevent 
execution of malicious data or modified code, and to ensure that libraries are entered 
only through exported entry points (thus, restricting control transfers based on 
instruction class, source, and target). Program shepherding also provides sandboxing 
that cannot be circumvented, allowing construction of customized security policies; 

• Altered program memory maps: These are implemented by modifying the default 
protection bits applied to a program’s stack, and, additionally, other memory regions. 
Each page in a computer system’s memory has a set of permission bits describing what 
may be done with the page; the memory management unit of the computer, in 
conjunction with the kernel, implements these protections: altering the memory map 
requires no changes to the protected programs and, if successful in thwarting an 
exploit, the result will be a protection fault and termination of the vulnerable program. 
This mechanism has no performance impact on the protected programs themselves, but 
may incur overhead within the operating system. As it requires a modification to the 
operating system, this protection is not portable. Please also note that altering program 
memory maps only protects the stack, not the heap or program data; 

• Monitoring and filtering: These can be used to detect and prevent undesirable state 
changes in the execution environment. Such filtering will help identify suspicious state 
changes in the software’s execution environment by taking “snapshots” of key 
environment attributes before and after executing untrusted software (e.g., mobile code) 
that may contain malicious logic, and monitoring unexpected differences in 
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environment state during the program’s execution. Such state changes are often the 
earmarks of malicious code attacks.28  

Note that successful isolation and containment depend on the ability to establish and sustain 
the isolation/containment mechanism in a secure state, and to receive warnings of imminent 
failures in sufficient time to minimize damage and ensure that the failure will not endanger 
the protected/constrained software. Related secure design principles are described in Section 
5.3.3. 

SUGGESTED RESOURCES 

• Shi, Weidong, Hsien-Hsin S. Lee, Chenghuai Lu, and Mrinmoy Ghosh. “Towards the 
Issues in Architectural Support for Protection of Software Execution”. Georgia Institute 
of Technology Report Number CERCS;GIT-CERCS-04-29, 2004. Accessed 31 December 
2007 at: http://smartech.gatech.edu/bitstream/1853/4949/1/git-cercs-04-29.pdf 

5.2.2.3 Minimize the number of entry and exit points into and out of any entity  

Strive for one entry point into any software entity (function, process, module, component) and 
ideally one, or at most very few, exit points. This principle supports General Principle 2 by 
reducing the number of software access points exposed to attackers. It also makes the resulting 
software easier to analyze, and when implemented at the component level, it makes 
substitution and replacement of components easier. 

5.2.2.4 Assume environment data is not trustworthy 

The designer should assume that all components of the execution environment are neither 
dependable nor trustworthy unless and until this assumption is proved wrong. This principle 
supports General Principle 2 by reducing the exposure of the software to potentially malicious 
execution environment components or attacker-intercepted and modified environment data.  

NOTE: This principle is not limited to environment components. The designer should assume 
that all entities external to the software are untrustworthy, and should accordingly validate all 
data received from those entities. 

                                                 

28 One approach entails the following actions: (1) Configure a filtering router to pass traffic between a test 
system, on which is hosted the software and its intended execution environment, and the network; (2) Install 
network analysis tools on the filtering router; (3) Snapshot the software’s execution environment to develop a 
detailed picture of its known, trusted behavior; (4) Disconnect or isolate the test system from the network; (5) 
Install the untrusted program suspected to contain malicious code; (6) Record and analyze all changes in 
environment behavior during the untrusted program’s execution. If the tester determines that all recorded 
changes to the environment and system states are neither unauthorized nor unexpected, it can be reasonably 
concluded that the particular untrusted software is “safe”.  
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For this reason, the software should be designed with minimal dependency on data provided 
by its execution environment, and should validate all environment data it does receive before 
using that data.  

Some application frameworks are verified to provide trustworthy environment data to the 
applications hosted within those frameworks. For example, Java EE components run within 
“contexts” (e.g., System Context, Login Context, Session Context, Naming and Directory 
Context, etc.) that can be relied on to provide trustworthy environment data at runtime to Java 
programs.  

5.2.2.5 Use only safe interfaces to environment resources 

This practice supports General Principle 2 by reducing the exposure of the data passed 
between the software and its environment.  

Nearly every programming and scripting language allows application-level programs to issue 
system calls that pass commands or data to the underlying operating system. In response to 
such calls, the operating system executes command indicated by the system call, and returns 
the results to the software along with various return codes that indicate whether the requested 
command was executed successfully or not. 

While system commands may seem like the most efficient way to implement an interface to 
the underlying operating system, a secure application will never issue a direct call to the 
underlying operating system, or to system-level network programs such as sendmail unless 
controls are imposed that are adequate to prevent any user, attacker, or malicious program 
from gaining control of the calling program and exploiting its direct calling mechanism(s). Not 
only does each application call to a system-level function create a potential target for attack, 
whenever the software issues a system call, the homogeneity of the system’s design is reduced, 
and its reliability diminishes. 

Application-level programs should call only other application-layer programs, middleware, or 
explicit APIs to system resources. Applications should not use APIs intended for human users 
rather than software nor rely on a system-level tool (versus an application-level tool) to 
filter/modify their own output. 

All references to system objects should be made securely. For example, call-outs and filename 
references should specify the full pathname of the system resource being called/the file being 
referenced, e.g., /usr/bin/sort rather than ../../sort. Using full pathnames eliminates the 
possibility that the wrong program may be called, or executed from the wrong directory (e.g., a 
directory in which a Trojan horse is stored at the location where the calling program expected 
to find a valid program). 

Filtering of system calls, whereby a monitoring program must inspect and approve system 
calls invoked by an untrusted program before the program's processing is allowed to continue. 
The monitor program makes decisions about the validity of system calls by knowing in 
advance what the untrusted program is supposed to do, where it is expected to manipulate 
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files, whether it is expected to open or listen to network connections, and so on. Valid behavior 
of the untrusted program is coded in a profile of some kind, which is referenced when the 
untrusted program executes. This defense, though, will affect the performance of programs 
run under the watch of a monitor but will not affect other programs. 

5.2.3 General Principle 3: Deny attackers the means to compromise 

The following principles and practices contribute to the design’s ability to conform to this 
general principle. 

5.2.3.1 Simplify the design 

By keeping the design as simple as possible, the designer will be less likely to include 
weaknesses and vulnerabilities, especially hard to detect weaknesses/vulnerabilities, or to 
introduce complexities that make the design and its security implications difficult to analyze 
and understand. This principle supports General Principle 3 by minimizing the number of 
attacker-exploitable vulnerabilities and weaknesses in the system. This principle will also 
make the design, and the implemented software, easier to analyze and test. 

Some specific design choices that will simplify the software’s design are: 

1. Limit the number of states possible in the software; 

2. Favor deterministic processes over non-deterministic processes; 

3. Use single-tasking rather than multitasking whenever practical; 

4. Use polling rather than interrupts; 

5. Include minimal feature sets and capabilities in components; these should be only those 
features/capabilities the components require to perform their job in the 
program/system. The architectural decomposition of a program should match its 
functional decomposition, enabling a one-to-one mapping of program segments to their 
intended purposes; 

6. Decouple components and processes to minimize interdependencies among them. 
Minimizing interdependencies will prevent a failure or anomaly in one 
component/process from rapidly affecting the states of other components/processes. 
Note that vulnerabilities frequently arise when environment and hardware components 
that a software component depends on fail. Decoupling can be best achieved by:  

a. Modularizing the program’s functionality into discrete, autonomous processing 
units. This includes dividing individual functions’ processing sequences into 
multiple series of small, single-purpose increments, rather than implementing 
the function as a single complex step;  
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b. Establishing barriers to prevent communications between components that are 
not intended to interact; 

c. Allocating only read-only or restricted-write memory space for processes to use, 
to prevent all but explicitly-authorized components from changing data values; 

d. Favoring loose coupling of functions over tight coupling;  

e. Avoiding time-dependent processes (i.e., processes that must execute within a 
given timeframe so they cannot wait for other conditions to occur before they 
execute). This will increase the program’s threshold of tolerance for 
unanticipated events or interactions;  

f. Avoiding invariant processing sequences that allow only one way for the 
program to reach its goal. Such sequences can be exploited by an attacker to 
cause unexpected events and interactions (other than those defined in the 
invariant processing sequence); 

7. Leave out unnecessary features. If the design includes COTS or OSS components in 
which dormant code, dead code, unnecessary functions (“features”), or undocumented 
functions are present, the design should also include wrappers to isolate those unused 
code segments to prevent them from being inadvertently or intentionally accessed or 
triggered during the software’s execution. 

5.2.3.2. Hold all actors accountable, not just human users 

This practice supports General Principle 3 by ensuring that all attacker actions are observed 
and recorded, contributing to the ability to recognize and isolate/block the source of attack 
patterns and thereby prevent attacks from succeeding. 

The traditional means of enforcing accountability has been a combination of auditing and non-
repudiation measures. Auditing amounts to security-focused event logging to record all 
security-relevant actions performed by actors while interacting with the system. What 
distinguishes auditing from standard event logging are (1) the type of information captured in 
the audit record; (2) the level of integrity protection applied to the audit records to prevent 
them from being intentionally or inadvertently deleted, corrupted, or tampered with. 

Non-repudiation measures are applied to any data objects created or manipulated as a result 
of an actor’s interaction with the system. Such data objects can range from electronic 
documents to email messages to database or form field entries to interprocess communications 
(e.g., SOAP messages between Web services). The non-repudiation measure, most often a 
digital signature, binds proof of the identity of the actor responsible either for the creation or 
manipulation (modification, transmission, receipt) of the data object, so that the actor cannot 
later deny responsibility for that act. 

A prerequisite for auditing and non-repudiation is the ability to bind the authenticated 
identity of the actor to the act/event or data object for which it is to be held accountable. This 
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presumes that authentication, ideally strong authentication, of the actor will occur, and that 
some mechanism, such as a digital identity certificate, will be irrevocably associated with that 
actor as a result of the authentication of its identity.  

In a software-intensive system, auditing and non-repudiation measures need to extend beyond 
just the human users to include semi- and fully-autonomous software entities, such as agents 
and Web and grid services that operate without human intervention, and in some cases 
without human knowledge. The accurate attribution of all software actors is the only way  to 
establish a “paper trail” by which responsibility for security violations or compromises can be 
traced back to whatever human agent is responsible for the software entity (or entities) that 
caused the violation/compromise. 

For Web services in particular, SAML certificates provide a mechanism for service-to-service 
authentication; SAML can be used in other types of applications as well, or secure RPC may be 
used. It is not yet clear that a comparable approach for establishing software process identity 
and accountability is workable within non-distributed software systems. 

5.2.3.3 Avoid timing, synchronization, and sequencing issues 

This practice supports General Principle 3 by reducing the likelihood of race conditions, order 
dependencies, synchronization problems, and deadlocks. The developer should be careful to 
understand and apply effective techniques and measures to avoid such issues and to ensure 
asynchronous consistency within any multitasked and multithreaded programs. 

Many timing and sequencing issues are caused by the sharing of state information 
(particularly realtime and sequence-order information) across disjoint program abstractions 
such as unrelated or conflicting classes in object-oriented programs. 

NOTE: An example of a disjoint abstraction is a class called CustomerTable in an object-
oriented database application. The class is disjoint because the objects “customer” and “table” 
have nothing in common; by contrast, “circle” and “ellipse” are related abstractions—both are 
geometric shapes defined by continuous curved lines; therefore, the class CircleEllipse in an 
object-oriented drawing program would not be disjoint.  

The dissimilarity of objects in a disjoint abstraction can result in a conflict if the two attempt to 
interact. For example, consider the following situation: 

Object A is designed to request a validation from Object B then, if it doesn’t receive that 
validation within five seconds, to terminate. Object B is designed to give precedence to 
validation requests it receives from Object C; if such a request is received while Object B is 
processing one of Object A’s validation requests, Object C is designed to interrupt that 
processing to handle Object C’s request. This interrupt may exceed Object A’s five-second wait 
threshold, thus causing Object A to terminate.  

Timing, synchronization and sequencing errors may be exploitable by attackers. In the 
example above, an attacker could use man-in-the-middle spoofing attack to pose as Object C in 
order to issue a validation request that it knows will cause Object B to interrupt all processing 
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in order to handle the ostensible Object C request. If the interrupt exceeds five seconds, Object 
A will terminate: so, the attacker has, in essence, caused a failure in the program.  

To avoid such timing, synchronization, and sequencing issues in software, developers should: 

• Make all individual transactions atomic (non-interdependent); 

• Use multiphase commits for data “writes”; 

• Use hierarchical locking to prevent simultaneous execution of processes; 

• Set processes’ “wait” thresholds (for responses from other processes) as high as 
possible, given the program’s performance requirements; 

• Reduce time pressures on system processing whenever possible, e.g., by slowing 
processing rates. 

Multitasking and/or multithreading in programs that run on operating systems that support 
those features can improve program performance. However, they also increase the programs’ 
complexity, making it harder to analyze and verify software correctness and security.  

Multitasking and multithreading also increase the likelihood of deadlocks. Deadlocks occur 
when two tasks or threads both stop executing at the same time because each is waiting for the 
other to release a resource or to terminate (this is true even when only a single thread is used, 
if two processes communicate with one another and share resources such as memory and disk 
addresses). 

If the program is designed to multitask or multithread, the designer should ensure that 
tasks/threads that are intended to execute simultaneously have been synchronized to avoid 
conflicts among their system resource usage attempts.  

5.2.3.4 Make secure states easy to enter and vulnerable states difficult to enter 

This practice supports General Principle 3 by reducing the likelihood that the software will be 
allowed to inadvertently enter a vulnerable (exploitable) state. 

Software should always begin and end its execution in a secure state. State changes should 
always be deliberate and never inadvertent; this is particularly important for changes from 
secure to vulnerable states.  

If multiple secure states are possible, as a result of different processing conditions, the software 
should include a decision-making capability that enables it to choose the most appropriate 
secure state to enter. 

5.2.3.5 Design for controllability 
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Include logic for the control of the software’s execution to increase the resilience of the 
software. This principle supports General Principle 3 by making it easier to detect attack paths, 
and disengage the software from its interactions with attackers. Some specific design features 
that will increase the software’s controllability include: 

• Ability to self-monitor and limit resource usage; 

• Providing feedback that enables all assumptions and models upon which the program 
makes decisions to be validated before those decisions are taken. This feedback should 
include intermediate states and partial results of processing events; 

• Exception, error, and anomaly handling and recovery that: 

o Place critical flags and conditions as close as possible to the code they protect.  

o Interpret the absence of a protected condition as indicating the software process 
is not protected; 

o Use interlocks (batons, critical sections, synchronization mechanisms) to enforce 
sequences of actions or events so that no event can occur inadvertently, or when 
an undesirable condition exists, or out of sequence. For example, lockouts can 
be used to block access to a vulnerable process, or to preserve secure state and 
protect the software against using invalid data or valid data received in the 
wrong order or at an unexpected time or speed. 

5.2.3.6 Design for secure failure 

This practice supports General Principle 3 by reducing the likelihood that a failure in the 
software will leave it vulnerable to attack. Some specific design features that will increase the 
likelihood that software will fail securely include: 

Implement watchdog timers that check for “I’m alive” signals from processes. Each watchdog 
timer should be set by software other than that which it is responsible for observing.  

The exception handling logic should always attempts to take corrective action before a failure 
can occur, and to allow thresholds to be set to indicate “points of no return” beyond which 
recovery from a fault, vulnerable state, or encroaching failure is recognized to be unlikely or 
infeasible. Upon reaching this threshold, the exception handler should allow the software to 
enter a secure failure state (i.e., a failure state in which none of the software’s program and 
control data and not other sensitive data or resources controlled by the software are suddenly 
exposed, and in which damage resulting from the failure is minimized). 

5.2.3.7 Design for survivability 

This practice supports General Principle 3 by minimizing the amount of time a faulty or failed 
software component remains unable to protect itself from attack. 
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The software design should enable the software to take advantage of any redundancy and 
rapid recovery features at the system level. For example, if the system will support automatic 
backups and hot sparing of high-consequence components with automatic swap-over, the 
software system’s design should be modularized in such a way that its high-consequence 
components can be decoupled and replicated on the “hot spare” platforms. 

The software’s own error, anomaly, and exception, handling and recovery should support 
both backward and forward recovery. Backward recovery enables the software to detect every 
anomaly and error before it is able to create an exploitable vulnerability or escalate to a failure. 
If a failure does occur, the exception handler should return that software to a known good 
state that is more secure than the failure state. The biggest challenge will be detecting and 
recognizing anomalous and erroneous states in the first place. 

Forward recovery measures include the use of robust data structures, the dynamic alteration 
of flow controls, and the tolerance (i.e., ignoring) of single-cycle errors that do not persist 
beyond one cycle.  

Error handling in the software should recognize and tolerate errors likely to originate with 
human mistakes, such as input mistakes. The designer needs to: 

• Allow enough fault tolerance in the software to enable it to continue operating 
dependably in the presence of a fairly large number of user input mistakes;  

• Determine just how much information to provide in error messages by weighing the 
benefit of helping human users correct their own mistakes against the threat of 
reconnaissance attackers being able to leverage the knowledge they gain from overly 
informative error messages.  

5.2.3.8 Server functions should never rely on clients to perform high-consequence functions 
or trust client-originated data  

This principle supports General Principle 1 by reducing the consequence of the client (and thus 
eliminating a high-consequence target) and General Principle 3 by eliminating an attack path 
by frequently used by attackers to target server applications. Browsers and other clients 
should never be trusted to perform security-critical or other high-consequence functions. 
Reliance on client-originated data makes a server application vulnerable to attacks in which 
client-side data is altered before or in transit from client to server to compromise server-side 
security properties or functions, e.g., to subvert authentication checking or to gain access to 
confidential server-side data. 

The designer should always assume that clients will run in the most hostile execution 
environments possible.29 Server applications, portals, and proxy agents that interact with 
                                                 

29 There are exceptions, but these are “trusted clients” that have been expressly engineered as components of 
high-confidence systems, and that run on high-assurance platforms, such as MILS (Multiple Independent Layers 
of Security) platforms. 
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clients should be designed to protect themselves against attacks originating from clients that 
have been subverted, hijacked, or spoofed. Server-side software should always validate all 
data originating from a client, even if the client validated that data first. While client-side 
input validation may be useful as a filtering mechanism to eliminate some unacceptable data 
before it can be sent to the server, the server should never count on the client for filtering out 
bad data. It should always perform its own input validation.  

Principles of good input validation include: 

• Centralize input validation logic; 

• Ensure that input validation cannot be bypassed; 

• Rely on positive “white list” validation, not negative “black list” filtering. Use “black 
lists” only for preliminary filtering to reduce the amount of data that must undergo 
white list validation; 

• Validate all user input, including input from software proxies and agents acting on 
behalf of human users. Validation should check for correct, allowable length, format, 
and syntax;  

• Reject all executable content in input from sources not explicitly authorized to submit 
executable content (e.g., sources of mobile code downloads); 

• Verify that programs that request actions or call processes are entitled (by policy) to 
issue those requests/calls; 

• Define meaningful reactions to input validation failures. Rejection of failed input and 
sanitization (according to pre-defined rules) of failed input are the most frequent 
reactions.  

Section 6.4 describes how to implement server-side input validation. 

SUGGESTED RESOURCES 

• BuildSecurityIn Design Principles resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles.html 

• BuildSecurityIn Design Guidelines resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi-rules/home.html 

• Software Assurance CBK, Section 3.4. 

5.3 MODELING AND RISK ANALYSIS FOR ARCHITECTURE AND DESIGN 

During architecture and design, decisions must be made about how the software will be 
structured, how the various components will integrate and interact, which technologies will be 
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leveraged, and how the requirements defining how the software will function will be 
interpreted. Careful consideration is necessary during this activity, as up to 50 percent of 
software defects leading to security problems are design flaws. 

Security models are abstractions that capture, clearly and simply, the security properties and 
risk areas of the software. Models enable the developer to experiment with different variations 
and combinations of components at the architectural level, and of individual functions and 
constraints at the design level, to assess their comparative effectiveness in minimizing risk. By 
organizing and decomposing the whole software system into manageable, comprehensible 
parts, security modeling can also help the developer pinpoint and specify design patterns for 
software’s security functions. 

Modeling frameworks can help the designer capture the architectural patterns that specify the 
structure and security-relevant behaviors of the software system. Collaboration frameworks 
are similarly helpful for capturing design patterns that specify sets of abstractions that work 
together to produce common security-relevant behaviors.  

Specifically, software security modeling can help the designer: 

1. Anticipate the security-relevant behaviors of individual software components, 
behaviors related to the interactions among components, and behaviors of the software 
as it interacts with environment components and other external entities; 

2. Identify functions that may need to be modified or constrained, and inter-component 
interfaces that may need to be filtered or protected; 

3. Detect and correct errors in and omissions from the assumptions that informed the 
software requirements specification, and in specifying the detailed design, the software 
architecture; 

4. Identify known vulnerabilities and failure modes in the architectural and design-level 
countermeasures to ensure that the software’s most vulnerable components and 
functions are not exposed to exploitation and compromise; 

5. Identify conflicts between any component’s assumptions about the behaviors, security 
constraints, or security functions of any other component, and experiment with 
alternative integration/assembly options to eliminate those conflicts or to identify 
countermeasures to minimize their impact (if they can’t be eliminated). Architectural 
modeling in particular should reveal all security dependencies between different parts 
of the system;  

6. Identify conflicts between the components’ and whole system’s assumptions about the 
security protections and services provided by the execution environment, again 
enabling experimentation with alternative integration/assembly options that eliminate 
those conflicts and identification of countermeasures to minimize the impacts of 
irresolvable conflicts. Architectural modeling should also reveal all security 
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dependencies between the system (and its individual components) and its execution 
environment; 

7. Analyze the security impact of any new or changed requirements or component 
additions, deletions, or substitutions; 

8. Reveal any conflicts between the architecture and the design, or the design and the 
implementation, so as to document in the appropriate development artifacts any 
additional, unanticipated risks posed by those conflicts. 

The software’s architectural and design models should be revalidated at each phase of the life 
cycle to ensure that changes made in each subsequent SDLC phase are iterated back the earlier 
phase’s artifact(s). For example, if during implementation the developer decides that to 
improve performance, he will code input validation logic into a module instead calling out to a 
separate input validation engine, this change in approach would have to be iterated back into 
the design for that module. 

As with requirements, if formal specification language is used in documenting the design, 
proof checkers and other formal tools can be used to validate its completeness, correctness, 
and internal consistency (with the same caveat about aiding in predicting the security-
effectiveness of the design). 
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SUGGESTED RESOURCES 

• BuildSecurityIn Architectural Risk Analysis resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/architecture.html 

• BuildSecurityIn Modeling tools resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/modeling.html 

• Xu, Dianxiang and Joshua J. Pauli. “Threat-Driven Design and Analysis of Secure 
Software Architectures”. Journal of Information Assurance, Volume 1 Issue 3, 2006. 
Accessed 17 December 2007 at: http://www.homepages.dsu.edu/paulij/pubs/xu-pauli-
JIAS.pdf 

• Pauli, Joshua and Dianxiang Xu. “Threat-Driven Architectural Design of Secure 
Information Systems”. Proceedings of the Seventh International Conference on 
Enterprise Information Systems, Miami, Florida, 24-28 May 2005. Accessed 19 
December 2007 at: http://cs.ndsu.edu/%7Edxu/publications/pauli-xu-ICEIS05.pdf 

• Shina, Michael E. and Hassan Gomaab. “Software requirements and architecture 
modeling for evolving non-secure applications into secure applications”. Science of 
Computer Programming, Volume 66, Issue 1, 15 April 2007, pages 60-70. 

5.3.1 Leveraging misuse and abuse cases in architecture 

Misuse and abuse cases can form the basis of scenarios that can be used to analyze the 
architecture and, for new software products, to adjust that architecture. Questions that should 
be answered during this analysis include: 

• Which areas and components of the architecture does each misuse and abuse 
scenario affect? 

• How do the effects of a given scenario propagate through the architecture? Which 
other areas/components are affected as a result? 

• What is the nature of the damage that results from a particular misuse/abuse 
scenario? 

• Do the security constraints and protections in the architecture prevent the 
abuse/misuse scenario from succeeding? 

• What additional security constraints/protections can be applied, and where, to 
prevent an abuse/misuse from succeeding, or barring prevention, to minimize the 
resulting propagation and damage? 

In component-based development, the scenarios should be used to analyze different candidate 
component assembly architectures to determine and select the architecture that is most 
effective in its ability to prevent the greatest number of abuse/misuse scenarios, and to 
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minimize the propagation and damage from those scenarios whose success cannot be 
prevented. 

After identifying shortfalls, the architecture can be adjusted by adding new constraints and 
protections, replacing vulnerable components with more robust components, changing order 
of processing flows, etc. The new architecture model that results should document these 
changes along with their rationales. The new architecture should then be evaluated against the 
misuse/abuse scenarios, with the refinement process reiterated, and another new architecture 
model generated. This iterative architectural engineering should be repeated until, ultimately, 
an acceptable architecture is defined. 

These scenarios should also be added to the software’s test plan so they can later be used to 
verify the effectiveness of the anti-abuse/misuse countermeasures as implemented in the built 
software. 

SUGGESTED RESOURCES 

• Damodaran, Meledath. “Secure Software Development Using use cases and Misuse 
Cases”. Issues in Information Systems, Volume VII, Number 1, 2006, pages 150-154. 
Accessed 13 December 2007 at: http://www.iacis.org/iis/2006_iis/PDFs/Damodaran.pdf 

• Pauli Joshua J. and Dianxiang Xu. “Misuse Case-Based Design and Analysis of Secure 
Software Architecture”. Proceedings of the International Conference on Information 
Technology Coding and Computing, Las Vegas, Nevada, April 2005. Accessed 17 
December 2007 at: http://www.homepages.dsu.edu/paulij/pubs/pauli-xu-ITCC05.pdf 

• Pauli, Joshua J. and Dianxiang Xu. “Trade-off Analysis of Misuse Case-based Secure 
Software Architectures: A Case Study”. Proceedings of the 3rd International Workshop 
on Modeling, Simulation, Verification and Validation of Enterprise Information Systems, 
Miami, Florida, May 2005, pages 89-95. Accessed 13 December 2007 at: 
http://cs.ndsu.edu/~dxu/publications/pauli-xu-MSVVEIS05.pdf 

• Mouratidis, Haralambos, Paolo Giorgini, and Gordon Manson. “Using Security Attack 
Scenarios to Analyse Security During Information Systems Design”. Proceedings of the 
International Conference on Enterprise Information Systems, Porto, Portugal, April 2004. 
Accessed 17 December 2007 at: 
http://homepages.uel.ac.uk/H.Mouratidis/Paper91_CR.pdf 

5.3.2 Leveraging attack patterns in architecture and design 

Attack patterns at all levels can provide a useful context for understanding the threats that 
software is likely to face, and determining which architectural and design features to avoid 
and which to specifically incorporate. Attack patterns can be particularly useful as “building 
blocks” for defining some of the abuse and misuse scenarios described in Section 5.2.1 (i.e., 
scenarios that incorporate known attacks). 

Some attack patterns describe attacks that directly exploit architectural and design flaws in 
software. And example of such an attack pattern is provided below. 
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Make the Client Invisible 

This attack pattern exploits client-side trust issues apparent in the software architecture. 
The pattern indicates that absolutely nothing returned by the client to the server should be 
trusted, regardless of what security mechanisms are used to secure the communications 
path between them (e.g., SSL/TLS).  

Because the client is untrusted, the attacker could exploit it to return literally any data. For 
this reason, the server should perform all input validation, authorization checks, etc. on 
which trust is based (client-side input validation may be relied on only as a filtering 
mechanism to filter out bad data erroneously submitted by non-malicious users, while 
server-side input validation filters out bad input data intentionally submitted by malicious 
users or attackers.  

Any authorization checks by the client should be seen as mere convenience measures: they 
may be used to determine whether the user has the authority to change client-side 
configuration parameters, such as the aesthetic and ergonomic aspects of how content is 
presented by the browser, or to reduce the amount of content displayed in accordance with 
the user’s personal preferences. Client-side authorizations should not, however, be used as 
the basis for access control, i.e., to prevent content from being returned from the server to 
a client that is not authorized to see that content. 

All content sent from server to client should always be handled as if it were visible by the 
client. The server should never rely on the client to enforce “hidden data” or other data 
tagging that is intended to prevent the client from displaying certain content. Content that 
is not meant to be displayed by the client should simply not be sent to the client. Security-
through-obscurity should never be relied on to enforce confidentiality or privacy 
requirements. If relied on at all, it should only be used as an “inconvenience measure”, i.e., 
to make it harder for the average non-malicious user to discover content by accident. 
Security-through-obscurity should never be relied on to prevent a determined attacker from 
discovering the obscured or hidden content, or even to prevent a non-malicious user from 
accidentally “stumbling across” (revealing) that content. 

Thus, an architect who considers the Make the Client Invisible attack pattern should 
recognize the need to design the system so that no critical or trusted business logic is ever 
performed on the client side. Client-side business logic can only be seen as a convenience 
measure for performing untrusted, non-critical functions, such as tailoring the way content 
is visually presented to the end user the subversion of which would in no way threaten the 
security of the trusted and critical functions of the software system or the information it 
handles. 

The designer should document the attack patterns that have been used in the specification of 
abuse/misuse scenarios and in other analyses performed as part of specifying the software 
design. The scenarios that incorporate these attack patterns can be added to the software’s test 
plan. Such testing will validate the effectiveness of measures designed into the software to 
counter those attack patterns. 
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SUGGESTED RESOURCES 

• Barnum, Sean and Amit Sethi. “Attack Patterns as a Knowledge Resource for Building 
Secure Software” (white paper). Ashburn, Virginia: Cigital, Inc., 2007. Accessed 26 
December 2007 at: http://capec.mitre.org/documents/Attack_Patterns-
Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf 

• Fernandez, Eduoardo B., J.C. Pelaez, and M.M. Larrondo-Petrie. “Attack patterns: A new 
forensic and design tool”. Proceedings of the Third Annual IFIP WG 11.9 International 
Conference on Digital Forensics, Orlando, Florida, 29-31 January 2007. Accessed 11 
September 2008 at: http://www.springerlink.com/content/mv0541345hx15345/ 

• Gegick, Michael and Laurie Williams. “Matching attack patterns to security vulnerabilities 
in software-intensive system designs”. Proceedings of the Workshop on Software 
Engineering for Secure Systems, St. Louis, Missouri, 15-16 May 2005.  

• Gegick, Michael and Laurie Williams. “On the design of more secure software-intensive 
systems by use of attack patterns”. Information and Software Technology, Volume 49, 
Issue 4, April 2007, pages 381-397. 

5.4 RELATIONSHIP OF SECURITY PATTERNS TO SECURE SOFTWARE 

Security patterns are means by which expert knowledge about characteristics of secure designs 
are captured. Security patterns are problem-oriented and intended to be comprehensible by 
non-experts. They primarily address questions at higher levels of abstraction than source code, 
i.e., at the levels of architecture, design, algorithms, protocols, security policy, network 
structure, etc. In practical terms, security patterns are intended as reusable “building blocks” of 
language defining commonly needed design features; this language can be “dropped into” a 
new design specification, with modifications if needed, instead of the designer having to 
invent the language from scratch. 

The best way to determine whether a given security pattern will help in the definition of a 
design that achieves software assurance objectives is to determine whether the pattern 
upholds one or more of the secure design principles described in Section 5.2. Examples of 
software assurance-relevant security patterns are provided in Table 5-1. 
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Table 5-1. Security Pattern Examples 

Pattern Corresponding Secure 
Design Principle 

Boundary protection to eliminate risks from zero day 
attacks through realtime detection and prevention of 
known attack patterns and circumvention of unknown, 
abnormal behavior 

Design for resilience 

Exception handling to enable the system, if 
compromised by any type of malicious cyber attack, to 
handle the results of the compromise, and at worst to 
fail into a known, secure state 

Design for resilience, 
Design for secure failure 

Orderly quarantine using pre-defined fallback 
configurations that increase isolation and protection in 
response to attack patterns or perceived threats 

Segregate trusted entities 
from untrusted entities 

Informed recovery by trustworthy automated recovery 
mechanisms that assist the software system in the 
timely isolation and correction of its vulnerabilities   

Design for resilience 

 

An increasing number of security patterns have been defined that are directly relevant to 
software assurance concerns (by contrast with information or network security functionality). 
For example, in their Secure Programming Cookbook for C and C++,30 authors John Viega and 
Matt Messier describe a number of what are essentially secure design patterns, along with 
code examples in C and/or C++ for implementing those patterns. While the majority of 
patterns they describe pertain to implementation of security functions such as authentication, 
access control, and cryptographic functions, there are some key chapters devoted to patterns 
directly pertinent to achieving software dependability, trustworthiness, and resilience. These 
are: Chapter 1, Safe Initialization; Chapter 3, Input Validation; Chapter 12, Anti-Tampering; 
and Chapter 13, Other Topics, which include secure error handling, secure memory 
management, correct use of variables, and secure management of threads, sockets, and 
resources. 

Another source of software assurance-relevant security patterns is the Microsoft Patternshare 
repository,31 which includes 30 such patterns: Compartmentalization, Comparator Checked 
Fault Tolerant System, Checkpointed System, Container Managed Security, Trust Partitioning, 
                                                 

30 Sebastopol, California: O’Reilly & Associates, Inc., 2003. 

31 Patternshare Repository of Security Patterns. Accessed 17 December 2007 at: 
https://netfiles.uiuc.edu/mhafiz/www/ResearchandPublications/Patternshare_Security_Patterns.htm. The 
Patternshare repository is no longer maintained by Microsoft. However, Munawar Hafiz, a researcher at 
University of Illinois at Urbana-Champaign has continued to maintain the repository, so that developers can still 
benefit from its contents. Hafiz also extracted what he felt were the most important patterns in the repository into 
a conference tutorial: Hafiz, Munawar. “Security Patterns and Secure Software Architecture.” Tutorial presented 
at ACM Special Interest Group on Programming Languages International Conference on Object-Oriented 
Programming, Systems, Languages, and Applications, Portland, Oregon, 22-26 October 2006. Accessed 23 January 
2008 at: https://netfiles.uiuc.edu/mhafiz/www/ResearchandPublications/Security%20Patterns%20Talk.ppt; 
this tutorial includes the 30 security patterns listed here. 
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Controlled Virtual Address Space, Controlled Process Creator, Controlled Object Creator, 
Defense in Depth, Denial of Service (DoS) Safety, Dynamic Service Management, Exception 
Shielding, Execution Domain, chroot Jail, Hidden Implementation, Minefield. Intercepting 
Validator, Trusted proxy, Low-Hanging Fruit, Replicated System, Standby, Safe Data 
Structure, Secure Pre-forking, Security Context, Server Sandbox, Single Access Point, Single 
Threaded Façade, Small Processes, Unique Location for Each Write Request, White Hats Hack 
Thyself. 

IBM has developed a rich set of design patterns for WebSphere-based Web service 
applications. Among these are a set of Non-Functional Requirements High Availability 
Runtime patterns32 that are somewhat relevant to software resilience concerns; these include: 
Single load balancer, Load balancer hot standby, Mutual high availability, Wide area load 
balancing, and Caching proxies with security plug-in.  

Other software assurance-relevant security patterns can be found in the books listed among 
the Suggested Resources below. 

SUGGESTED RESOURCES 

• Schumacher, Markus, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank Buschmann, 
and Peter Sommerlad. Security Patterns: Integrating Security and Systems Engineering. 
New York, New York: John Wiley & Sons; 2005. 

• Blakley, Bob and Craig Heath, Craig. Technical Guide to Security Design Patterns. San 
Francisco, California: The Open Group, 2004. 

• SecurityPatterns.org Website. Accessed 19 December 2007 at: 
http://www.securitypatterns.org/index.html 

• Steel, Chris, Ramesh Nagappan, and Ray Lai. Core Security Patterns. Indianapolis, 
Indiana: Prentice-Hall Professional, 2005. 

• Viega, John and Matt Messier. Secure Programming Cookbook for C and C++. 
Sebastopol, California: O’Reilly, 2003.  

• Kienzle, Darrell M., Matthew C. Elder, David Tyree, and James Edwards-Hewitt. Security 
Patterns Repository, Version 1.0 —and— “Security Patterns for Web Application 
Development: Final Technical Report”, 4 November 2003. Accessed 21 January 2008 at: 
http://www.modsecurity.org/archive/securitypatterns/ - and - 
http://www.scrypt.net/~celer/securitypatterns/ 

                                                 

32 For more information, see: http://www.ibm.com/developerworks/patterns/edge/at1-runtime.html 
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• Halkidis, Spyros T., Alexander Chatzigeorgiou, and George Stephanides. “A practical 
evaluation of security patterns”. Proceedings of the Sixth International Conference on 
Artificial Intelligence and Digital Communications, Thessaloniki, Greece, 18-20 August 
2006. Accessed 21 January 2008: 
http://www.inf.ucv.ro/~aidc/proceedings/2006/5%20shalkidis.pdf 

• Mouratidis, Haralambos, Michael Weiss, and Paolo Giorgini. “Modelling Secure Systems 
Using an Agent-Oriented Approach and Security Patterns”. International Journal of 
Software Engineering and Knowledge Engineering, Volume 16 Number 3, 2006, pages 
471-498. Accessed 21 January 2008 at: 
http://www.scs.carleton.ca/~weiss/papers/ijseke06.pdf  

5.5 EXECUTION ENVIRONMENT SECURITY CONSTRAINTS, PROTECTIONS, 
AND SERVICES FOR SOFTWARE 

Environment-level components are often relied on to provide security constraints and 
protections, and related services, for the software hosted in the environment. These usually 
include cryptographic services to enable code signature validation, virtual machine 
constraints/sandboxing, input validation filtering, etc.  

Because environment-level components are often implemented as software, they are subject to 
the same security issues as the software hosted in the environment. When such environment-
level measures are used, the software itself should be designed and implemented so that a 
failure in any of the environment components will not threaten the software. All software 
needs to include: 

• Input validation logic that enables the software itself to recognize and reject all 
malicious and unexpected (anomalous) input, in case environment-level blocking of 
such input fails; 

• Error and exception handling logic that provides the software with a high level of fault 
tolerance, and ensures that when the software cannot avoid failing, the failure never 
leaves the software, its data or resources in an insecure or vulnerable state. 

The types and strength of security services and protections software may need from its 
execution environment is based on three factors:  

• The type, characteristics, and purpose of the software to be protected; 

• The types and strength of security protections and services available in the execution 
environment; 

• The anticipated threats to the software in its expected operational context(s). 

For example, embedded software in a military weapons system has a different purpose and set 
of characteristics, different available environment protections and services, and a different set 
of anticipated threats than embedded software in a game console. Software that implements an 
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operating system will differ in purpose and characteristics from, and expect a different set of 
protections and services (exclusively in firmware and hardware) from its environment than, a 
distributed Web application (for which the operating system will be a key provider of such 
protections and services). While at a high level both the operating system and application may 
appear to be subject to some of the same threats, it would be more accurate to say that the 
system, of which both the application and operating system are two components, is subject to 
those threats; when considered at the attack-pattern level, the differences between the threats 
to the operating system and the threats to the application become clear. 

Software’s dependencies on and interfaces to environment-level components and services 
should not be hard-coded because such hard-coding increases the likelihood that, if an 
environment component is upgraded or replaced, or the software is moved/ported to another 
environment, the software will become vulnerable and will no longer operate securely. 
Developers should implement only standard interfaces to environment components, with 
these interfaces configurable, modifiable, and substitutable at compile-time or run-time. This 
flexibility not only will minimize the risks component changes pose to software, but also 
avoids the need to re-implement the software to accommodate the environment changes. 

Formal methods can provide a common vocabulary through which software developers and 
systems engineers can communicate about the execution environment in which the software 
will operate. Executable specifications for rapid prototyping, especially when the tool that 
executes them provides a user-controllable interface, will allow the developer to explore 
his/her assumptions about the execution environment, and reveal hitherto unrecognized 
requirements for software/environment interfaces. 

Several organizations, including NIST, the National Security Agency (NSA), and the Defense 
Information Systems Agency (DISA), have published secure configuration guides and scripts 
for popular and/or approved COTS products. Other agencies have mandated use of specific 
vendor or third-party configuration guides. These should be consulted by custom developers 
and integrators, who should strive to ensure that their software as designed and implemented 
does not presume the availability or require the presence of any environment-level services or 
interfaces that are not supported in the mandated environment configuration guidelines. This 
may require adjusting the assumptions under which the developers of COTS and OSS 
software to be installed on securely-configured platforms had about their software’s execution 
environment, especially when those assumptions conflict with the mandated “locked down” 
environment. There will be cases in which such conflicts cannot be overcome, and these need 
to be carefully documented to provide justification for waiving those secure configuration 
requirements that will prevent the correct operation of the installed COTS/OSS software. 
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SUGGESTED RESOURCES 

• National Defense Industrial Association System Assurance Committee. Engineering for 
System Assurance, Version 0.90, 22 April 2008. Accessed 30 May 2008 at: 
http://www.acq.osd.mil/sse/ssa/docs/SA+guidebook+v905-22Apr08.pdf 

• Dean, J. and L. Li. “Issues in Developing Security Wrapper Technology for COTS 
Software Products”. Proceedings of the First International Conference on COTS-Based 
Software Systems, Orlando, Florida, 4-6 February 2002, pages 76-85. Accessed 19 
December 2007 at: http://iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-44924.pdf 

• Johansson, Jesper M. and E. Eugene Schultz. “Dealing with contextual vulnerabilities in 
code: distinguishing between solutions and pseudosolutions”. Computers and Security, 
Volume 22 Number 2, 2003, pages 152-159. 

• Fiskiran, A. Murat and Ruby B. Lee. “Runtime execution monitoring (REM) to detect and 
prevent malicious code execution”. Proceedings of the 22nd IEEE International 
Conference on Computer Design, San Jose, California, 11-13 October 2004, pages 452-
457. Accessed 21 January 2008 at: 
http://palms.ee.princeton.edu/PALMSopen/fiskiran04runtime.pdf 

5.5.1 Environment-level compartmentalization: constraint and isolation 
mechanisms 

The environment-level mechanisms that can be used to constrain and protect software 
execution range from standard operating access control mechanisms to hardware trusted 
processor modules.  

5.5.1.1 Standard operating system access controls 

On Unix or Linux systems, the chroot “jail” feature of the standard operating system access 
controls can be configured to create an isolated execution area for software, thus serving the 
same purpose as a Java or Perl “sandbox”. 

5.5.1.2 Trusted operating systems 

A trusted operating system includes a file system that enforces a confidentiality-based 
mandatory access control policy (or policies). In most trusted operating systems, including 
Security-Enhanced Linux and Trusted Solaris, this confidentiality-based mandatory access 
control (MAC) policy conforms to the Bell-LaPadula hierarchical confidentiality model. 
Because its concern is with protecting information from disclosure, Bell-LaPadula-based MAC 
provides no real benefit in terms of protection software, where the main threat is to the 
integrity of executable programs and control files, i.e., the need to prevent tampering or 
corruption. Therefore, trusted operating systems based solely on hierarchical confidentiality 
are of little value and an unnecessary expense if the only concern is software rather than data 
protection. 

At least one trusted operating system—BAE Systems’ Secure Trusted Operating Program—
enforces an integrity-based MAC policy conformant with the K.J. Biba hierarchical integrity 
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model. Unlike a mandatory confidentiality policy, a mandatory integrity policy is particularly 
useful for preventing active entities within a system (i.e., users, software processes) from 
modifying or deleting passive entities (i.e., files, devices, including software executable images, 
control files, and configuration files). In practical terms, this means: 

1. The program’s executable image can be set at a higher integrity level than the privileges 
assigned to the users, thus preventing them from modifying or deleting that executable; 

2. The program’s control files can be set at a higher integrity level than the executing 
program’s privileges, thus enabling the program to read those files but not to modify or 
delete them. 

3. Write/delete privileges for high-integrity files can be restricted only to the 
administrator. 

One non-hierarchical MAC model is Domain and Type Enforcement (DTE). In DTE, active 
entities are assigned “domain attributes” while passive entities are assigned “type attributes”. A 
table is then used to list rows of all domains and columns of all types supported by the access 
control system. At each intersection of domain and type, there are indicators of all access 
modes (e.g., read, write, execute, traverse) that active entities in the domain are allowed to 
perform on passive entities of the intersecting type.  

DTE provides the basis for Role-Based Access Control, Attribute-Based Access Control, and 
Risk Adaptive Access Control; it is also useful for implementing compartmentalization. 
Compartmentalization is a form of isolation in which interactions between passive and active 
entities are mediated not based on non-hierarchical considerations rather than hierarchical 
levels of access vs. privilege. Such non-hierarchical considerations include an active subject’s 
need-to-read, need-to-write, or need-to-execute a given passive object. 

5.5.1.3 Security-enhanced operating systems 

Operating system security-enhancements range from add-on security functions, such as 
mobile code signature validation, input/output filtering, and disk encryption, to middleware 
such as pluggable authentication modules, to a full mandatory access control capability 
including reference monitor. In some cases, security features are either built in to a “secure 
version” of a common operating system by its vendor or a third party, or packaged as a third-
party “add on” product.  

5.5.1.4 Hardened and security-enhanced operating systems 

A number of vendors offer secured or “locked down” versions of operating systems. Many of 
these are application-specific, i.e., they are used for hosting specific types of high-consequence 
applications, such as firewalls, intrusion detection systems, virtual private network servers, etc. 
The operating systems have been stripped of all features (services and resources) that are not 
expressly used by the application, and are pre-configured with the most restrictive access 
control and networking settings possible, thus minimizing the “attack surface” of the resulting 
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operating system. The intent of these operating systems is similar to that of the minimized 
kernels described below. 

A few vendors offer secure operating system enhancement packages, such as Argus’ PitBull 
and Hewlett-Packard’s VirtualVault, that integrate full-blown DTE or mandatory access 
controls to commodity operating systems.  

5.5.1.5 Minimized kernels and microkernels 

Minimized kernels and microkernels are modified versions of existing operating systems from 
which problematic and unnecessary features have been removed to produce a small, well-
behaved environment that provides only the minimum core set of services and resources 
needed by the software systems that run on them. Developers who write for these kernels 
need to be fully aware of what services and resources are missing, to ensure that their software 
does not rely on those services. Determining whether an acquired or reused component can 
run on one of these systems can be a challenge. An emerging type of microkernel is the secure 
microkernel, also known as “separation kernel”, “secure hypervisor”, or “secure µkernel”.  

The main design goals of a secure microkernel are to decrease the size of the core trusted code 
base, and to put a clear, inviolable interface between the trusted code base and less trusted 
code. The kernel represents a small trusted system, and can be implemented by hardware, 
software, or a combination of the two. When implemented by software, it will be very small by 
contrast with the large system libraries of conventional operating systems or virtual machine 
monitors. Secure microkernels are extremely limited in the services they attempt to provide. 
These usually include hardware initialization, device control, application scheduling, and 
application partitioning.  

For purposes of software security, this last feature may be the most important. Even with this 
limited set of services and security features, the separation kernel can run the services of a 
conventional operating system or a full virtual machine while maintaining a high level of 
security. By enforcing a process (or application) separation policy, the secure microkernel can 
guarantee that two independently running processes or virtual machine (VM) environments 
will not be able to affect each other (thus the designation “separation kernel”). This process 
separation (or isolation) ensures that malicious code inserted into one isolation segment of the 
kernel cannot access or steal resources, corrupt or read files, or otherwise harm the processes 
and data in another isolation segment.  

Secure microkernels are most often used in combination with conventional operating systems, 
to host VMs, or in embedded systems to directly host application-level software. A number of 
secure microkernels are system specific. This is particularly true of secure hardware 
microkernels, such as those used in smart cards, cryptographic devices, and other embedded 
systems. 

There are some secure microkernels emerging that are intended to be system-independent and 
thus can be more widely adopted. The now-obsolete Trusted Mach operating system was 
among the first to implement a secure microkernel. Examples of secure microkernel 
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implementations include the Multiple Independent Layers of Security (MILS) Partitioning 
Kernel33 (developed by the NSA and the U.S. Air Force Research Laboratory), the Flux 
Advanced Security Kernel (sponsored by NSA and embedded in SE Linux), Safe Language 
Kernels, such as J-Kernel (developed by Cornell University and sponsored by the Defense 
Advance Research Projects Agency), as well as a number of other security-focused 
microkernels developed in the U.S. and abroad.34 

5.5.1.6 Virtual machines 

Isolation is the aspect of VMs most frequently cited as improving the reliability and security of 
software running within those VMs. Isolation means that software within the VM obtains the 
specific resources (memory, hard drive space, virtual network interface, etc.) it needs to 
operate—the VM directly accesses these resources on the software’s behalf, in essence acting as 
the software’s host while isolating it from the actual underlying platform (operating system 
and/or hardware, depending on the type of VM), while preventing the software from affecting 
any programs and resources that reside outside the VM. Other VM features that aid in 
improving dependability, trustworthiness, and/or resilience are load balancing, support for 
image restoration, and introspection. VM implementations range from virtual application 
programmatic interface (API) layers (such as those provided by the Java Virtual Machine 
[JVM] and the .NET CLR) to operating system virtualization, to full system (hardware and 
software) virtualization. 

VMs, especially those that implement full system or operating system virtualization, are large 
an complex, and unsurprisingly have been revealed to include their vulnerabilities that 
enables their isolation feature to be bypassed. It has been suggested that use of “ultrathin” (i.e., 
very small functionality-limited) VMs can increase the VM’s robustness and reduce the 
likelihood of VM vulnerabilities, in the same way that smallness and simplicity reduces 
likelihood of vulnerabilities in other software. 

                                                 

33 MILS-compliant microkernel implementations are found in the DO-178B/Aeronautical Radio Incorporated 
(ARINC) 653-1 compliant real time operating systems (RTOSes) from LynuxWorks (LynxOS-178), Green Hills 
Software (INTEGRITY), and Wind River Systems (VxWorks). DO-178B is a Radio Technical Commission for 
Aeronautics standard for development processes used to produce safety-critical applications, while ARINC 653-1 
(ARINC Specification 653: Avionics Application Standard Software Interface, Supplement 1, Draft 3) is an 
Airlines Electronic Engineering Committee standard for safety-critical systems. Both of these safety standards 
describe safety microkernels that should be used for partitioning and isolating safety-critical processes and non-
critical processes in real time aviation systems. In the case of ARINC 653-1, the safety microkernel is called the 
Application Executive. As the MILS compliance of the RTOSes cited above suggests, safety microkernels provide 
most of the features required for separation of privileged and unprivileged processes in trusted operating 
systems. This is especially true when the microkernel does not have to enforce data separation and information 
flow security with a higher level assurance than that afforded by operating systems certified at Common Criteria 
Evaluation Assurance Level 4. 

34 Examples include the L4 Secure Microkernel (seL4) for use with the Embedded Real Time Operating System; 
VFiasco, a formally-verified version of the Fiasco µ-kernel; µSINA, used in the Nizza security architecture; 
kaneton; and Coyotos, a refinement of EROS. 
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5.5.1.7 Trusted processor modules  

Similar in intent to virtual machines (VMs) and sandboxes, trusted processor modules (TPMs) 
use hardware to enforce VM-like isolation of processes, in terms of their interactions with 
other processes and their access to data and resources. In addition to the commercial TPMs 
now available, the DoD’s Anti-Tamper/Software Protection Initiative is working to produce 
trustworthy, tamperproof hardware modules for hosting high-consequence software.  

5.5.1.8 Tamper-resistant processors 

Often use hardware-based cryptographic solutions, such as copy-protection dongles, tamper-
resistant processors provide software license enforcement and intellectual property protection 
by deterring reverse-engineering and illegal copying of software hosted on those processors. 
Tamper-resistant processors also deter unauthorized modification of that software, and thus 
provide a lower-assurance alternative to TPMs for protecting the integrity of hosted software. 

SUGGESTED RESOURCES 

• Li, Ninghui, Ziqing Mao, and Hong Chen. “Usable Mandatory Integrity Protection for 
Operating Systems”. Proceedings of the 2007 IEEE Symposium on Security and Privacy, 
Oakland, California, 20-23 May 2007. Accessed 20 March 2008 at: 
http://www.cs.purdue.edu/homes/ninghui/papers/umip_oakland07.pdf  

• Walker, Kenneth M., Daniel F. Sterne, M. Lee Badger, Michael J. Petkac, David L. 
Shermann, and Karen A. Oostendorp. “Confining Root Programs with Domain and Type 
Enforcement (DTE)”. Proceedings of the 6th USENIX Unix Security Symposium, San 
Jose, California, July 1996. Accessed 20 March 2008 at: 
http://www.usenix.org/publications/library/proceedings/sec96/full_papers/walker/walker
.ps 

5.5.2 Application frameworks 

Application frameworks are increasingly being used to provide application software with a 
standard set of interfaces to middleware-level and environment-level services. In addition, 
application frameworks also provide middleware-like services, software libraries, 
prepackaged applications, and other resources to help the application developer. The services 
provided by the framework constitute standard implementations of functions (including 
security functions) that can be invoked by applications implemented within the framework. 
The security services (encapsulated security functions with APIs) application frameworks 
commonly provide include encryption/decryption, user authentication and authorization, 
hashing and code-signing. By providing standard services, the framework eliminates the need 
for the developer to write those functions from scratch.  

The security functions provided by application frameworks that directly contribute to the 
security of the application software hosted within the framework include code signing and 
code signature validation, and the likelihood that applications whose components have been 
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integrated via the framework will contain fewer vulnerabilities and weaknesses originating in 
the inter-component interfaces and interactions. 

Application frameworks may be low-level or high-level. Low-level frameworks are those 
included in application platforms such as Java and .NET. They usually provide a pluggable 
mechanism framework that supports a common front-end API for applications to use to 
request a variety of security functionality, and a backend service provider interface that can 
access multiple different security mechanisms and interfaces, such as pluggable authentication 
modules, Java Authentication and Authorization Service, Generic Security Service Application 
Programming Interface, Integrated Windows Authentication, Microsoft Security Support 
Provider Interface, IBM System Authorization Facility, etc.  

Low-level frameworks are both flexible and complex, making them difficult for non-experts to 
use effectively. They are most useful for developing applications for which there is not a 
widely available set of “pre-packaged” standard APIs, protocols, and technologies, i.e., 
traditional client/server applications based on distributed object technologies such as 
Common Object Request Broker Architecture, Microsoft .NET Remoting or Distributed 
Component Object Model, or Java Remote Method Invocation. Low-level frameworks are also 
useful for extending or customizing the capabilities of higher-level security frameworks. 

High-level application frameworks, including Web server and Web service frameworks, are 
provided by application servers and Web servers, such as Microsoft’s Internet Information 
Services and Active Server Pages for .NET (ASP.NET), Java EE servers, and Java servlet 
engines (e.g., Apache Tomcat). The main functions provided by such frameworks are 
configurable authentication, authorization, and access controls (e.g., Java containers) for the 
applications they host, as well as logging for a rudimentary audit capability. Web service 
provider frameworks also provide Web-service unique infrastructure components such as 
registries, as well as Web service management capabilities. 

In addition to the two popular COTS application frameworks (Java EE and .NET, both of 
which use Java as a “managed code architecture” to control the behavior of client and server 
application code running within the framework), there are commercial frameworks such as 
Oracle SOA Suite as well as several popular OSS application frameworks, including Eclipse, 
Ruby-on-Rails (a framework for applications developed in the Ruby language), Jakarta Struts, 
Spring, and Hibernate. 

When an application framework such as .NET, Java EE, Eclipse, etc., does not provide all of the 
services needed to satisfy a hosted application’s security requirements, the developer will need 
to programmatically extend or override the framework’s built-in capabilities. Each application 
framework supports programmatic security extensions via its own programming model.  

From a software assurance viewpoint, reliance on application frameworks to provide high-
consequence services, such as security services, is a two-edged sword. Few COTS and OSS 
frameworks have been developed in accordance with secure design, code, testing, and 
configuration management principles and practices, although some have undergone (or are 
undergoing) Common Criteria evaluations. In the absence of assurance that such security 
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considerations guided the framework’s own development,  the developer of applications that 
will run in the framework has no independently established basis for assurance that the 
security functions and other high-consequence services on which his/her application will rely 
are dependable, trustworthy, or survivable.  

For applications that need a medium to high level of software assurance, it may make more 
sense to implement a custom framework to provide high-consequence services, and to rely on 
a COTS or OSS framework only for services for which a low-level of software assurance is 
acceptable. In this way, the custom framework may be implemented as an extension to or 
overlay on top of a COTS or OSS framework, and the services it provides can, in fact, include 
services expressly designed to mitigate the security risks posed by the COTS/OSS framework. 
For example, the custom framework could include logic to rigorously validate all parameters 
sent to and all return values received from the COTS/OSS framework APIs. 

SUGGESTED RESOURCES 

• Niski, Joe. “Application Security Frameworks”. Burton Group Application Platform 
Strategies Reference Architecture Technical Position Paper, January 2008. Accessed 2 
February 2008 at: http://www.burtongroup.com/Research/PublicDocument.aspx?cid=21 

5.5.3 Benign software on a malicious host 

The possibility that the host on which software will operate may be malicious presents a 
particular concern since such software is made vulnerable, by the host, to a variety of attacks, 
including: 

• Reverse engineering attacks; 

• Fake library attacks, which attempt to fool software into believing it’s communicating 
with valid library functions when it is actually communicating with malicious functions 
that emulate valid functions; 

• Memory tampering attacks, which attempt to alter memory content of software 
protection mechanisms to circumvent their protection; 

• Kernel-level emulator attacks, which record and replay all communications between 
software and its environment-level protections. (Note that Microsoft claims that its 
current operating systems provide security measures that make this type of attack 
infeasible or impossible.)  

The need to minimize the risk to software from a malicious host highlights the importance of 
verifying the trustworthiness of the host(s) on which the software is expected to be installed. 
More importantly, it highlights the need to design and implement the software to have as few 
dependencies on and interactions as possible with the untrusted components of its execution 
environment. 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
130 

5.6 SECURE ARCHITECTURE AND DESIGN METHODOLOGIES 

Three of the security-enhanced requirements engineering methodologies listed in Table 4-2—
TRIAD, AEGIS, and AOM—also support secure software architecture and design modeling. In 
addition, MDA can be adapted to support the concepts, and framework and tool 
augmentations needed to add constructs for generating executable secure software models. 

SUGGESTED RESOURCES 

• Fléchais, Ivan. Designing Secure and Usable Systems. University of London doctoral 
thesis, February 2005. Accessed 19 December 2007 at: 
http://www.softeng.ox.ac.uk/personal/Ivan.Flechais/downloads/thesis.pdf  
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6 SECURE COMPONENT-BASED SOFTWARE 
ENGINEERING 
Under pressure from their customers to produce software more quickly, software engineers 
frequently turn to existing (COTS, OSS, reusable legacy) components about whose security 
properties and assurance they have little or no knowledge. This lack of knowledge makes it 
difficult to determine what security assumptions those components harbor about the 
environment in which they will operate and the other components with which they will 
interact.  

Component-based software engineering also makes it difficult to validate the requirements, 
including security requirements, for the whole software system in which the COTS/OSS 
components will be used as it will be difficult to determine whether those components do, in 
fact, satisfy the software assurance-related requirements for those individual components 
(given their role in the system) and for the system as a whole, such as requirements for a given 
component to exhibit only safe behaviors and constrain all unsafe behaviors.  

Once there has been an investment in and familiarity gained about a given component, there 
will be a strong temptation to reuse that component across multiple systems operating in a 
variety of environments. In each system, the same component may play a different role. Its 
behaviors and state changes—both those externally observable and those not—are unlikely to 
be equally satisfactory in all of these systems and environments. The component that proves 
adequately secure when combined with the other components of System A in System A’s 
environment, but may prove inadequate when combined with the different components of 
System B in System B’s different environment.  

The COTS and OSS components most often used in software-intensive systems include: 

• Environment components, such as: firmware, device drivers and Basic Input/Output 
System (BIOS), operating systems, and networking and network security (e.g., Internet 
Protocol Version 6) software; 

• Middleware components, such as: software libraries, application frameworks, expert 
systems and other artificial intelligence “engines”, financial analysis kits, database 
management systems, Web and application servers, grid computing services, and 
security components such as public key infrastructure components, single sign-on 
services, pluggable authentication modules, and Kerberos components; 

• Application-level components, such as: directory services; email/messaging services; 
Web service discovery services; spreadsheet packages; browsers. 

In addition, on most software development projects, many if not all of the tools used by the 
developers, including specification and design tools, coding and compilation tools, 
integration/assembly frameworks, testing tools, code signing tools, etc., are COTS or OSS. 
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The security properties, assumptions, and vulnerabilities and weaknesses of these components 
all need to be considered when (1) determining which specific product or implementation to 
use; (2) architecting, designing, and assembling the system to minimize the exposure of 
existing vulnerabilities and the introduction of new vulnerabilities as a result of mismatched 
assumptions, inadequate constraints on behaviors, etc., as well as implementing any custom 
wrappers, filtering interfaces, etc., to mitigate security issues introduced by COTS/OSS 
components. 

Note that individual component security evaluations focus on the component in isolation.35 
Examining a component in isolation will not reveal the security assumption and interaction 
conflicts that will arise when the component is assembled/integrated together with other 
components. Such conflicts, often referred to as security mismatches, usually originate in an 
inconsistency in the security assumptions one component has about another’s security 
properties, functionality, policy rules, constraints, etc., and those that the second component 
actually exhibits. The problem is complicated by the need to periodically add or change the 
functionality of individual components or the system as a whole, often necessitating changes 
to the assembly’s design, as well as to the individual components.  

Even if the security of all of the system’s individual components could be established, this 
would not be sufficient to predict whether their secure behavior would continue to be 
exhibited when they interacted with other components in the larger component-based system. 
Nor will it help predict the overall security of the system assembled from those components.  

The security claim for a single component (e.g., in an assurance case) in a system assembled 
from multiple components is of little help in determining the assurance of the whole system. 
For this reason, the component security evaluations should not be performed in isolation. An 
assembly architecture framework should be used to model, test, and evaluate the security of 
behaviors among pairs and larger combinations of interacting components. The outcomes of 
these pairings/combinations should help narrow down the acceptable combinations 
components and thereby point to the set of components that collectively operate the most 
securely. It is this set of components that should, if possible (given other considerations) be 
selected for use in the system. 

This said, the component evaluator needs to recognize that changes in future versions/releases 
of the components may change the nature of their interactions/ behaviors when combined 
with the system’s other components. Any component evaluation reflects a single point-in-time 
understanding of the components under consideration. For this reason, some trends analysis 
of how secure previous versions of the components have been, and whether there has been a 
general trend towards more rather than less security may also provide a helpful data point in 
determining which components are most likely to continue as secure through future updates.  

                                                 

35 This is true of Common Criteria evaluations which, moreover, focus almost exclusively on the correctness of 
the component’s security functionality rather than its dependability, trustworthiness, and resilience. 
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SUGGESTED RESOURCES 

• Haley, Charles B., Robin C. Laney, Jonathan D. Moffett, and Bashar Nuseibeh. “Using 
Trust Assumptions with Security Requirements”. Requirements Engineering Journal, 
Volume 11 Number 2, April 2006, pages 138-151. Accessed 11 September 2008 at: 
http://www.the-haleys.com/chaley/papers/REJ06.pdf 

6.1 ARCHITECTURE AND DESIGN CONSIDERATIONS FOR COMPONENT-
BASED SOFTWARE SYSTEMS 

Because there is likely to be more than one component that can satisfy the purely functional 
requirements of the software system, modeling of the software architecture should focus 
equally on developing alternative models to accommodate the evaluation of functionality in 
“competing” candidate components, and determination of which component combinations 
will result in the most secure collective behavior and the least number and exposure of 
vulnerabilities. 

A component assembly modeling framework can be extremely helpful in generating different 
architecture models (or “assembly options”) that can then be used to guide integration when 
evaluating candidate components, as well as when building the system from the components 
that are ultimately selected. 

The architecture/framework in which the components will be integrated/assembled should 
minimize the exposure of each component’s vulnerabilities, and constrain the potential for a 
component’s insecure behavior, state change, or failure to negatively impact other components 
in the system. The least trustworthy, most vulnerable components should be located in the 
architecture in the least exposed positions in terms of access to and by entities external to the 
system, and other untrustworthy components within the system. They should never be trusted 
to perform high-consequence functions. 

Component-based development influences architecture and design in the following ways. 

• The different component architecture models must be based on both explicit and 
implicit assumptions about how each component will interact with the other 
components (i.e., will the component play a service-providing or protective role, or a 
dependent role?).  

• The suppliers of COTS components (as well as those of other binary components, 
e.g., GOTS, shareware, freeware [non-open source], and often legacy) virtually 
always retain the intellectual property rights to their components’ source code. Most 
suppliers of binary components intend for those components to be used without 
modification. A binary component is, therefore, a “black box” whose functions, 
interfaces, and constraints can only be changed through reconfiguration via an 
internal interface, and then only to the extent supported by the component. 
Otherwise, external means such as filters, application firewalls, XML gateways, and 
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security wrappers must be used to counteract any unacceptable security behaviors 
and to mask as many vulnerabilities as possible in the component itself. 

• When a particular component is selected, the ongoing security posture of the 
component, and thus of the whole software system depends, at least in part, on the 
priorities of the component’s supplier in terms of how discovered vulnerabilities are 
addressed, how often patches are released, the security impact of changes in new 
versions, etc. Developers can never be sure when or even if the supplier of a 
particular software product will release a needed security patch for a reported 
vulnerability that might render a selected component otherwise unacceptable for use 
in the software system. For this reason, the system design needs to be able to easily 
accommodate: 

1. Replacement of components with new versions or with substitute 
components from different suppliers; 

2. Reconfigurations of components;  

3. Insertion of countermeasures (such as wrappers) to mitigate security 
vulnerabilities discovered after the system has been integrated (and not yet 
patched), including those resulting from new versions or substitutions.  

The ideal component-based architecture and design should be as generic as possible. It should 
reflect the roles of the components but not the specific implementation details of any specific 
COTS or OSS package. This means, of course, relying to the absolute greatest extent possible 
on standard interfaces and avoiding proprietary interfaces. 

SUGGESTED RESOURCES 

• BuildSecurityIn Assembly, Integration, and Evolution resources. Accessed 21 January 
2008 at: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/assembly.html 

• Software Security Assurance, Sections 5.1.1.1-5.1.1.2.2. 

• Dobson, John E. and Brian Randell. “Building Reliable Secure Computing Systems out of 
Unreliable Insecure Components”. Proceedings of the 17th Annual Computer Security 
Applications Conference (ACSAC), New Orleans, Louisiana, 10-14 December 2001. 
Accessed 19 December 2007 at: 
http://www.cs.ncl.ac.uk/research/pubs/inproceedings/papers/355.pdf 

• Jeong, Gu-Beom and Guk-Boh Kim. “A Framework for Security Assurance in Component 
Based Development”. Proceedings of Workshop on Approaches or Methods of Security 
Engineering, Singapore, China, 9-12 May 2005, pages 42-51. 

• Neumann, Peter G.. “Principled assuredly trustworthy composable architectures”. CDRL 
A001 Final Report, 28 December 2004. Accessed 21 January 2008 at: 
http://www.csl.sri.com/users/neumann/chats4.html  
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• Carnegie Mellon University Software Engineering Institute. Predictable Assembly from 
Certifiable Components Webpage. Accessed 21 January 2008 at: 
http://www.sei.cmu.edu/pacc/ 

• Minkiewicz, Arlene F. “Security in a COTS-Based Software System”. CrossTalk: The 
Journal of Defense Software Engineering, November 2005. Accessed 17 December 2007 
at: http://www.stsc.hill.af.mil/crosstalk/2005/11/0511Minkiewicz.html 

• Jarzombek, Joe and Karen Mercedes Goertzel. “Security Considerations in the Use of 
Open Source Software”. Presented at the Technology Training Corporation Military Open 
Source Software Conference, Washington, D.C., 21 April 2008. 

6.2. SECURITY ISSUES ASSOCIATED WITH COTS AND OSS COMPONENTS 

Properties and capabilities delivered in COTS/OSS components do not always map directly to 
the requirements of the system in which the components will be used. Many commercial 
developers admit that security is not a major requirement of most of their customers, so it is 
not a major consideration in the development of the commercial software product. Specific 
security issues commonly found in COTS and OSS components are discussed below. 

6.2.1 Lack of visibility (the “black box” problem) 

COTS and other reused binary components (i.e., GOTS, shareware, freeware, reusable legacy) 
present a challenge because the lack of source code and detailed design specification means 
the analyst cannot determine what the internal behaviors and state changes actually are, 
except in so far as those behaviors/state changes are externally observable. In short, the only 
practical analyses possible for most binary components are those that treat the components as 
“black boxes”, with observations limited to how the component interacts with external entities 
(humans, execution environment, other software, etc.). What goes on within the component is 
unknowable.  

Even middleware components and development tools, such as software libraries, that one 
would expect to be documented fully and in detail to aid the developers who are their 
intended users, often have only their interfaces well-documented. This is because the vendors 
of these components and tools are motivated by the imperative to protect their intellectual 
property (e.g., algorithms, data, parameters), and thus are reluctant to reveal how the internals 
of those products actually work. Similarly, hardware-level components often contain a great 
deal of information about the underlying hardware and architecture design. This is 
information that device/platform developers often wish to hide from software developers and 
system users, to deter competitors and hackers from studying and reverse engineering their 
products. 

To a great extent, the analysis and testing of black box components is an exercise in discovery 
of component’s (one hopes strictly defined) inputs and outputs, assumptions (i.e., about the 
services, protections, etc. the component expects to obtain from external components at various 
levels), and pedigree/provenance (indicating something about the trustworthiness of the 
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component’s developers and the likelihood that they used a disciplined engineering process to 
produce the component).  

In-depth security testing will require that each individual component be tested as thoroughly 
as possible, not just for its interactions and externally observable behaviors under expected 
operating conditions, but for its interactions/behaviors under unexpected and even seemingly 
impossible conditions. The expected conditions will be those manifested when the component 
is combined, as intended, with the other components of the system in which it will be used. 
The unexpected conditions will be those that arise when any of those other components 
behaves anomalously or maliciously, or fails to operate at all, leaving the component being 
tested exposed to direct interactions with entities it was not intended to interact with. 

To increase the inherent “knowability” of components, and particularly binary components, 
use of open standards for the component interfaces should be a component selection criterion 
that cannot be waived. The ability to study the standards documents to understand the details 
of the standards-based interface (including known vulnerabilities and available 
countermeasures for those vulnerabilities) can compensate, to some extent, for the lack of 
detailed specifications of how the interface was implemented in the specific component under 
review.  

Using open standards also enables a more “apples to apples” comparison of how multiple 
candidate components operate: they are all expected to communicate externally in the same 
way, so the comparison can focus on deviations and revealed vulnerabilities in those 
interfaces, rather than on comparing two different types of interfaces used for the same 
purpose. Once a component has been integrated into the software system, if it later proves 
inadequate, its open standards-based interfaces will make it easier to replace with a more 
satisfactory component that supports the same standards-based interface.  

6.2.2 Ignorance of pedigree and provenance 

Pedigree of software refers to information that identifies the software’s: 

• Development practices: How was the software built? What methodologies, practices, 
tools were used? 

• Developers: Did the development process include checks and controls to establish 
trustworthiness of developers? Is this possible on large, distributed community 
development (OSS) projects in which many developers use aliases? 

• Requirements: Is the specification available? If so, were security requirements 
included? Are those requirements relevant to the security goals of the system in which 
the component will be used? 

• Review and testing regime: Unless there is explicit evidence to the contrary, it should 
be assumed that security was not considered during a component’s reviews and tests. 
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Provenance of software refers to information that identifies the influences on the software after 
its initial creation. These exposures include: 

• Distribution practices such as bytecode obfuscation, code signing, or any other 
intentional or unintentional code modifications that occur during distribution; 

• Installation practices and runtime configuration of the software and its execution 
environment; 

• Operational exposures, including changes to its execution environment, user 
interactions, and interactions by other software (malicious and non-malicious); 

• Intentional and unintentional runtime modifications, e.g., through runtime 
interpretation, dynamic linking, installation of patches/updates, malicious code 
insertion, etc. 

Reliable knowledge about pedigree and provenance allows the evaluator of COTS and OSS 
components to makes some fairly reliable assumptions about how the component was built 
and maintained, and by whom; the more is known about how the component was created and 
the influences to which it has been exposed since its creation, the more reliable the 
assumptions.  

There are difficulties in discovering reliable pedigree/provenance information, however. 
COTS components are often the product of multiple development teams, some of which are 
contractors to the supplier-of-record; these teams may be located offshore. OSS components 
are often the product of collaboration by a “community” of developers in dispersed 
geographic locations, often working under aliases. While some well-known OSS communities, 
such as the Linux and Apache communities, follow extremely disciplined SDLC and version 
control practices, many other smaller OSS projects do not subject themselves to the same rigor.  

In both COTS and OSS development, unless the development process includes strict checks 
and controls that establish developer trustworthiness based not just on an initial background 
check, but based on observation of the developer’s behavior and performance over a relatively 
long period, the user of the COTS/OSS component will be at the mercy of the developers’ 
unknown and undiscoverable (and even non-inferable) national and political affiliations, 
ideological tendencies, malicious proclivities (and skills to act upon them in their code through 
surreptitious, virtually undetectable sabotage via embedded malicious logic). 

The tools and services provided by Palamida and Black Duck Software represent the current 
state-of-the-art in pedigree and provenance discovery. These tools able to discover pedigree 
“hallmarks” in source code in repositories, COTS products, and large software systems. 
Initially, their focus was license enforcement, but Palamida now offers service that also 
attempt to verify security based on pedigree-related evidence. These service providers only 
make their discovered pedigree data available to paying subscribers. A less sophisticated 
approach that is widely available is the use of open source pedigree discovery tools for finding 
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common OSS code segments in large source trees, e.g., comparator and filterator.36 These tools 
are limited to flagging OSS content; they provide no helpful metadata about that content. 

Given the limitations on the types and reliability of pedigree/provenance information is most 
likely to be discoverable, the component evaluator’s best use of such information is as input to 
the decision on whether and how to proceed with the security evaluation of the component. 
For example, if there is no pedigree information available at all, this lack may be used to justify 
rejection of the component, particularly if it was being considered for implementing a trusted 
or high-consequence function, and/or as a component in a national security system in which 
100% U.S. (or other nationality)-originated content is required. At a minimum, inadequate 
pedigree and provenance information should trigger the following: 

• Deeper security analysis of the component than would have been required had reliable 
evidence of its secure development process been found; 

• Use of environment-level controls to isolate the component from other, more trusted 
components and to constrain the component’s execution to minimize potential damage 
from its non-secure behavior or compromise. 

6.2.3 Questionable validity of security assumptions 

The security functions and properties/attributes of acquired or reused components reflect 
certain implicit and sometimes explicit assumptions made by that software’s supplier, 
including assumptions about the original supplier’s specification of security requirements for 
the component, the operational contexts in which it is expected to be used, and the presumed 
business processes of its users. The supplier’s assumptions rarely match all of the security 
requirements, contexts, and operational processes (current or anticipated) of the role the 
component is intended to fill in the integrated/assembled software system. 

Each software component has its own set of security assumptions and requirements regarding 
the other components and external entities with which the component expects to interact, and 
the environment services and protections it expects to receive. Lack of visibility into COTS and 
other black box software makes it particularly difficult to discover what its security 
assumptions and requirements are, and whether or not they are consistent or conflict with the 
security assumptions of the “generic component” in the system architecture whose role they 
are intended to fulfill in the software system. 

6.2.4 Presence of unused and unexpected functions: dormant, dead, and 
malicious code 

Lack of visibility into the source code of COTS and other acquired-as-binary components, and 
lack of time and resources to thoroughly analyze the source code of OSS and other source-

                                                 

36 Available at: http://catb.org/~esr/comparator/ 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
139 

code-available components, means that it is not possible for the developer to know exactly 
what the component’s code base consists of—not just in terms of the nature of the code that 
implements the functions for which that component is being used in the software system, but 
in terms of code for functions not used, and code that simply remains in the component’s code 
base because its removal was considered unimportant or risky. There are three kinds of 
“unexpected” code possible in COTS/OSS components:  

• Dormant code: This is the code that implements the features that will not be used when 
those components are assembled into a the software system being built. These features 
and their interfaces are fully functional; they simply will not be invoked in the normal 
course of executing the component within the software system. However, they can 
easily be invoked unintentionally, with unexpected and potentially dangerous results. 
Also, because the dormant features are not used in the software system, they are 
unlikely to undergo thorough analysis and testing unless such analyses/tests are 
expressly added to the system’s security review and test plans; 

• Dead code: Because many COTS and OSS software components are the result of 
multiple evolutionary “builds” over time in which new features are often added to 
replace older obsolete features. In many cases, the older code is simply “cut” or 
“blocked” off by eliminating its external and call-level interfaces, rather than actually 
being removed; this is because the implications of removing old code, particularly code 
that has been part of the component through many previous version, are not well 
understood by the developers who build the later versions. It is very likely, therefore, 
that larger and more complex COTS/OSS components that have a long history of 
versions (e.g., operating systems, database management systems, popular applications) 
contain “dead code”, i.e., code that has been “blocked off” but not removed from the 
component’s code base. While the elimination of expected interfaces to the dead code 
reduces the risk that such code will be inadvertently executed, there are still conditions 
under which such execution might occur, particularly if the code is suspected or known 
by an attacker to be present, and the attacker therefore crafts and exploit specifically to 
reach that code and trigger its execution. The problem, as with dormant code, is that the 
results of such an execution are unpredictable and potentially dangerous. Even more 
than dormant code, dead code is unlikely to undergo reviews, and crafting tests to 
trigger its execution to observe what results can be a challenge; 

• Malicious code: Embedded malicious logic such as logic bombs, time bombs, Trojan 
horses, and malicious bots, is the third type of unexpected code found in COTS, OSS, 
and other acquired and reused components. Unlike dormant and dead code, malicious 
code is intentionally built to cause the component to behave non-securely and to 
compromise or damage the system in which the component resides, the environment in 
which it operates, and/or the external entities, resources, and data with it interacts. Like 
dead code, malicious code is not expected to be present, and thus finding it can prove 
particularly challenging. 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
140 

Presence of unused code can make analysis of what is used more difficult. Because the code is 
not expected to be executed, testers may not think about executing the unused portions of the 
program to ensure they cannot be used to compromise the rest. 

Secure assembly/integration requires the maximum possible isolation and constraint of code 
portions/functions not used in the software system. Isolation and constraint should focus on 
allowing access only to functions that are intended to be accessed. In essence, these functions 
should be isolated from the external access (human or process) to the unused functions, so as 
to prevent the inadvertent execution of the unused functions, and to limit the impact of any 
inadvertent executions that cannot be prevented so that those executions do not threaten the 
secure operation of the system as a whole. 

 

 

6.3 SECURITY EVALUATION AND SELECTION OF COMPONENTS 

The developer’s understanding of a component’s security properties must not be based wholly 
or even predominantly on the supplier’s claims about that component. Only an objective, 
thorough, and detailed security evaluation of the components that are being considered for 
use in the software system can provide reliable data on the security assumptions of the 
component, and the presence of insecure behaviors and state changes, and of vulnerabilities 
and weaknesses in it.  

Much of the selection process for acquired and reused components should focus on 
determining and mitigating the impact of conflicts between assumptions and requirements. 
These include conflicts between supplier and integrator assumptions and requirements for 
how the component will be used and in what environment. They also include conflicts 
between the security assumptions (e.g., about environment services that will be available) that 
the architect has made on behalf of the notional components that “populate” his/her 
architecture, and the security assumptions under which the components selected to fulfill the 
notional components’ roles were developed.  

The ability to determine assumptions made by component suppliers in and the components 
they supply will be particularly difficult in the absence of source code and/or high-quality 
detailed technical documentation for those components. For this reason, the availability of 
source code and documentation should be a key criterion in the selection of components that 
will perform high-consequence functions in the assembled system.  

Developers should never assume that a black box (binary) component’s calls to external 
functions (e.g., in execution environment components) will always succeed. Instead, the 
developer should use a technique such as black box debugging (see Section 8.2.2.5) to observe 
all call data passed from the component and any external components, and check the return 
values of all function calls to those external components. This will enable the developer to 
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pinpoint flaws in those external components that threaten the dependable operation of the 
software.  

All of the considerations discussed in section 6.1 and 6.2 need to be taken into account in the 
evaluation and selection of components. 
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SUGGESTED RESOURCES 

• Yin, Jian, Chunqiang Tang, Xiaolan Zhang, and Michael McIntosh. “On Estimating the 
Security Risks of Composite Software Services”. Proceedings of the Program Analysis for 
Security and Safety Workshop Discussion, Nantes, France, 4 July 2006. Accessed 23 
January 2008 at: http://research.ihost.com/password/papers/Yin.pdf 

• Li, Zhenmin, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai. 
“Have things changed now? An empirical study of bug characteristics in modern open 
source software”. Proceedings of Workshop on Architectural and System Support for 
Improving Software Dependability, New York, New York, October 2006, pages 25-33. 
Accessed 11 September 2008 at: 
http://opera.cs.uiuc.edu/~lintan2/publications/bugchar_asid06.pdf —and— Presentation 
slides: http://opera.cs.uiuc.edu/~lintan2/publications/bugchar_asid06_slides.pdf 

• Balzarotti, Davide, Mattia Monga, and Sabrina Sicari, Università di Catania. “Assessing 
the Risk of Using Vulnerable Components”. Proceedings of the First Workshop on Quality 
of Protection, Milan, Italy, 15 September 2005. Accessed 19 December 2007 at: 
http://dabalza.net/publications/download/risk-qop05.pdf - and - 
http://homes.dico.unimi.it/~monga/lib/qop.pdf  

• Neuhaus, Stephan, Thomas Zimmermann, Christian Holler, and Andreas Zeller. 
“Predicting vulnerable software components”. Proceedings of the 14th ACM Conference 
on Computer and Communications Security, Alexandria, Virginia, 29 October-2 
November 2007, pages 529-540. Accessed 11 September 2008 at: 
http://www.st.cs.uni-sb.de/publications/files/neuhaus-ccs-2007.pdf 

• Wilson, David L. Risk Perception and Trusted Computer Systems: Is Open Source 
Software Really More Secure than Proprietary Software? Purdue University master’s 
thesis, CERIAS TR 2004-07, 2004. Accessed 19 December 2007 at: 
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/view_entry.php?bib
tex_id=2686 

6.3.1 Steps in a component security evaluation 

A component’s security evaluation should include the following steps: 

1. Availability of components that satisfy requirements: Determine the availability of 
COTS or OSS components that provide the needed functionality, and conform (at 
least to some extent) with the security assumptions made by the developers about 
and by the generic architecture components whose roles will be fulfilled by the 
actual COTS/OSS components. 

2. Security assumptions: Establish the set of security assumptions made by each 
generic component in the system design; the component security evaluation will 
compare these assumptions against the set of assumptions that can be derived from 
the actual components being evaluated to fulfill the generic component’s role in the 
system. 

3. Interface definitions: Establish the set of inter-component and extra-component 
interfaces (e.g., RPCs, APIs) that must be provided by each generic component, 
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along with the security protection requirements for each interface; the interfaces of 
the actual components can be compared against these interface and interface-
security requirements. 

4. Assembly architecture-framework: Define and implement (or acquire) a component 
assembly architecture-framework in which to test combinations of candidate 
components that are intended to fulfill the roles of the generic components in the 
system architecture. 

5. Design trade-off methodology: Define or select a methodology, set of metrics by 
which design trade-offs that must be made in order to accommodate use of the 
different actual components can be quantified and a measurement of each 
component’s fitness for secure use can be computed; 

6. Evidence on which to base evaluation: Gather as much evidence as possible of a 
variety of types and from a variety of sources, to ensure that there is sufficient 
information on which to base the security evaluation. Direct evidence is preferable 
to indirect evidence; this said, there are likely questions that cannot be answered by 
direct evidence alone - particularly when it comes to COTS and legacy components 
for which no source code or technical (vs. user/administrator) documentation is 
available - and indirect evidence can be helpful in “filling in gaps” in knowledge 
that cannot be gained through analysis of direct evidence alone. 
 
Direct evidence includes source code and detailed design specifications - i.e., it is 
evidence that enables the direct analysis of the content of the software.  The security 
analysis of direct evidence will necessarily be limited by the resources and time 
available to analyze it; the larger and more complex the code, the less realistic it will 
be to attempt an analysis of more than a small proportion of the total code base or 
design spec. But no matter how large/complex, at a minimum, the analysis should 
include the software’s high-consequence functions and external interfaces. 
 
Indirect evidence includes the following: 

• Software developer, “black hat”, and “white hat” Websites, newsgroups, 
listservs, etc.; 

• Vulnerability scan results; 

• Higher level technical documentation (requirements specification, 
architecture, pre-existing test results), and documentation of standards and 
technologies used in the component; 

• Independent security incident, error, and vulnerability reports (supplier 
reports as well as independent reports from Computer Emergency Response 
Teams [CERTs], Computer Security Incident Response Teams [CSIRTs], IA 
Vulnerability Alerts [IAVAs], Bugtraq, National Vulnerability Database, etc.); 
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these are of greatest value in supplier assurance-related analysis of the 
supplier’s track records in patch issuance and product vulnerability/security 
improvement over time; 

• Published reviews, case studies, lessons learned, etc., indicating an 
established track record of secure use of the component by other 
organizations in software systems/applications operating under 
environmental conditions and risk factors similar to those for which the 
component is currently under consideration; 

• Reliable pedigree and provenance information. 

7. Component evaluation models: Evaluate components using the following models 
of the desired component-based system: 

• Software security model describing the acceptable (manageable) distribution of 
security vulnerabilities in various individual components. This model will be 
used to compare the vulnerability distribution in the actual components 
against what is expected in the system-as-designed; 

• Service composition model describing the interactions of generic components in 
the system architecture, and the anticipated behaviors of those components if 
subjected to malicious and anomalous interactions with external entities. This 
model will be used to compare the behaviors of actual components (in generic 
component roles) when they are subjected to the same malicious/anomalous 
interactions; 

• Attack exposure model estimating the amount of knowledge a low-skilled, 
medium-skilled, and highly skilled attacker is expected to have about 
vulnerabilities and weaknesses in COTS and OSS components. This model 
will help determine the probability that a known vulnerability in a given 
component will be exploited when that component has been assembled into 
the software system. 

8. Component combinations: Using the assembly framework, test various 
combinations of candidate components to determine: 

• Which components exhibit the most consistently secure behaviors and state 
changes in response to inputs/messages from other components, the 
environment, and humans;  

• Which components output the most consistently acceptable data;  

• Which combinations of components are the most difficult to force into 
insecure states/behaviors/failures.  
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By establishing the combination of components that proves the most secure in terms 
of state changes, behaviors, and interfaces both the individual components that 
should be selected will be revealed, and the best architecture for 
integrating/assembling those components will also emerge. 

9. Architecture adjustment: The security elements of the system architecture should 
also be adjusted as an outcome of the component evaluation and selection process. A 
given set of components assembled in a certain way may still exhibit residual risks 
that must be further mitigated by the application of additional security constraints, 
wrappers, filters, isolation mechanisms, etc. As part of the component selection 
process, the cost (in terms of time and resources) needed to implement and/or 
acquire and configure these additional security measures should be weighed against 
the cost of using a functionally less acceptable component, or the cost of custom 
developing a component instead of acquiring or reusing one. 

6.3.2 Questions to ask about components under evaluation 

Key questions to ask as part of the component evaluation include: 

1. How “knowable” and “modifiable” is the component?  

2. Does the component’s developer appear to have adhered to secure design 
principles, and followed secure coding practices and standards? (more easily 
determined for white box components); 

3. If the component is a black box: 

a. Is it configurable so that undesired functions can be “turned off” and unused 
interfaces can be disengaged? 

b. Has it been obfuscated or otherwise protected to prevent reverse 
engineering? If the component is being considered to perform a high-
consequence function, the ability to reverse engineer for code review may be 
required. 

4. If the component is inadequate in terms of exposed vulnerabilities or non-secure 
behaviors: 

a. Is there is an alternative component that provides the same functionality? 
This determination naturally requires the security evaluation of the identified 
alternative component. 

b. Would it be less costly in the long run to custom develop the functionality? 
Determining this requires a comparative analysis of whole-life cycle costs for 
custom development vs. cost of security measures, constraints, etc., plus the 
risk that each new version of the inadequate component might be 
incompatible with the security measures developed for the previous version, 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
146 

thus requiring additional countermeasure or constraint development later on. 
For high-consequence functions as well as simple functions, it may well be 
more cost effective to custom-build. 

6.4 IMPLEMENTING SECURE COMPONENT-BASED SOFTWARE  

Preparation of components for assembly/integration entails: 

1. Tailoring the components to fulfill the requirements of their roles in the component-
based system. Security measures implemented to mitigate component-based risks (e.g., 
input validation filters, isolated execution areas, etc.) should be captured as part of the 
requirements for the system;  

2. Modifying component software (especially OSS, if possible and desirable), to mitigate 
security vulnerabilities and non-secure behaviors that cannot be corrected using 
wrappers, filters, virtual machine isolation, etc.; 

3. Designing, coding, and testing of “glue code”, wrappers, filters, etc. 

In addition to wrapping, filtering, and constraining, an additional countermeasure for 
addressing vulnerabilities and non-secure behaviors in components is software dynamic 
translation, a tool for instrumenting programs by performing substantial rewriting of their 
code at runtime. Originally conceived to reduce software’s execution time, dynamic translation 
is increasingly been used to add security policy enforcement to software, to prevent code and 
command injections, and to otherwise compensate for security shortcomings in existing 
software. Resources describing security-specific use of software dynamic translation are 
provided at the end of this section. 

The actual assembly/integration process entails integrating and testing the components in 
combination with other components. The system’s security requirements will not be fully 
validated until all of the components of the system have been established to be working 
securely in combination. Note that certain combinations of components should be expected to 
introduce or expose security vulnerabilities that did not appear when the components were 
examined individually. 
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SUGGESTED RESOURCES 

Those cited at the end of the previous section, plus: 

• Minkiewicz, Arlene F. “Security in a COTS-Based Software System”. CrossTalk: The 
Journal of Defense Software Engineering, November 2005. Accessed 4 February 2008 
at: http://www.stsc.hill.af.mil/crosstalk/2005/11/0511Minkiewicz.html 

• Neumann, Peter G.. “Principled assuredly trustworthy composable architectures”. CDRL 
A001 Final Report, 28 December 2004. Accessed 21 January 2008 at: 
http://www.csl.sri.com/users/neumann/chats4.html  

• Neumann, Peter G. and Richard J. Feiertag. “PSOS (Provably Secure Operating System) 
Revisited”. Proceedings of the 19th Annual Computer Security Applications Conference, 
Las Vegas, Nevada, 8-12 December 2003. Accessed 4 February 2008 at: 
http://www.csl.sri.com/users/neumann/psos03.pdf  

• Ellison, Robert J. “Trustworthy Composition: The System is Not Always the Sum of Its 
Parts”. September 2005. Accessed 4 February 2008 at: https://buildsecurityin.us-
cert.gov/daisy/bsi/50.html?branch=1&language=1 

• Hu, Wei, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans, John 
C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. “Secure and Practical Defense 
Against Code-Injection Attacks Using Software Dynamic Translation”. Proceedings of the 
2006 ACM Virtual Execution Environments Conference, Ottawa, Ontario, Canada, 10-13 
June 2006. Accessed 31 December 2007 at: 
http://dependability.cs.virginia.edu/publications/2006/strata-isr.vee2006.pdf 

• Kumar, Naveen and Bruce Childers. Flexible Instrumentation for Software Dynamic 
Translation. Proceedings of the Workshop on Exploring the Trace Space for Dynamic 
Optimization Techniques, at the ACM International Conference on Supercomputing, New 
York, New York, June 2003. Accessed 31 December 2007 at: 
http://www.cs.pitt.edu/coco/papers/traces-kumar.pdf 

6.5 SECURE SUSTAINMENT OF COMPONENT-BASED SOFTWARE 

There should be ongoing analysis throughout the integrated/assembled system’s lifetime to 
assure that its security requirements remain adequate, and that it continues to satisfy those 
requirements correctly and completely even as acquired or reused components are patched, 
updated, and replaced.  

Sustainment will include the evaluation to determine which patches, upgrades, etc., can be 
safely adopted. Note that applying upgrades/patches may also entail modifications to 
wrappers and filters to accommodate new or changed interfaces. Upgrades may also require 
recertification and some level of integration and testing (whole system level) to ensure that 
security constraints will still be satisfied in the system after the upgrades occur. 

Vendors’ contractual obligations regarding security and quality must also be determined to be 
satisfied in all new product versions over time. License or maintenance fees should to be paid 
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to ensure that all updates, upgrades, and ongoing vendor support contracts are also 
maintained. 

Developers/maintainers should anticipate ongoing changes to system requirements, and 
ongoing need to develop bug fixes and security patches to custom-developed components, as 
well as new wrappers and other countermeasures to address vulnerabilities in replacement 
and upgraded acquired components.  

Over time, refactoring and/or reengineering of reused legacy components and even of OSS 
components may be indicated in order to maintain an acceptable security posture of the 
system as a whole. 

SUGGESTED RESOURCES 

• BuildSecurityIn Legacy Systems resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/legacy.html 

• Software Security Assurance, Section 5.1.1.4. 

• Lieberman, Danny. “Software security assessment of production systems”. 2006. 
Accessed 9 April 2008 at: http://www.software.co.il/content/view/195/41/. Also 
published by the Control Policy Group as “Practical Software Security Assessment”. 
2007. Accessed 9 April 2008 at: 
http://www.controlpolicy.com/practicalsoftwaresecurityassessment 

• Kolb, Ronny, Dirk Muthig, Thomas Patzke, and Kazuyuki Yamauchi. “Refactoring a 
legacy component for reuse in a software product line: a case study: Practice Articles”. 
Presented at the 2005 IEEE International Conference on Software Maintenance. 
Published in Journal of Software Maintenance and Evolution: Research and Practice, 
Volume 18 Issue 2, March 2006, pages 109-132. 

• Laney, Robin C., Janet van der Linden, and Pete Thomas. “Evolving Legacy System 
Security Concerns Using Aspects”. Open University Technical Report Number 2003/13, 
11 November 2003. Accessed 9 April 2008 at: http://computing-
reports.open.ac.uk/index.php/content/download/82/322/file/2003_13.pdf 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
149 

7 SECURE CODING 
Secure coding is a prerequisite of defensive programming. Defensive programming is 
intended to produce robustly secure software. It requires the software’s behaviors to fall 
within the bounds of its design specification, regardless of the nature of its execution 
environment or the input it receives. Defensively programmed software: 

• Does not rely on any parameters that are not self-generated; 

• Assumes that attempts will be made to subvert its behavior, directly, indirectly, or 
through manipulation of the software to violate a security policy.  

This section introduces secure coding principles and practices that will contribute to defensive 
programming and software security.  

NOTE: In addition to the Suggested Resources below, consult the Suggested Resources for Section 
7.1.3, and for the individual programming languages discussed in Appendix C:C.4. 

SUGGESTED RESOURCES 

• BuildSecurityIn Coding Rules resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi-rules/home.html 

• BuildSecurityIn Coding Practices resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/coding.html 

• Software Security Assurance, Sections 5.1.1.3 and 5.4. 

• Carnegie Mellon University Software Engineering Institute/Computer Emergency 
Response Team Secure Coding Standards Webpage. Accessed 21 January 2008 at: 
https://www.securecoding.cert.org/ 

• Microsoft Security Developer Center. Writing Secure Code Webpage. Accessed 12 
December 2007 at: http://msdn2.microsoft.com/en-us/security/aa570401.aspx 

• Apple Computer. Secure Coding Guide. 23 May 2003. Accessed 12 December 2007 at: 
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Sec
ureCodingGuide.pdf 

7.1 SECURE CODING PRINCIPLES AND PRACTICES 

As they write code, programmers should conform to the following principles. 

7.1.1 Keep code small and simple 

The smaller and simpler the code base is, the easier it will be to verify the security of the 
software. Programmers should implement functions in the smallest number of lines of code 
possible. Only required (by specification) functions should be included in the software. 
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Software should never contain unnecessary (i.e., not specified) functions. The number of flaws 
in the code that implements high-consequence functions can be significantly reduced by 
reducing the size of the source code modules that implement those functions. 

Structured programming, avoidance of ambiguities and hidden assumptions, and avoidance 
of recursions and GoTo statements that blur the flow of control are effective techniques for 
achieving code simplicity and minimizing code size. Complex functions that would need to be 
implemented by large software modules should be analyzed and divided into multiple small, 
simple functions that can be implemented by small software modules. This will make the 
system easier to understand and document, thus making it easier to verify the security and 
correctness of the individual component and of the system as a whole.  

All processes should be written with only one entry point and as few exit points as possible. 
To the extent possible, the system should be implemented with minimal interdependencies, so 
that any process module or component can be disabled when not needed, or replaced if found 
to be insecure or a better alternative is identified, without affecting the operation of system as a 
whole. 

Object inheritance, encapsulation, and polymorphism are additional techniques that can help 
simplify code. 

7.1.2 Use a consistent coding style 

A consistent coding style should be used throughout the system’s from-scratch/custom code 
base (i.e., code written rather than obtained commercially or open source), regardless of how 
many programmers participate in writing that code.  

The coding style defines the physical appearance of the code listing with regard to indentation, 
line spacing, etc., and should emphasize comprehensibility by code reviewers and maintainers 
who were not involved in writing the code. All programmers on the project should follow the 
same coding style guide.  

Coding style should also be considered as an evaluation criterion for open source software. 
This is particularly true for code of software that will be used to implement high-
consequence/trusted functions. As with from-scratch code, the acquired code’s clear, 
comprehensible coding style will make the security analysis of that code easier. 

7.1.3 Follow secure coding standards and/or guidelines 

Secure coding standards and guidelines identify safe coding practices and constructs and 
identify common coding flaws and constructs that can manifest as vulnerabilities, along with 
secure alternatives to those problematic flaws/constructs. These standards and guidelines, 
which should cover both what should be done and what should not be done when coding in 
all languages that will be used in the programming of the software, can be “home grown”—as 
is most likely to be the case for commercial software producers, or existing externally-sourced 
standards and guidelines may be used—which may prove helpful for government and 
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private-sector contractors who develop custom software. For example, the CMU Software 
Engineering Institute published secure coding standards for C and C++; these are included in 
the Suggested Resources at the end of Appendix C:C.4.1. While no comparably detailed secure 
coding standards have yet been published for other languages, there are some higher-level 
secure coding guidelines available for Java, Perl, etc. These are listed in the Suggested 
Resources sections for each programming language in Appendix C:C.4.  

7.1.4 Make code forward and backward traceable 

Structure the program code so that it is both backward and forward traceable. It should be 
possible to easily trace each requirement from the specification to its manifestation in the code, 
and each design element from its manifestation in the detailed design to its manifestation in 
the code. It should also be possible to derive each requirement and design element from its 
manifestation in the code. 

7.1.5 Code for reuse and maintainability 

The features that make code elegant and secure—simplicity, comprehensibility, traceability—
also contribute to its reusability and maintainability. The programming team should start the 
coding process by writing a code specification that is clear, understandable, and 
comprehensive enough to guide other programmers in writing the specified code. This way, 
even if mismatches in design or architecture prevent later reuse of the code, that code will be 
easily maintainable. 

The programmer should never assume that his/her source code will be self-explanatory. 
Extensive commenting and documentation, including the results of reviews and tests, will 
help other programmers and maintainers gain the complete and accurate understanding of the 
code that they need to reuse or modify it without introducing vulnerabilities. 

7.1.6 Allocate memory and other resources carefully 

Minimize the computer resources made available to each process. For example, for software 
that will run on Unix, use ulimit(), getrlimit(), setrlimit(), getrusage(), sysconf(), quota(), quotactl(), 
and quotaon() (also pam_limits for pluggable authentication module processes) to limit the 
potential damage that results when a particular process fails or is compromised and to help 
prevent DoS attacks on the software.  

If the software is a Web server application or Web service, set up a separate process to handle 
each session, and limit the amount of central processing unit (CPU) time that each session in 
each process is allowed to use. This will prevent any attacker request that hogs memory or 
CPU cycles from interfering with tasks beyond its own session.  

NOTE: Designing all sessions to be atomic and resource-limited will make it difficult to create 
denials of service by spawning multiple sessions. 
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Memory locations for cache buffers should not be contiguous with executable stack/heap. 
Whenever possible, set the stack to be non-executable. See Section 6.5 for a discussion of how 
to implement secure memory/cache management. 

7.1.7 Minimize retention of state information 

The software should retain only the bare minimum of needed state information, and should 
frequently purge data written in cache memory and temporary files on disk. These measures 
will minimize the likelihood of undesired disclosure of sensitive information, including 
information about the software itself that can be leveraged by attackers, in case of the 
software’s failure. 

7.1.8 Leverage security through obscurity only as an additional deterrence 
measure 

Security through obscurity measures, such as code obfuscation, use of hidden files, etc., at best 
provide a weak deterrence against reconnaissance attacks and reverse engineering. Such 
measures should only ever be used in addition to a robust set of true security measures, to 
provide enough of an inconvenience factor to possibly deter unsophisticated and casual 
attackers. 

7.1.9 Avoid unauthorized privilege escalation 

The programmer should not write logic that enables users or processes to perform unexpected 
or unintended privilege escalations. Attackers can observe a process that attempts to reference 
another process that has higher privileges than its own, or that attempts to exploit race 
conditions in that second process. The attackers will interpret such actions on the first process' 
part as indicating laxness in privilege enforcement and authentication validation by the 
software system. Processes with higher privileges than the attacker should not be visible to the 
attacker; if the attacker can see the higher privileged process, he/she can exploit it to escalate 
his/her own privileges.  

7.1.10 Use consistent naming 

A common cause of security flaws in implemented software is incorrect developer use of 
aliases, pointers, links, caches, and dynamic changes without re-linking. To reduce the 
likelihood of such problems, developers should: 

• Treat aliases symmetrically: Every alias should be unique, and should point to only 
one resource; 

• Be cautious when using dynamic linking: This will avoid unpredictable behaviors that 
result from runtime introduction of components. For example, Java-extensible Web 
browsers rely on static type systems with link checks to enforce a wide class of 
important safety properties—properties that could be compromised through dynamic 
linking. Several approaches have been proposed to address the need for safe dynamic 
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linking, including: runtime and compile-time type-based analyses and procedural 
analyses, to ensure type safety of dynamically-linked code and to identify the code’s 
calling context and ensure that only the names needed in that context are linked, as well 
as use of proof-carrying code techniques for link-time validation of native code. These 
countermeasures have been found to address security issues, such as the introduction of 
unexpected behaviors and the unacceptable expansion, through dynamic linking, of a 
minimal trusted computing base. In the absence of such countermeasures, at a 
minimum, dynamic linking should be used only with code whose security and other 
critical properties are not put at risk by runtime additions, modifications, or 
replacements. 

• Minimize use of global variables: When such variables are necessary, give the 
variables globally-unique names; 

• Clear caches frequently; 

• Limit variables to the smallest scope possible: If a variable is used only within a single 
function or block, that variable should be declared, allocated, and deallocated only 
within that function or block; 

• Deallocate objects as soon as they are no longer needed: If they will be needed again 
later, they can be reallocated at that time. Use language idioms, such as RAII (Resource 
Acquisition Is Initialization) in C++, to automatically enforce this convention. 

7.1.11 Use encapsulation cautiously 

Incorrect encapsulation can expose the internals of software procedures and processes by 
revealing (leaking) sensitive information or externally inducing interference. Correct 
encapsulation is achieved through a combination of: 

• Effective system architecture; 

• Effective programming language design; 

• Effective software engineering; 

• Static checking; 

• Dynamic checking; 

• Effective error handling, with generic (uninformative) error messages sent to the user, 
while full error information is logged. 

7.1.12 Leverage attack patterns 
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To use attack patterns to identify specific coding flaws (i.e., bugs, valid constructs with 
negative security implications) targeted by relevant attacks, and ensure that these flaws do not 
occur in his/her code, the programmer should: 

1. Determine which attack patterns are applicable: i.e., which subset of available attack 
patterns are relevant given the software’s architecture and execution environment, and 
the technologies used to implement the software. For example, the Buffer Overflow 
attack pattern would be relevant for a C or C++ program running on native Linux, but 
not for a C# program running on .NET. 

2. Determine what constructs, etc., should not appear in their code, based on what attack 
patterns need to be avoided. 

The following example illustrates how a programmer can leverage an attack pattern: 

Attack pattern: Simple Script Injection 

Use to: Avoid cross-site scripting vulnerabilities.  

Areas of code which this pattern is likely to target: Areas from which output data is 
sent to the user from an untrusted source. 

How to protect code against this attack pattern: If no countermeasure has already been 
implemented (i.e., based on an architectural decision to include a self-contained input 
validator/output filter at the juncture between the server and the client), implement a 
programmatic countermeasure such as: 

1. Convert potentially dangerous characters into their HTML equivalents to prevent the 
client from displaying untrusted input that might contain malicious data or artifacts, 
such as <script> tags inserted by an attacker. Examples of such conversions: “<“ 
becomes “&lt;” | “>“ becomes “&gt;”). There are third-party Java libraries that 
automatically perform such conversions; JavaScript’s escape() function also performs 
similar conversions. Note that such conversions need to be managed carefully to 
avoid potential unintended buffer overflow vulnerabilities that may result from 
routinely replacing single characters with longer character strings. 

2. Implement an input validation filter that filters input based on a white list of 
allowable characters.  

7.1.13 Input encoding and validation 

Injection attacks are commonly performed against applications. These can take the form of 
format string attacks in C or cross-site scripting attacks in Web scripting languages. An 
application that accepts user input and forwards it on to the output or some trusted function 
may be targeted for attack. As such, it is important to properly validate input to ensure that it 
meets the application's expectations (e.g., by verifying that the input has a certain length and 
contains no "special" HTML characters), and by securely handling any invalid input. In cases 
where input validation may allow potentially malicious characters (e.g., “<“ in Web 
applications), applications should encode these characters so that they will not be mistaken by 
other functions or relying applications.  
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7.1.13.1 Implementing input validation 

Input from users or untrusted processes should never be accepted by the system without first 
being validated to ensure the input contains no characteristics, or malicious code, that could 
corrupt the system or trigger a security exploit or compromise. Validation of both 
unintentionally or maliciously malformed input is the most effective way to prevent buffer 
overflows. Programs written in C or C++ in particular should be checked to ensure they 
contain correctly implemented input validation routines that prevent incorrect program 
responses to input with unexpected sizes or formats. 

Input validation should verify: 

• The conformance of input to specified parameters for that input. These parameters 
include:  

o Length, 

o Range, 

o Format, 

o Type. 

• The absence from input of any constructs that are not explicitly allowed and expected. 
Such constructs include: 

o Query strings, 

o Cookies, 

o File paths, 

o URL paths. 

The length of every input element should be checked (i.e., bounds checking), and the 
acceptable length should be restricted to the shortest possible value.  

Each component should do its own input validation unless the design ensures that 
trustworthy validation of the input has been successfully achieved before the component 
receives that input (example of design by contract). In many cases the application framework 
or integrated development environment being used will provide reusable code samples for 
input validation; for example, ASP.NET Validator Controls and JavaScript filtering. 

As noted earlier, white listing is the preferred approach to input validation. White listing 
verifies that input conforms to defined acceptable parameters, and rejects all input that does 
not conform. White list validation has proved effective in filtering out input patterns 
associated with unknown attacks. By contrast, the other approach, black listing, verifies that 
input does not conform to defined unacceptable parameters associated with suspected 
malicious input. Black listing accepts all input that is not explicitly identified as “bad”. It is 
useless in protecting against unknown attacks. It can, however, be useful in weeding out some 
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bad input prior to white list filtering. It can also be used as a stopgap for filtering out attack 
input associated with zero-day vulnerabilities until a patch is available. Ideally, white listing 
and black listing will be used in combination, as indicated, with black listing preceding white 
listing. 

Once bad input is detected, it needs to be handled. The best approach is to simply reject bad 
input, rather than attempting to sanitize it. However, there will be times when sanitization is 
necessary. If this is the case, all data that is sanitized should be resubmitted for white list 
validation to ensure the sanitization was effective. 

 

7.1.13.1.1 Preliminary client-side validation 

As a first line of defense against malicious users, it may make sense to include logic for 
preliminary validation of input within the client (e.g., as a browser plug-in implemented in 
JavaScript) before the accepted or sanitized input is forwarded to the server, where it will 
undergo more robust mandatory validation.  

Validation on the client can help reduce requirements for bandwidth and server CPU cycles, 
because less unacceptable data will be forwarded from client to server, and more client-
originated data will be valid and thus will not require sanitization by the server.  

SUGGESTED RESOURCES 

• Viega, John and Matt Messier. “Input Validation in C and C++”. Chapter excerpt from 
Secure Programming Cookbook for C and C++, posted on O’Reilly Network Website, 20 
May 2003. Accessed 19 December 2007 at: 
http://www.oreillynet.com/pub/a/network/2003/05/20/secureprogckbk.html 

• secologic. “A Short Guide to Input Validation”. Version 1.0, 25 April 2007. Accessed 14 
December 2007 at: http://www.secologic.org/downloads/Web/070509_secologic-short-
guide-to-input-validation.pdf 

• Norton, Francis. “Implementing Real world Data Input Validation Using Regular 
Expressions” (for .NET). Simple-Talk, 14 May 2007. Accessed 14 December 2007 at: 
http://www.simple-talk.com/dotnet/.net-framework/implementing-real world-data-
input-validation-using-regular-expressions/ 

• “Reg Ex Input Val Code—Validate User Input with Regular Expressions” [C#]. Patterns 
and Practices Guidance Library Wiki. Accessed 14 December 2007 at: 
http://www.guidancelibrary.com/default.aspx/Home.RegExInputValCode 

• Kurz, John. “Dynamic Client-Side Input Validation”. ColdFusion Developer’s Journal, 1 
May 2003. Accessed 14 December 2007 at: http://coldfusion.sys-
con.com/read/41599.htm 

• Grossman, Jeremiah. “Input validation or output filtering, which is better?” On his 
Weblog, 30 January 2007. Accessed 14 December 2007 at: 
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http://jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-
filtering.html 

7.1.13.1.2 XML schema and input validation 

The rationale for validating input for Web services is no different than it is for any other type 
of software program. The first line of defense should be to perform XML schema validation to 
ensure the XML message is well formed and meets the data accuracy, completeness, and 
validity constraints. Validating using an XML Schema Design (XSD) helps prevent parameter 
tampering. XSDs also allow the use of regular expressions to define restrictions. For example, 
the following regular expression in XSD restricts the speed field to three integers ranging from 
0-9: 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
158 

... 

<xs:simpleType name=“speed”> 

 <xs:restriction base=“xs:string”> 

 <xs:pattern value=“[0-9]{3}”/> 

 </xs:restriction> 

</xs:simpleType> 

... 

Although well-formedness and validation can block a substantial proportion of Web service 
attacks, there are still vulnerabilities specific to XML that may not be caught using an XSD 
validator. The majority of these attacks are aimed at overloading the parser. When writing in 
Java, such attacks can be addressed, and potential for overflows and denial of service 
minimized, by using the secure processing feature of Simple API for XML (SAX)—
XMLConstants.FEATURE_SECURE_PROCESSING—in Java API for XML Processing Version 
1.3 (i.e., bundled with Java 1.5 and available as an option in earlier Java versions). Secure SAX 
processing will cause excessively long constructs to be flagged as well-formed-ness errors, 
regardless of whether the excessive length is due to inclusion of too many attributes in an 
element or too many characters in an element name. After obtaining an instance of a SAX 
parser, configure it to use secure processing, as in the example provided in the Codase source 
code referenced at the end of this section.  

SUGGESTED RESOURCES 

1. Harold, Elliotte. “Configure SAX parsers for secure processing (Prevent entity resolution 
vulnerabilities and overflow attacks)”. IBM DeveloperWorks, 27 May 2005. Accessed 9 
April 2008 at: http://www-128.ibm.com/developerworks/xml/library/x-tipcfsx.html 

2. Codase BETA Java Source Code Search Engine. Entry for javax.xml Class 
XMLConstants#FEATURE_SECURE_PROCESSING. Accessed 8 April 2008 at: 
http://www.codase.com/java/javax/xml/XMLConstants.html#FEATURE_SECURE_PROCE
SSING  

7.1.13.2 Testing input validation logic 

Testing of input validation logic should verify the correctness of the input validation routines. 
The test scenarios should include submission of both valid and invalid data, and the tester 
should look for false positives (valid data rejected by input validation) and false negatives 
(invalid data accepted by input validation). If client-side validation is implemented as a first-
line-of-filtering, it should also be tested with and without JavaScript (JavaScript interprets 
regular expressions slightly differently than server validation engines do; this can generate 
false positives client side, and false negatives on the server side). Finally, the tester should also 
run the application with validation turned off both server-side and client-side. Doing so will 
reveal how receipt of invalid data affects other application tiers, e.g., by exposing 
vulnerabilities. In architectures in which input validation is centralized, it will also reveal 
whether additional validation may be needed at other points in the system. 
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7.1.14 Output filtering and sanitization 

Processes that generate or pass output to external entities should be implemented so that their 
output is checked to ensure it conforms to parameters for allowable output, and that it 
contains no content that is unallowable. In essence, the same types of checks used for 
validating input are applied to output before that output is released to its intended external 
recipient. 

7.1.15 Avoid security conflicts arising between native and non-native, passive 
and dynamic code 

Increasingly, applications are relying on code that is written in another programming 
language—or code that may not have been written when the application was originally 
developed. For example, some Java applications may rely on C code to interface directly with 
hardware, or an Asynchronous Java And XML (eXtensible Markup Language) (AJAX) 
application may supply dynamically generated JavaScript to the Web browser to perform an 
operation. In both cases, it is important to understand the security implications involved. It is 
imperative that applications treat native and dynamic code as potentially untrusted entities.  

In the Java example, an attacker may be able to perform a buffer overflow attack against the 
native code. In the dynamic code example, there is the possibility that the dynamically 
generated code may not meet the expectations of the application. In the AJAX example, the 
dynamically generated code may have been developed after the original application, making 
different assumptions about the environment and state of the application—leading to 
potentially invalid input to the AJAX application. As such, it is imperative that developers 
perform validation on data going to the untrusted code as well as data received. 

7.1.16 Review code during and after coding 

Programmers should review code as they write it, to locate flaws within individual 
units/modules before checking those units/modules into the SCM system. Programmers 
should also look for flaws in interfaces between units/modules before submitting those 
units/modules for compilation and linking.  

Before compilation, all software artifacts and initial production data should be “cleaned up” as 
necessary to remove any residual debugging “hooks”, developer “backdoors”, sensitive 
comments in code, overly informative error messages, etc. that may have been overlooked 
during the implementation phase (note that as secure development practices become more 
deeply ingrained, such items will not be introduced into the code in the first place). 

Static analysis, also referred to as code review, is any analysis that examines the software 
without executing it. In most cases, this means analyzing the program’s source code, although 
a number of tools are emerging to enable static analysis of binary executables. Because static 
analysis does not require a fully integrated or installed version of the software, it can be 
performed iteratively throughout the software’s implementation. This said, code review has 
inherent shortcomings in terms of its impracticality for examining sections of code larger than 
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individual code units. For this reason, static analysis should always be combined with other 
software security testing techniques. 

The main objective of code reviews is to discover security flaws and to identify their potential 
fixes. The test report should provide enough detailed information about software’s possible 
failure points to enable its developer to classify and prioritize the software’s vulnerabilities 
based on the level of risk they pose to the system (e.g., the vulnerabilities that hackers are most 
likely to be able to exploit successfully). 

Source code analysis and white box testing should be performed as early and as often in the 
life cycle as possible. The most effective white box tests are performed on granularly small 
code units—individual modules or functional-process units—which can be corrected relatively 
easily and quickly before they are added into the larger code base. Iteration of reviews and 
tests ensures that flaws within smaller units will be dealt with before the whole-system code 
review, which can then focus on the “seams” between code units, which represent the 
relationships among and interfaces between components. 

Static analysis can be wholly manual or tool-assisted. In a manual static analysis, the reviewer 
inspects all code without the assistance of automated tools. Manual code review is highly 
labor-intensive, but can, when reviewers with appropriate levels of experience perform the 
review, produce the most complete, accurate results early in the review process, before 
reviewer fatigue sets in. It is common for the reviewer to begin by very meticulously checking 
every line of code, then to gradually skip larger and larger portions of code, so that by the end 
of the review, the inconsistent and decreasing amount of “code coverage” is inadequate to 
determine the true nature of the software.  It is important to note, that as the size of the code-
base increases it comes less feasible to perform a complete manual review.  In such cases, it 
may be beneficial to perform a semi-automated review, with manual reviews being performed 
on critical subsets of the code base. 

The fully automated code review relies on a tool or tools to perform the entire code inspection. 
The reviewer’s job limited to running the tool and interpreting its results. While automated 
tools can scan very large code bases in a short time with consistent results and metrics, their 
findings will necessarily be only as complete as the list of patterns (e.g., common unsafe coding 
constructs) they are programmed to scan for. Automated code review tools are not 
sophisticated enough to detect anomalies that a human reviewer would notice, but which are 
not included in the tool’s pre-programmed list of patterns. Nor can such tools identify 
vulnerabilities in the “seams”/relationships between different sections of code (though there 
are tools emerging that can identify such relationships), or vulnerabilities arising from the 
interactions between non-contiguous segments of code.  Fully automated tools can provide 
additional benefits, by allowing developers to run scans as they are developing—addressing 
potential security vulnerabilities early in the process.  Similarly, the level of expertise required 
for an automated review might be less than that required for a manual review.  In many cases, 
the automated tool will provide detailed information about the vulnerability found, including 
suggestions for mitigation. 
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One of the primary concerns with code review tools concerns assessing their accuracy.  In most 
situations, the accuracy of any analysis tool revolves around its false negative (i.e., 
vulnerabilities overlooked by the tool) and false positive (i.e., false alarms produced by the 
tool) rates.  Most of the algorithms used by these tools can be tailored to reduce the false 
positive rate at the expense of increasing the false negative rate or vice-versa.  When relying on 
these tools to generate evidence to support assurance case, the reviewer must provide strong 
evidence that the tool was used correctly and in a way that ensured that the number of false 
negatives and false positives were minimized, and the maximum number of true results was 
discovered.  In particular, it is difficult for testers to rely solely on the information provided by 
vendors.  Vendors have a financial incentive to ensure that their respective tools have the 
lowest false positive and false negative rates, it is very difficult for an independent observer to 
truly judge a tool’s false negative rate.   

A number of resources are available to aid in this regard.  The NIST Software Assurance 
Metrics And Tool Evaluation (SAMATE) project has defined the draft NIST SP 500-268, Source 
Code Security Analysis Tool Functional Specification, which identifies a definitive set of 
requirements against which source code analysis tools can be measured.  Additionally, 
SAMATE has released the draft NIST SP 500-270, Source Code Security Analysis Tool Test Plan, 
which provides insight into using the SAMATE Reference Dataset (SRD), which is a 
compilation of insecure code examples, against which users can run multiple source code 
analysis tools and compare their results to get a better understanding of their comparative 
strengths and weaknesses.37 

The semi-automated code review involves the human reviewer leveraging automated tools to 
assist in the otherwise manual inspection of the code. The tool is used to locate portions of 
code that contain known problem patterns as a “jumping off point” for the reviewer’s further 
analysis. In this way, the reviewer is “guided” towards problem areas in the code, but does not 
rely on the tool alone to locate any additional problems, anomalies, etc., in those areas.  

Whether manual, semi-automated, or fully automated, a simple static analysis entails 
searching for strings, identifying user input vectors, tracing the flow of data through the 
application, mapping execution paths, etc.  

A more thorough analysis will examine the structure of the source code to reveal the 
software’s intended behaviors, data flows, function calls, and loops-and-branches.  

The most resource-intensive form of static analysis is direct code analysis, which focuses on 
verifying the software’s satisfaction of required security-related properties, such as non-
interference, non-inference, separability, persistent_BNDC, forward-correctability, non-
deducibility of outputs, etc. Because of the time and resources required for direct code analysis, 

                                                 

37 Due to the rapid development and improvement of source code analysis tools, along with restrictions in place 
in many tools’ end user license agreements, it is impractical to publish comparisons of source code analysis tools.  
As such, organizations should perform their own analysis against the SRD as well as against their own codebases. 
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it is only practical for examining relatively small portions of code, and will probably be limited 
to code that implements high-consequence functions and external interfaces.  

Code reviews and other white box tests are also useful for detecting indicators of the presence 
of malicious code. For example, if the code is written in C, the reviewer might seek out 
comments that indicate exploit features, and/or portions of code that are complex and hard-
to-follow,38 or that contain embedded assembler code (e.g., the _asm_ feature, strings of 
hexadecimal or octal characters/values). 

Other things to look for during static code analysis include: 

• Presence of developer backdoors and implicit and explicit debug commands (implicit 
debug commands are seemingly innocuous elements added to the source code to make 
it easier for the developer to alter the software’s state while testing; if these commands 
are left in the software’s comment lines they may be exploitable after the software has 
been compiled and deployed);  

• Unused calls that don’t accomplish anything during system execution, such as calls 
invoking environment-level or middleware-level processes or library routines that are 
not expected to be present in the installed target environment. 

Static analysis has inherent limitations in terms of the types of vulnerabilities and flaws it can 
detect. These limitations and shortcomings include: 

1. Inability to find vulnerabilities introduced or exacerbated by the execution 
environment;  

2. Inability to support novice code reviewers, i.e., those without profound understanding 
of the security implications of software coding constructs; 

3. Lack of support for inter-procedural analysis spanning multiple source files;  

4. Difficulty analyzing files that have been preprocessed with build configuration 
dependencies; for example, lack of ability to parse into a single abstract syntax tree 
C/C++ programs that include preprocessor directives combined with inability to check 
every possible build of a program because the number of potential combinations of 
preprocessor directives increases exponentially with each build; 

5. Inability to determine whether code that contains no “dangerous” constructs or security 
flaws will not manifest vulnerabilities or insecure behaviors after it has been compiled 

                                                 

38 Submissions to the International Obfuscated C Code Contest and the Underhanded C Contest at Binghamton 
University show how complex source code can be written such that even a skilled reviewer may not be able to 
determine its true purpose. 
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and executed, e.g., due to interactions with the execution environment, users, other 
systems, etc. that cannot be predicted by a code review. 

Tools that support manual, semi-automated, and fully automated static analyses include code 
review assistants, source code scanners, and buffer overrun detectors. 
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SUGGESTED RESOURCES 

• BuildSecurityIn White Box Testing resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/white box.html 

• BuildSecurityIn Code Analysis resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/code.html 

• Secure Software, Inc. “Risk in the Balance: How the Right Mix of Static Analysis and 
Dynamic Analysis Technologies Can Strengthen Application Security”. 2004. Accessed 3 
January 2008 at: 
http://secureitalliance.org/blogs/files/164/1137/Risk%20in%20the%20Bal_wp.pdf 

• OWASP Code Review Project page. Accessed 14 December 2007 at: 
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project 

• Chess, Brian and Jacob West. Secure Programming with Static Analysis. Indianapolis, 
Indiana: Addison-Wesley, 2007. 

• Hsu, Francis. “Input validation of client-server Web applications through static analysis”. 
Presented at Web 2.0 Security and Privacy 2007, Oakland, California, 24 May 2007. 
Accessed 14 December 2007 at: http://seclab.cs.rice.edu/w2sp/2007/papers/paper-
210-z_9464.pdfSecure  

• Wilander, John and Pia Fåk. “Pattern Matching Security Properties of Code using 
Dependence Graphs”. Proceedings of the First International Workshop on Code Based 
Software Security Assessments, Pittsburgh, Pennsylvania, 7 November 2005, pages 5-8. 
Accessed 3 January 2008 at: 
http://www.ida.liu.se/~johwi/research_publications/paper_cobassa2005_wilander_fak.p
df  

• NIST SAMATE Home Page.  Accessed 11 September 2008 at: https://samate.nist.gov/ 

• Howard, Michael.  “A Process for Performing Security Code Reviews.”  IEEE Security and 
Privacy, Volume 4 Number 4, July/August 2006, pages 74-79.  Accessed 11 September 
2008 at: http://doi.ieeecomputersociety.org/10.1109/MSP.2006.84 

• Shostack, Adam.  “Security Code Review Guidelines.”  Accessed 11 September 2008 at: 
http://www.homeport.org/~adam/review.html 

7.2 SURVIVABILITY THROUGH ERROR, ANOMALY, AND EXCEPTION 
HANDLING 

Survivable software contains more error- and exception-handling functionality than program 
functionality. Error and exception handling can be considered to aid in survivability when the 
goal of all error and exception handling routines is to ensure that faults are handled in a way 
that prevents the software from entering an insecure state.  

The software should include security-aware error and exception handling capabilities, and 
should perform validation of all inputs it receives—including inputs from the environment—
before using those inputs. Input validation will go along way towards preventing DoS, for 
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example DoS resulting from buffer overflows in software written in, or interfacing with 
libraries written in, C or C++.  

The software’s error and exception handling should be designed so that whenever possible, 
the software will be able to continue operating in a degraded manner (with reduction in 
performance or acceptance of fewer [or no] new inputs/connections) until a threshold is 
reached that triggers an orderly, secure termination of the software’s execution. The software 
should never throw exceptions that allow it to crash and dump core memory, or leave its 
caches, temporary files, and other transient data exposed.  

The exception handling block should include a logger to record when and why an exception 
was thrown; auditors can later review this log. The exception handling block should also be 
written to include messaging code containing that will automatically send an email alert to the 
system administrator when an exception requires human intervention. 

Table 7-1 lists several common software errors, and suggests remediations for those errors at 
the design and implementation levels. 

Table 7-1. Software errors and suggested remediations 

Expected Problem How Software Should Handle the Problem 

Input received by the software contains 
anomalous content.  

IMPLEMENTATION: Validate all input. 

The execution environment differs 
significantly from the environment for 
which the software was designed.  

DESIGN: Recognize all explicit and implicit 
assumptions COTS and OSS components have 
about their environment. Design to mitigate 
vulnerabilities created by mismatch between 
component assumptions and actual environment. 
Design also to minimize external exposure of 
component/environment interfaces. 

There are errors in the results returned 
by called functions. 

DESIGN: Design for resilience.  
IMPLEMENTATION: Anticipate all likely errors and 
exceptions, and implement error and exception 
handling to explicitly address those 
errors/exceptions. 

The software contains vulnerabilities 
that were not mitigated or detected 
before the software was deployed. 

DESIGN: Include measures that isolate 
untrusted, suspicious, and compromised 
components, and to constrain and recover from 
damage.  
IMPLEMENTATION: Measures that reduce 
exposure of untrusted and vulnerable 
components to externally-sourced attack 
patterns, e.g., using wrappers, input filters, etc.  

 

Practices for implementing effective error, anomaly, and exception handling are described 
below. 
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7.3.1 Anomaly awareness 

In most distributed software systems, components maintain a high level of interaction with 
each other. Inaction (i.e., lack of response) in a particular component for an extended period of 
time, or receipt from that component of messages that do not follow prescribed protocols, 
should be interpreted by the recipient as abnormal behavior. All components should be 
designed or retrofitted to recognize abnormal behavior patterns that indicate possible DoS 
attempts. This detection capability can be implemented within software developed from 
scratch, but must be retrofitted into acquired or reused components (e.g., by adding anomaly 
detection wrappers to monitor the component’s behavior and report detected anomalies).  

Early detection of the anomalies that are typically associated with DoS can make containment, 
graceful degradation, automatic fail-over, and other availability techniques possible to invoke 
before full DoS occurs. While anomaly awareness alone cannot prevent a widespread DoS 
attack, it can effectively handle isolated DoS events in individual components, as long as 
detected abnormal behavior patterns correlate with anomalies that can be handled by the 
software as a whole. 

7.3.2 Event monitors 

Effectiveness of event—error or anomaly—monitors depends on the correctness of 
assumptions about: 

1. The structure of the program being monitored; 

2. The anomalies and errors that are considered possible, and those that are considered 
unlikely.  

As with all assumptions, these may be invalidated under certain conditions. 

An anomaly or error should be detected as near in time to the causal event as possible. This 
will enable isolation and diagnosis before erroneous data is able to propagate to other 
components. The number of program self-checks that can be implemented is usually limited 
by the availability of time and memory. At a minimum, there should be checks for all security-
critical states. Use risk analysis to establish the basis for defining the optimal contents and 
locations of each check.  

Monitor checks should be non-intrusive, i.e., they should not corrupt the process or data being 
checked. In addition, the developer should take particular care when coding logic for 
monitoring and checking to avoid including exploitable flaws.  

7.3.3 Security error and failure handling 
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The overall robustness of a well-designed system is partially predicated by the robustness of 
its security handling procedures at the code or programming language level. C++ and Java, for 
example, inherently provide convenient and extensible exception handling support that 
includes “catching” exceptions (faults that are not necessarily caused by flaws in externally-
sourced inputs or violations of software-level constraints) and errors (faults that are caused by 
external inputs or constraint violations; errors may or may not trigger exceptions).  

Developers who “reactively extend” native exception handlers, e.g., by pasting exception 
classes into source code after an error or fault has been observed in the program’s testing or 
operation, need to be careful not to rely solely on this approach to exception handling, 
otherwise the result will be a program that will fail to capture and handle any exceptions that 
have not yet been thrown during testing or operation. Exception handling should be 
proactively designed to the greatest extent possible, through careful examination of code 
constraints as they occur during the concept and implementation phases of the life cycle.  

The developer should list all predictable faults (exceptions and errors) that could occur during 
software execution, and define how the software will handle each of them. In addition, 
address how the software will behave if confronted with an unanticipated fault or error. In 
some cases, potential faults may be preempted in the design phase, particularly if the software 
has been subjected to sufficiently comprehensive threat modeling, while developers could 
preempt additional faults during pseudo-coding by cautiously examining the logical 
relationships between software objects and developing “pseudo” exception handling routines 
to manage these faults. 

7.3.4 Core dump prevention 

Core dumps are only acceptable as a diagnostic tool during testing. Programs should be 
implemented to be configurable upon deployment to turn off their ability to generate core 
dumps when they fail during operational use. Instead of dumping core when the program 
fails, the program’s exception handler should log the appropriate problem before the program 
exits. In addition, if possible, configure the size of the core file to be 0 (zero) (e.g., using setrlimit 
or ulimit in Unix); this will further prevent the creation of core files.  

7.4 SECURE MEMORY AND CACHE MANAGEMENT 

Much of today’s software is written to maximize performance through extensive use of 
persistent memory caching. The problem with persistent memory is that the longer data 
remains in memory, the more opportunity there is for that data to be inadvertently or 
intentionally disclosed if a failure causes the content of memory to core dump or otherwise 
become directly accessible. The problem arises because memory is not subject to the access 
control protections of the operating system level file system, or in a database application, the 
database management system.  

For example, when using entity beans on a Java Platform, Enterprise Edition (Java EE) server, 
data can be stored on the server with either container-level persistence or the bean-level 
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persistence. In either case, the program that processes and caches the data need to provide 
secure cache management capabilities that can accommodate all of the simultaneous processes 
the program has to multitask (e.g., receipt and handling of requests, management of sessions, 
reading of data from database or file system). The developer can force a program that uses 
Enterprise Java Beans to write data to persistent non-volatile storage after each transaction 
instead of making the data persistent in memory; the tradeoff is one of performance (fewer 
database accesses = better performance) vs. security (less memory persistence = less 
opportunity for attackers to access sensitive data not protected by file system or database 
access controls). In multi-user programs, the amount of overhead required to securely manage 
persistent cache is also affected by the number of users who simultaneously access the 
program: the more data that must be cached, the less memory available to other processes. 

If writing a program in which memory will be persistent, the developer should ensure that the 
length of persistence is configurable, so that it will be purged as frequently as the 
administrator or user desires. Ideally, the program will also provide a command that allows 
the administrator or user to purge the memory at will. When using a COTS or OSS component 
that makes memory persistent, if the data the component will store in memory is likely to be 
sensitive, consider hosting the component on a TPM to isolate its persistent memory from the 
rest of the system. Regardless of the length of memory persistence when the program is 
running, data should always be purged from memory as soon as the program shuts down. For 
high-consequence and trusted processes, the program should not retain the memory beyond 
the completion of the process; it should be purged when the process completes. 

Ideally, extremely sensitive data, such as authentication tokens and encryption keys will never 
be held in persistent memory. However, persistent memory cannot be avoided in COTS and 
OSS components. In these cases, if the component is likely to store sensitive data in persistent 
memory, the developer should leverage the cache management and object reuse capabilities of 
the operating system and, if there is one, the database management system to overwrite each 
persistent memory location with random bits seven times (the number of times considered 
sufficient for object reuse). 

7.4.1 Safe creation and deletion of temporary files 

Temporary files are created by some programs to hold intermittent state information about the 
transaction or operation in progress. As with data cache, temporary files may contain sensitive 
information, making them a target of interest to attackers. Security attacks can be realized due 
to:  

• Insecure temporary file management: The attacker creates a file with the same name as 
an existing file in the temp file directory. The attacker then copies the bogus temp file  
into the temp file directory, thereby overwriting the real temp file.  

• Symbolic link vulnerability: If the attacker knows where the application creates its 
temporary files and can guess the name of the next temporary file, the attacker can 
place a symbolic link at the temporary file location, then link that symbolic link to a 
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privileged file. As a result, the application will unknowingly write its temp data to the 
privileged file instead of the temp directory. 

On his application security Weblog, Richard Lewis describes a safe approach to temporary file 
creation and handling by software applications.39 

Ideally, programs would not create temporary files or file copies in the first place. If use of 
temp files cannot be avoided (e.g., due to performance requirements), ensure that the program 
always deletes all temporary files at a minimum at the time the program’s execution is 
terminated. As with cache purging, the temp file deletion should completely erase the file from 
disk or overwrite its disk location seven times with random bits. The program should also 
allow for temp file deletion-on-command by the user or administrator (without having to 
terminate the program), and should ideally also support configuration of greater frequency of 
automatic temp file deletions.  

7.5 INTERPROCESS AUTHENTICATION 

The primary purpose of interprocess authentication is to link the identity and privileges of a 
human user with those of the application processes that operate on his/her behalf.  

Identification and authentication, whether of human users or software entities (processes, 
services, components), provides the basis for two associations critical to assuring the secure 
operation of the software system: 

• Association with security-relevant attributes upon which security decisions related 
to the user or software entity will be based, such as whether or not to grant the 
entity to access certain data or resources; 

• Association of a software process’ actions with the user’s or software entity’s 
authenticated identity, for purposes of accountability. For accountability of software 
entities to be useful, there also needs to be a means to reliably and irrevocably 
associate the software entity with a human user, such as the association between a 
human user and the requestor Web service that is spawned on his/her behalf. 
Authentication using Kerberos tickets, Security Assertion Markup Language 
assertions, SSL/TLS with X.509 certificates or one-time encrypted cookies, secure 
remote procedure call (RPC) protocols, etc., enables the binding of a human identity 
with a software process that will act on that human’s behalf.  

However, new computing models require the ability of autonomous processes to dynamically 
invoke other autonomous software processes or agents which in turn can dynamically invoke 
yet more autonomous processes/agents, all of which may be widely distributed throughout 

                                                 

39 Lewis, Richard. “Temporary files security in-depth”. Posted on his Application Security blog, 12 October 2006. 
Accessed 31 December 2007 at: http://secureapps.blogspot.com/2006/10/temporary-files-security-in-depth.html 
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the software-intensive system, or even belong to other software systems—resulting in a system 
of systems. Under such conditions, it becomes extremely difficult if not impossible to extend 
the association of a human with each process or agent subsequently invoked by the first 
process/agent with which the user is associated. Accountability becomes a matter of keeping 
track of all the downstream processes/agents that are invoked as part of the need to respond 
to the original user request or action that originally associated that user with the first 
process/agent in the chain.  

In Web services-based SOAs, this is the problem that large-scale trust management models 
such as WS-Security and the Liberty Alliance framework are meant to solve. In the longer 
term, however, it is likely that accountability of software entities will become a goal in itself. 
Such accountability will have the benefit of providing a basis for dealing with badly behaved 
software processes/agents by denying them access to resources, isolating them in sandboxes, 
and even removing from the system. 

Grid computing initiatives, such as the Globus Grid Security Infrastructure, are defining 
solutions such as “run-anywhere” single-sign on authentication of grid agents using SSL/TLS 
and X.509 certificates. Moreover, the emergence of agent-based systems is driving definition of 
standards and technical solutions to provide more robust inter-agent authentication and 
accountability without reference back to a human user.40  

7.5.1 Secure RPC 

RPC is designed to implement secure communications between the processes within 
distributed applications. The RPC runtime library provides a standardized interface to 
authentication services for both client and server processes. The authentication services on the 
server host system provide RPC authentication. Applications use authenticated remote 
procedure calls to ensure that all calls come from authorized clients. They can also help ensure 
that all server replies come from authenticated servers. 

RPC specifications are limited to relatively narrow applications that are confined within a 
single administrative domain. Since many Web applications need to operate across domain 
boundaries, RPC for Web applications needs a comprehensive security infrastructure beyond 
what is possible by simply layering the RPC mechanism over SSL/TLS. 

The OpenGroup’s Distributed Computing Environment (DCE) included a specification for use 
of authenticated RPCs between clients and servers. Authenticated RPC works with the 
authentication and authorization services provided by the DCE Security Service, specified in 
the RPC runtime library for the particular server application for which authenticated RPC is 

                                                 

40 Work is being done to address the problem of accountability of software entities, especially grid agents. Some 
of these approaches are described in Yumerefendi, Aydan R. and Jeffrey S. Chase. “Trust but Verify: 
Accountability for Network Services”. Proceedings of the Eleventh ACM SIGOPS European Workshop, Leuven, 
Belgium, 19-22 September 2004. Accessed 7 July 2008 at: http://issg.cs.duke.edu/publications/trust-ew04.pdf 
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being enabled. DCE specifies a number of authenticated RPC routines that can be used by 
client-server application programmers in this context. 

7.6 SECURE SOFTWARE LOCALIZATION 

Creation of variants localized for different countries’ use can result in availability problems if 
caution is not used in writing source code that is suitable for both global and localized usage.  

When abuse/misuse cases and attack models are developed (i.e., as a basis for defining 
security requirements), there should be cases and models for each localized software variant.  

The main problems associated with local variants relate to potential for creating buffer 
overflow vulnerabilities, due to the longer lengths of resources strings in some languages, the 
expression of string lengths in bytes vs. characters in various character encodings, and the 
increase in required buffer size that can result from conversions from one encoding to another. 

SUGGESTED RESOURCES 

• Elgazzar, Mohamed. “Security in Software Localization”. Microsoft Global Development 
and Computing portal, no date. Accessed 19 December 2007 at: 
http://www.microsoft.com/globaldev/handson/dev/secSwLoc.mspx 

7.7 LANGUAGE-SPECIFIC SECURITY CONSIDERATIONS 

NOTE: The security benefits and concerns associated with individual programming languages are 
discussed in Appendix C:C.4. 

The choice of programming language is an important factor in writing secure code. While in 
many cases, existing libraries or requirements may require the use of one programming 
language over another, there are many situations where the choice of language can directly 
affect the security of the system. The most prominent example is the effect of array bounds 
checking in Java vs. C (though most modern C compilers support run-time bounds checking). 
This feature (or lack thereof) has led to a rash of buffer overflow based vulnerabilities in Web 
servers, operating systems, and applications for decades. Similarly, in environments where 
performance and footprint are extremely important (such as embedded devices and smart 
cards), a Java virtual machine may introduce too much strain on the system, resulting in 
potential denials of service.  

Type-safe languages such as Java, Scheme, ML (MetaLanguage), F#, and Ada ensure that 
operations are only applied to values of the appropriate type. Type systems that support type 
abstraction let programmers specify new, abstract types and signatures for operations that 
prevent unauthorized code from applying the wrong operations to the wrong values. In this 
respect, type systems, like software-based reference monitors, go beyond operating systems in 
that they can be used to enforce a wider class of system specific access policies. Static type 
systems also enable offline enforcement through static type checking instead of each time a 
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particular operation is performed. This lets the type checker enforce certain policies that are 
difficult with online techniques. 

Some key questions should be answered in evaluating and selecting the programming 
language(s) to be used in writing new code. These are: 

• Is the language simple and straightforward? Will it encourage writing simple, 
understandable programs? 

• Does the language include any features that will aid in writing secure software? 
Example: taint mode, own virtual machine environment 

• Does the language include any features that will make writing secure software more 
difficult? Example: lack of type safety 

• If a non-secure language was initially considered, is there a more secure alternative that 
is suitable for writing the code? Example: Java instead of C++ 

• Are there secure coding standards that can be followed to avoid non-secure coding 
constructs? 

• Are there tools available to support secure compilation, security-oriented debugging, in 
the language? 

• Are there secure alternatives to standard library routines in the language? 

Most safe libraries and languages (or language variants) are intended to help avoid problems 
with buffers, pointers, and memory management. Safestr in C, for instance, provides a 
consistent and safe interface to string-handling functions, the root of many security 
vulnerabilities. However, it requires some effort to recode any string handling that the 
program may do, converting it to use the new library. If the program will operate in a 
particularly vulnerable environment, it may be prudent to consider at a minimum 
implementing a virtual machine on the host system to contain and isolate the program, or 
possibly re-implementing the program in a language that includes its own security model and 
self-protecting features (e.g., Java, Scheme, Categorical Abstract Machine Language) rather 
than C or C++.  

A programming language that supports good coding practices and has few inherent 
vulnerabilities is more likely to be used securely than a language that has critical security flaws 
or deficiencies. C and C++ are more difficult to use securely than Java, Perl, Python, C# and 
other languages that have embedded security-enhancing features such as built-in bounds 
checking, “taint mode”, and in some cases their own security model (e.g., the JVM, the C# 
CLR). Ada is a language that its proponents actively promote due to its inherent support for 
producing code that is reliable, predictable, and analyzable. Security-enhancing features of 
Ada are described in Appendix C:C.4.4. 
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For software that is not performance-critical, the performance advantages of C/C++ should be 
weighed against the potential for buffer overflow risks. Avoiding buffer overflow is not even 
remotely the only concern for programmers (it is important to note that operating system (OS)- 
and compiler-level buffer overflow protections are becoming increasingly commonplace). It is 
quite possible to write insecurely in languages with built in bounds checking, taint mode, and 
their own security model. In particular, input validation should be performed regardless of the 
language in which the system is written. While C and C++ are notoriously prone to buffer 
overflows and format string attacks, software written in other languages may be susceptible to 
parameter tampering, command injection, cross-site scripting, SQL injection and other 
compromises that exploit user input to the system. Regardless of the language used, all user 
input (including input from untrusted processes) should be validated. 

Since the majority of programs use system calls to transfer data, open files, or modify file 
system objects (two noteworthy exceptions are embedded programs and safety-critical 
software systems, which are often implemented without any use of operating system calls or 
third-party libraries; see Appendix C:C.2 for more information on the unique security aspects 
of such software), limiting the system calls that a program is able to invoke allows untrusted 
programs to execute while limiting the damage they can do. Kernel-loadable modules, on 
systems that support them, can be used to extend the protections surrounding untrusted 
programs, limiting further the damage that can be done by a subverted program. 

• Tainting (e.g., Perl); 

• Code security (language or environment-based); 

• Tightly-coupled execution environments (e.g., JVM); 

• Secure language derivatives (see Appendix C:C.4.10). 

All commands and functions known to contain exploitable vulnerabilities or otherwise unsafe 
logic should be avoided. None of the obscure, unfamiliar features of a language should be 
used unless  

1. Those features are carefully researched to ensure the developer understands all of their 
security implications;  

2. The required functionality cannot be achieved in any other way. 

7.8 TOOLS THAT ASSIST IN SECURE CODING AND COMPILATION 

NOTE: Tools that support earlier life cycle activities (requirements specification, architectural 
modeling, design) were discussed at appropriate points in Sections 3, 4, and 5. 

Developers who have a true and profound understanding of the security implications of their 
development choices will be more likely to produce secure software using general-purpose 
development tools that enforce good software engineering choices than developers who use 
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only “safe” languages and “secure” development tools but who are insufficiently 
knowledgeable in secure development principles and practices to understand how to best 
leverage the security features and assistance provided by those tools. 

This said, a security-aware developer will find that tools that actively encourage secure 
specification, design, and implementation will greatly assist in the: 

• Reduction of exploitable flaws and weaknesses; 

• Reduction of exposure of residual exploitable flaws and weaknesses; 

• Implementation of software security constraints, protections, and services; 

• Minimization and constraint of propagation, extent, and intensity of damage caused by 
insecure software behaviors. 

The remainder of this section describes several categories of helpful security-oriented 
development tools. 

7.8.1 Compiler security checking and enforcement 

Compile-time detection and runtime detection rely on the compiler to ensure that correct 
language usage rules have been adhered to, and to detect and flag, or in some cases eliminate, 
faults and dangerous constructs in the source code that were not detected during code review 
and that could make the compiled software vulnerable to compromises, e.g., buffer overflow-
prone calls in C and C++.  

A simple version of compile-time detection occurs in all basic compilers: type checking and 
related program analysis. The level of type checking can be increased by turning on as many 
compilation flags as possible when compiling code for debugging, then revising the source 
code to compile cleanly with those flags. In addition, strict use of American National 
Standards Institute prototypes in separate header files will ensure that all function calls use the 
correct types. Source code should never be compiled with debugging options when compiling 
and linking the production binary executable. For one thing, some popular commercial 
operating systems have been reported to contain critical vulnerabilities that enable an attacker 
to exploit the operating system’s standard, documented debug interface. This interface, 
designed to give the developer control of the program during testing, remains accessible in 
production systems, and has been exploited by attackers to gain control of programs accessed 
over the network to elevate the attacker’s privileges to that of the debugger program. 

Security problems specific to non-typed languages may be addressed by more robust type-
checking compilers that flag and eliminate code constructs and flaws associated with insecure 
typing (e.g., pointer and array access semantics that could generate memory access errors). 
These compilers also perform bounds checking of memory references to detect and prevent 
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buffer overflow vulnerabilities in stacks and (sometimes) heaps. Two examples of open source 
type-checking compilers are Fail-Safe C and the Memory Safe C Compiler.41 As their names 
imply, both are intended to compile C programs in ways that eliminate buffer overflow 
vulnerabilities.  

Some compile time verification tools leverage type qualifiers. These qualifiers annotate 
programs so that the program can be formally verified to be free of recognizable 
vulnerabilities. Some of these qualifiers are language-independent and focus on detecting 
“unsafe” system calls that must be examined by the developer; other tools detect language-
specific vulnerabilities (e.g., use of buffer overflow prone library functions such as printf in C). 

In addition, compilers may be modified to detect a maliciously modified stack or data area. A 
simple form of this protection is the stack canary (a measure first introduced in StackGuard), 
which is placed on the stack by the subroutine entry code, and verified by the subroutine exit 
code generated by the compiler. If the canary has been modified, the exit code terminates the 
program with an error. 

Many C/C++ compilers can detect inaccurate format strings. For example, the Gnu Compiler 
Collection supports a C extension that can be used to mark functions that may contain 
inaccurate format strings, and the /GS compiler switch in Microsoft’s Visual C++ .NET can be 
used to flag buffer overflows in runtime code. Note that the Ada community has spent many 
years in developing compilers with special compilation modes for high assurance software; 
these include modes that automate checking of language subsets, perform extended runtime 
checking, and support Design-by-Contract. (One example is the compiler included the 
AdaCore GNAT Pro High-Integrity Edition tool suite.)42 

While type and format string checks are useful for detecting simple faults, they are not 
extensive or sophisticated enough to detect more complex vulnerabilities. There are compile-
time tools that perform taint analysis, which flags input data as “tainted” and ensures that all 
such data are validated before allowing them to be used in vulnerable functions. An example 
is Flayer, an open source taint analysis logic and wrapper.43 Other compilers include more 
extensive logic to perform full program verification to prove complex security properties 
based on formal specifications generated prior to compilation. Program verification compilers 
are most often used to detect flaws and “dangerous” constructs in C and C++ programs and 

                                                 

41 For more information, see: National Institute of Advanced Industrial Science (Tokyo, Japan) Technology 
Research Center for Information Security. “Fail-Safe C: a memory-safe compile for the C language”. Accessed 21 
January 2008 at: http://www.rcis.aist.go.jp/project/FailSafeC-en.html - and - the Fail-Safe C version 1.0 
Webpage. Accessed 21 January 2008 at: http://homepage.mac.com/t.sekiguchi/fsc/index.html - and - the 
Memory Safe C Compiler Webpage. Accessed 21 January 2008 at: http://www.seclab.cs.sunysb.edu/mscc/ 

42 For information, see: http://www.adacore.com/home/gnatpro/development_solutions/safety-critical/ 

43 For more information see the Flayer Web page. Accessed 21 January 2008 at: 
http://code.google.com/p/flayer/ 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
176 

libraries, including constructs that leave the program vulnerable to format string attacks and 
buffer overflows.  

Additional protections that be implemented at compile time are: 

• Compiler randomization of variables and code positions in memory, particularly the 
randomization of the location of loaded libraries. 

• Assembler preprocessors to reduce C and C++ program susceptibility to stack 
overflows.  

NOTE: An effective countermeasure to heap overflows is the malloc() debugger. 

 

7.8.2 Safe software libraries 

Libraries of “safe” and “secure” library routines generally work by detecting the presence at 
link time of calls by the software to unsafe runtime library functions (such as those known to 
be vulnerable to buffer overflow attacks), which are then replaced with safe versions or 
alternatives of the called functions.  

As with the safe compilers, most safe libraries are for C or C++ and focus on replacing library 
routines that are prone to buffer overflow. One of the first safe libraries was Libsafe. Two open 
source examples of “safe” libraries are the Safe C String Library and Libsafe.44 

7.8.3 Runtime error checking and safety enforcement 

Runtime protections can be applied to prevent buffer overflows in binaries executed under a 
particular operating system, or to dynamic runtime security analyses of compiled binaries.  

Security wrappers and content validation filters can be applied to OSS code and binary 
executables to minimize the exposure of their vulnerabilities. By and large, security wrappers 
and validation filters are used to add content (input or output) filtering logic to programs that 
don’t have that logic “built in”. The wrappers intercept and analyze input to or output from 
the “wrapped” program, detect, and then remove, transform, or isolate content that is 
suspected of being malicious (e.g., malicious code), or which contains unsafe constructs, such 
as very long data strings (associated with buffer overflows) and command strings associated 
with escalation of privilege. By and large, security wrappers and content validation filters 
must be custom-developed. 

                                                 

44 For more information see: Safe C String Library v1.0.3 Web page. Accessed 21 January 2008 at: 
http://www.zork.org/safestr/ - and - Avaya Labs’ Libsafe research Webpage. Accessed 21 January 2008 at: 
http://www.research.avayalabs.com/gcm/usa/en-
us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails 
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7.8.4 Code obfuscation 

A deception measure to counter reconnaissance attacks and intellectual property violations, 
code obfuscators protect intermediate code, such as Java byte code, and runtime-interpreted 
source code, such as scripting code in Perl, PHP,45 Python, JavaScript, AJAX, etc., against 
decompilation, disassembly, and forms of reverse engineering. Obfuscation may also be used 
to protect intellectual property by preventing source code from being viewed and/or copied.  

                                                 

45 PHP is a recursive acronym for PHP Hypertext Processor; PHP originally stood for Personal Home Page. 
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8 RISK-BASED SOFTWARE SECURITY TESTING  
Software security testing is not the same as testing the correctness and adequacy of security 
functions implemented by software, which are most often verified through requirements-
based testing. While such tests are important, they reveal only a small piece of the picture 
needed to verify the security of the software. 

Requirements-based testing is particularly inadequate when the software’s specification does 
not adequately capture requirements directly related to dependability, trustworthiness, and 
survivability. If such requirements have been specified, requirements-based security testing 
can help verify the correctness and predictability of the software’s secure behavior, which are 
prerequisites of dependability. The focus of correctness and predictability tests should be to 
demonstrate that the software can be shown to perform its specified functions—and only those 
functions—under both “normal” and abnormal (anomalous and hostile) conditions without 
compromising the secure behavior of the software itself, nor the security of its environment, 
data, and resources. Specific things to look for in such tests are whether dormant functions can 
be triggered, either inadvertently during normal execution or intentionally (e.g., by submitting 
malicious input/attack patterns). “Consistently secure behavior” should be an unwaivable 
criterion for verifying correctness. 

Requirements-based testing should always include tests that specifically determine the 
implemented software’s conformance with its specified requirements for security constraints 
and protections  such as sandboxing, code signature validation, input validation, output 
filtering, exception handling for intentionally-induced failures, etc.  

Finally, requirements-based testing should verify that the implemented software conforms to 
its design, again with a focus on verifying the correct interpretation and implementation of 
designed security constraints and protections. 

Note that a commitment to use formal methods in the specification of the software will enable 
a very high level of assurance in the validation of that software’s conformance to its formal 
specification. This is obviously something that needs to be determined very early in the SDLC, 
and it will be driven in large part by the criticality/high consequence of the software, as well 
as its anticipated size and complexity. As noted in Section 3.2.5.2, formal methods are labor-
intensive, and thus practical only for the most critical, high-consequence components of a 
software-intensive system.  

Unfortunately, no amount of requirements-based testing can fully demonstrate that software 
does not contain vulnerabilities. Nor is requirements-based testing the best approach to 
determining how software will behave under anomalous and hostile conditions. This is 
because even the most robustly-specified security requirements are unlikely to address all 
possible conditions in which the software may be forced to operate in the real world. First, at 
least some of the assumptions under which the requirements were originally specified are very 
likely to be obsolete by the time the software is ready for testing. This is due, in part, to the 
changing nature of the threats to the software, and the new attack strategies and assistive 
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technologies that have emerged with the potential to target its vulnerabilities. These factors 
change often, and always much more quickly than any specification can keep up with. 
Moreover, if the software contains acquired components, the versions actually included in the 
implemented system may be different than those imagined when the software was architected. 
The new versions may contain more, fewer, and/or different vulnerabilities than those that 
shaped the assumptions under which the software was developed. For all these reasons, 
requirements-based testing should always be augmented with risk-based security testing.  

The objectives of risk-based security testing are threefold: 

1. To verify that the software’s dependable operation continues even under hostile 
conditions, such as receipt of attack-patterned input, and intentional (attack-induced) 
failures in environment components; 

2. To verify the software’s trustworthiness, in terms of its consistently safe behavior and 
state changes, and its lack of exploitable flaws and weaknesses; 

3. To verify the software’s survivability, by verifying that its anomaly, error, and 
exception handling can recognize and safely handle all anticipated security-relevant 
exceptions and failures, errors, and anomalies; this means minimizing the extent and 
impact of damage that may result from intentional (attack-induced) failures in the 
software itself, and preventing the emergence of new vulnerabilities, unsafe state 
changes, etc. Secure software should not react to anomalies or intentional faults by 
throwing exceptions that leave it in an unsafe (vulnerable) state. Vulnerabilities are 
most likely to arise during the critical processing state changes that occur during start 
up, shutdown, and when the software is subjected to errors and anomalies. 

Risk-based testing is predicated on the notion of “tester-as-attacker”. The test scenarios 
themselves should be based on misuse and abuse cases, and should incorporate known attack 
patterns as well as anomalous interactions that seek to invalidate assumptions made by and 
about the software and its environment. In practical terms, this testing will focus on two areas 
of the software: 

1. Its high-value components; 

2. Its inter-component interfaces, and its extra-component interfaces. 

Test techniques that are particularly useful for risk-based testing include 

• Code security reviews, using static and dynamic analysis techniques. These reviews 
should include type checking and static checking to expose consequential and 
inconsequential security faults; 

• White box and black box security fault injection, with fault propagation analysis; 

• Fuzz testing; 
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• Penetration testing; 

• Automated vulnerability scanning. 

These test techniques are all discussed in Section 8.2. 

SUGGESTED GENERAL RESOURCES ON SOFTWARE SECURITY TESTING 

• BuildSecurityIn Security Testing resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/testing.html 

• Software Security Assurance, Section 5.5. 

• Gallagher, Tom, Lawrence Landauer, and Bryan Jeffries. Hunting Security Bugs. 
Redmond, Washington: Microsoft Press, 2006. 

• Wysopal, Chris, Lucas Nelson, Dino Dai Zovi, and Elfriede Dustin. The Art of Software 
Security Testing: Identifying Software Security Flaws. Cupertino, California: Symantec 
Press, 2006 —and— Wysopal, Chris, et al. “Finding software security flaws” (excerpt 
from The Art of Software Security Testing). ComputerWorld, 28 December 2006. 
Accessed 11 December 2007 at: 
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=
9006870 

• Dowd, Mark, John McDonald, and Justin Schuh. The Art of Software Security 
Assessment: Identifying and Preventing Software Vulnerabilities. Indianapolis, Indiana: 
Addison-Wesley Professional, 2006. 

• van der Linden, Maura A. Testing Code Security. Boca Raton, Florida: Auerbach 
Publications, 2007. 

• Andrews, Mike and James A. Whittaker. How to Break Web Software: Functional and 
Security Testing of Web Applications and Web Services. Boston, Massachusetts: 
Addison-Wesley Professional, 2006. 

• Stuttard, Dafydd and Marcus Pinto. The Web Application Hacker’s Handbook: 
Discovering and Exploiting Security Flaws. Indianapolis, Indiana: Wiley Publishing, 2008.  

• OWASP Testing Project page (includes OWASP Testing Guide v2). Accessed 11 
December 2007 at: http://www.owasp.org/index.php/Category:OWASP_Testing_Project 

• TestingSecurity.com—Teaching How to Perform Security Testing Webpage. Accessed 11 
December 2007 at: http://www.testingsecurity.com/ 

• QASec.com—Software Security Testing in Quality Assurance and Development Webpage. 
Accessed 11 December 2007 at: http://www.qasec.com/ 
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• Basirico, Joe. “Software security testing: Finding your inner evildoer”. 
SearchSoftwareQuality.com, 6 August 2007. Accessed 11 December 2007 at: 
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci126591
1,00.html 

• de Vries, Stephen. “Software Testing for Security”. Network Security, Volume 2007, 
Issue 3, March 2007, pages 11-15. 

• “Learning Guide: Application security testing techniques”. SearchSoftwareQuality.com, 
14 September 2006. Available at: 
http://searchsoftwarequality.techtarget.com/loginMembersOnly/1,289498,sid92_gci121
5847,00.html 

• Buchanan, Sam. “Web Application Security Testing”. Based on presentation to Minnesota 
State Colleges and Universities IT Conference, April 2005. Accessed 11 December 2007 
at: http://afongen.com/writing/Webappsec/2005/ 

• Dickson, John B. “Application Security: What does it take to build and test secure 
software?”. Presented at Information Systems Audit and Control Association North 
Alabama Chapter meeting, 6 November 2006. Accessed 16 January 2008 at: 
http://www.bham.net/isaca/downloads/20061106_DenimGroup_Secure_SW_LG_Org.ppt 

8.1 TEST PLANNING 

The extent to which a security tester will be able to analyze a program’s security properties 
and check for vulnerabilities depends on the kind of development artifacts, security evidence, 
and other information he/she has about the system being tested. If the tester has full access to 
the software’s source code (ideally well-commented), specifications, design, and other 
technical documentation, he/she should be able to gain a fairly detailed understanding of its 
security properties and the assumptions under which it was developed and under which it 
operates.  

If only the compiled executable and vendor-provided documentation are available, the tester 
will need to infer much of the information he/she needs by extrapolating it from observations 
of how the executing software behaves under as many conditions and inputs as can be 
exercised during testing.  

A key goal of the test planner, then, will be to define the combination of tests, test scenarios, 
and test data that will reveal sufficient information about the software to enable the tester to 
make reliable judgments about how secure it will be once deployed.  

The test plan should include: 

• Security test cases and scenarios (based on the misuse/abuse cases and using the attack 
models developed during the requirements specification of the software); 
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• Test data (both meaningful and fuzzed) and a test oracle (if one is to be used);46  

• Identification of the test tools and integrated test environment or “ecosystem” (if  one is 
to be used); The Tool Survey on NIST’s SAMATE Website47 provides extensive 
information on the full range of software security testing tools available to support the 
various types of tests described in this document. 

• Pass/fail criteria for each test; 

• Test report template. This should enable capture and analysis of test results and of 
actions for addressing failed tests. 

The misuse and abuse cases and attack/threat models developed early the software life cycle 
also provides basis for developing appropriately comprehensive and revealing security test 
scenarios, test cases, and test oracles. As noted in earlier discussions, attack patterns can 
provide the basis for much of the malicious input incorporated into those cases and models. 

The test environment should as closely as possible duplicate the anticipated execution 
environment in which the software will be deployed. The test environment should be kept 
entirely separate from the development environment. If network connectivity is needed 
between the environments to transfer the software from one to the other, that network 
connection should be severed once the transfer has occurred. All of the preparation measures 
for moving software into deployment, as described in Section 9.1, and all of the measures 
taken to secure the operational execution environment, as discussed in Section 9.3, should be 
duplicated for the software to be tested and the test environment. These measures will ensure 
that the observations made of the software under test are as accurately indicative as possible of 
how the software will behave in “real world” operation. 

All test data, test oracle, testing tools, integrated test environment, etc., as well as the test plan 
itself and all test results (both raw results and test reports) should be maintained under strict 
configuration management control to prevent tampering or corruption.  

8.1.1 Test timing 

It has been demonstrated repeatedly that problems found early in the software life cycle are 
significantly easier and less costly to correct than problems discovered post-implementation 
or, worse, post-deployment. A thorough regiment of security reviews and tests should begin 
as early in the software’s life cycle as is practicable, and should continue iteratively until the 
operational software is “retired”.  

                                                 

46 An open source test tool of interest for developing attack patterns for test cases is the Metasploit attack exploit 
generation tool and library, which can be downloaded from: http://www.metasploit.com/ 

47 NIST SAMATE Tool Survey. Accessed 3 September 2008 at: https://samate.nist.gov/index.php/Tools 
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Figure 8-1 shows a suggested distribution of different security test techniques throughout 
various life cycle phases. 

 
Figure 8-1. Suggested distribution of security test techniques throughout the SDLC 

The distribution of security tests throughout the life cycle includes: 

• Security reviews of requirements specification, architecture (including assembly option 
evaluation as discussed in Section 7), design, and development process/controls. This 
includes verifying that the design conforms with secure design principles; 

• Security review of source code, including custom-developed code, open source code, 
reused legacy code, and, whenever available, source code of COTS, GOTS, and other 
reused binary components. This includes verifying the code’s conformance with secure 
coding principles and standards; 
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• Black box security analysis and testing of binary executables; 

• Post integration system security testing. 

In addition to the specification, architecture, and design reviews discussed in Sections 4 and 5, 
Code reviews during the software implementation phase, and code reviews and security tests 
during the testing phase, will ensure that the following artifacts are thoroughly vetted: 

1. Source code modules: Code security reviews should be performed (1) before accepting 
any OSS or reused source code components; (2) before compiling modules into object 
code units; 

2. Compiled object code units: These should be subjected to white box fault injection tests 
with dynamic analyses that trace between source the code modules and the object code 
units compiled from them;  

3. Linked and functional subsystems and components: These should be subjected to 
black box fault injection tests with fault propagation analyses; 

4. Integrated software system, pre-deployment: This should be subjected to automated 
vulnerability scanning; 

5. Integrated software system, post-deployment: This should be subjected to penetration 
testing, as well as iterative vulnerability scans and post-incident forensic analyses to 
identify new attack patterns, and emergent vulnerabilities, and residual vulnerabilities 
that are only observable “in the wild”. 

For all non-custom components, the security reviews and tests should be performed as part of 
their pre-acquisition/pre-reuse evaluation, i.e., before a commitment is made to acquire and 
reuse them. 

Note that outsourcing to expert code security reviewers and software/application security 
testers may be necessary when in-house expertise is inadequate. Even when in-house expertise 
is sufficient, including additional security tests as part of Independent Verification and 
Validation (IV&V) is an extremely good idea, as independent testers are more likely to 
pinpoint problems overlooked by internal testers due to their familiarity with the software and 
its documentation. 

8.1.2 System and Application Security Checklists 

Software security testing needs to go far beyond verifying conformance to system or 
application security checklists. Indeed, such checklists are of very limited utility to the 
software security tester, because the usually incorporate system-level verifications of elements 
that are outside the realm of what is controlled or determined by the software. Moreover, few 
such checklists have been developed to reflect a software assurance practitioner’s point of 
view.  
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This said, checklists can be good “thought provokers” during test scenario development, as 
they may draw attention to scenarios that address for conditions or vulnerabilities not thought 
of when misuse/abuse cases and attack models were being defined. To this end, the checklists 
listed below may prove helpful as a resource for test planners. Also, see Appendix D for 
software security-relevant extracts from two cyber-security checklists. 

SOFTWARE AND APPLICATION SECURITY CHECKLISTS 

• Internet Security Alliance and U.S. Cyber Consequences Unit. “Cyber Security Check 
List”. Look specifically at Areas 2 and 6. Accessed 25 January 2008 at: 
http://www.isalliance.org/content/view/144/292 

• DISA. Application Security and Development STIG. Draft Version 2, Release 0.1, 19 
October 2007. Accessed 21 January 2007 at: http://iase.disa.mil/stigs/draft-
stigs/application-security-dev-stigv2r0-1-102307.doc —and— Application Security and 
Development Checklist, Draft Version 1 Release 1, 20 April 2007. Accessed 21 January 
2008 at: http://iase.disa.mil/stigs/draft-stigs/asd-checklist.doc 

• DISA. Application Security Checklist, Version 2, Release 1.10, 16 November 2007. 
Accessed 17 December 2007 at: http://iase.disa.mil/stigs/checklist/application-security-
checklist-v2r1-10.doc 

• NASA Reducing Software Security Risk Through an Integrated Approach project. 
Security Checklist for the External Release of Software page. Accessed 17 December 
2007 at: http://rssr.jpl.nasa.gov/ssc2/index.html 

• Lopienski, Sebastian. “Conseil Européen pour la Recherche Nucléaire48 Security checklist 
for software developers”. Accessed 17 December 2007 at: http://info-secure-
software.Web.cern.ch/info-secure-software/SecurityChecklistForSoftwareDevelopers.pdf 

• Ollmann, Gunter. “Application Assessment Questioning”. Accessed 17 December 2007 
at: http://www.technicalinfo.net/papers/AssessmentQuestions.html 

• Mehta, Dharmesh M. “Application Security Testing Cheat Sheet”. 
SmartSecurity.blogspot.com, 2007. Accessed 11 December 2007 at: 
http://www.edocr.com/doc/264/application-security-testing-cheat-sheet 

• Kobus, Walter S. “Total Enterprise Security Solutions Applications Security Checklist”. 
Accessed 17 December 2007 at: http://www.tess-
llc.com/Application%20Security%20ChecklistV4.pdf 

• SANS (SysAdmin, Audit, Networking and Security) Institute Security Consensus 
Operational Readiness Evaluation Web Application Security Checklist Webpage. Accessed 
21 January 2008 at: http://www.sans.org/score/Webappschecklist.php  

• Beaver, Kevin. “Web Application Security Testing Checklist”. 
SearchSoftwareQuality.com, 19 March 2007. Available at: 
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1247920,00.html  

                                                 

48 Now the European Organization for Nuclear Research. 
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• OWASP. Testing Guide, Version 2.0. Accessed 8 September 2008 at: 
http://www.lulu.com/content/1375886 

 

 

8.2 SOFTWARE SECURITY TEST TECHNIQUES 

TESTING TERMINOLOGY 

White box: The source code is available for analysis. 

Grey box: Both source code and executable binary are available for analysis. 

Black box: Only the binary executable or intermediate bytecode is available for analysis. 

White box analyses, and especially static code analyses (discussed in Section 7.1.15.1), are most 
useful when performed iteratively as the software is being written. This said, independent 
(non-developer) analyses of completed source code of high-consequence modules should also 
be included in the software’s security test plan, as source code analysis is the only way to trace 
issues directly to the implemented source code at fault, and thereby identify exactly what 
needs to be fixed.  

Black box tests are performed on the binary executable alone. The tests are limited to those that 
can “poke at” software from the outside to observe its state changes, behaviors, and outputs in 
response to changes in its environment and inputs from external entities (including changes 
associated with attacks). For COTS and GOTS binary components (and many reused legacy 
components), black box tests may be the only tests that are feasible (binary analysis being a 
technique that is too resource- and labor-intensive to be practical for anything except binaries 
that implement high-consequence functions). Black box tests, while extremely important, do 
not on their own provide a basis for identifying what part of a program can be rewritten to 
eliminate an identified vulnerability or insecure behavior. The actions taken to address failed 
box tests must necessarily focus on working around the problem as identified through testing, 
for example by filtering problematic inputs. 

Grey box testing should be performed on all custom-developed software as well as software 
compiled from open source code. Grey box testing can confirm through actual observation 
whether assumptions made about the software’s execution and the software’s interactions 
with external entities during source code analysis and other white box tests are accurate. 
Runtime behaviors and interactions can never be  adequately simulated or extrapolated 
through white box analysis alone. 

SUGGESTED RESOURCES 

• NIST. Software Assurance Metrics and Tool Evaluation Website. Accessed 19 December 
2007 at: http://samate.nist.gov/index.php/Main_Page 
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8.2.1 White and grey box testing techniques 

These tests are in addition to post-implementation static code analysis, which was discussed in 
Section 7.1.15.1. 

 

8.2.1.1 Source code fault injection 

Fault injection is a testing technique originated by the software safety community to used to 
induce stress in the software, create interoperability problems among components, and 
simulate faults in the execution environment, thereby revealing safety-threatening faults that 
are not made apparent by traditional testing techniques. Security fault injection extends 
standard fault injection by adding error injection, thereby enabling tester to analyze the 
security of the behaviors and state changes that result in the software when it is exposed to 
various perturbations of its environment data. These data perturbations are intended to 
simulate the types of faults that would result during unintentional user errors as well as 
intentional attacks on the software via its environment, as well as attacks on the environment 
itself.  

A data perturbation is simply the alteration of the data the execution environment passes to 
the software, or that one software component passes to another. Fault injection can reveal both 
the effects of security faults on individual component behaviors, and the behavior of the 
system as a whole. 

The tester uses a fault injection tool to maintain a list of candidate faults: these should be 
developed by a security expert so that they reflect likely “real world” data perturbations. The 
tool then “injects” the fault at any point in the executing code at which it encounters a 
particular call, with the specific fault to be injected selected based on the parameters to that 
call. Each fault is designed to modify the data that the environment returns to the executing 
software. When exposed to these faults, the software may behave differently than it would 
when receiving normal data; this deviant behavior represents a vulnerability that could be 
exploited.  

There are two varieties of fault injection: source code fault injection and binary fault injection. 
In source code fault injection, the tester deterministically decides (based on information in the 
software’s source code and environment) when various environment faults should be 
triggered. The tester then “instruments” the source code by non-intrusively inserting changes 
into the program that reflect the changed environment data that would result from those 
faults. The instrumented source code is then compiled and executed, and the tester observes 
the ways in which the executing software’s state changes when the instrumented portions of 
code are executed. In this way, the tester can observe and even quantify the software’s secure 
vs. non-secure state changes resulting from changes in its environment (including changes of 
the type associated with intentional errors and failures). 
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Also analyzed during source code fault injection are the ways in which faults propagate 
through the source code. Fault propagation analysis involves two source code fault injection 
techniques: extended propagation analysis and interface propagation analysis. The objective of 
both techniques is to trace how state changes resulting from a given fault propagate through 
the source code tree.  

To prepare for fault propagation analysis, the tester must generate a fault tree from the 
program’s source code. To perform an extended propagation analysis, the tester injects faults 
into the fault tree, then traces how each injected fault propagates through the tree. From this, 
he/she can extrapolate outward to anticipate the overall impact a particular fault may have on 
the behavior of the software as a whole. 

In interface propagation analysis, the focus is shifted from perturbing the source code of the 
module or component itself to perturbing the states that propagate via the interfaces between 
the module/component and other application-level and environment-level components. As 
with source code fault injection, in interface propagation analysis anomalies are injected into 
the data feeds between components, enabling the tester to view how the resulting faults 
propagate and to discovery whether any new anomalies result. In addition, interface 
propagation analysis enables the tester to determine how a failure of one component may 
affect neighboring components, a particularly important determination to make for 
components that either provide protections to or rely on protections from others. 

Source code fault injection is particularly useful in detecting incorrect use of pointers and 
arrays, use of dangerous calls, and race conditions. Like all source code analyses, is most 
effective when used iteratively throughout the code implementation process. When new 
threats (attack types and intrusion techniques) are discovered, the source code can be re-
instrumented with faults representative of those new threat types. 

Binary fault injection is most useful when performed as an adjunct to security penetration 
testing to enable the tester to obtain a more complete picture of how the software responds to 
attack.  

Recognizing that a software program interacts with its execution environment though 
operating system calls, remote procedure calls, application programmatic interfaces, man-
machine interfaces, etc., binary fault injection involves monitoring the fault-injected software’s 
execution at runtime. For example, by monitoring system call traces, the tester can decipher 
the names of system calls (which reveal the types of resources being accessed by the calling 
software); the parameters to each call (which reveal the names of the resources, usually in the 
first parameter, and how the resources are being used); and the call’s return code/value 
(which reveals success or failure of the access attempt).  

In binary fault injection, faults are injected into the environment resources that surround the 
program. Environmental faults in particular are useful to simulate because they are most likely 
to reflect real world attack scenarios. However, injected faults should not be limited to those 
simulating real world attacks. As with penetration testing, the fault injection scenarios 
exercised should be designed to give the tester as complete as possible an understanding of the 
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security of the behaviors, states, and security properties of the software system under all 
possible operating conditions. 

Environment perturbation via fault injection provides the tester with several benefits: 

1. The ability to simulate environment anomalies without understanding how those 
anomalies occur in the real world. This enables fault injection by testers who do not 
have a deep knowledge of the environment whose faults are being simulated. Fault 
injection can emulate environment anomalies without needing reference to how those 
anomalies occur in the “real world”.  

2. The tester can decide which environment faults to emulate at which times, thus 
avoiding the problem that arises when doing a full environment emulation in which the 
environment state when the software interacts with it may not be what is expected, or 
may not have the expected effect on the software’s behavior.  

3. Unlike penetration tests, fault injection tests can be automated with relative ease. 

Binary fault injection tools include source and binary fault injectors and brute force testers. The 
main challenges in fault injection testing are determining the most meaningful number and 
combination of faults to be injected and, as with all tests, interpreting the results. Also, just 
because a fault injection does not cause the software to behave in a non-secure manner, or fail 
into a non-secure state, the tester cannot interpret this to mean that the software will be 
similarly “well-behaved” when exposed to the more complex inputs it typically receives 
during operational execution. For this reason, security tests that are performed with the 
software deployed in its actual target environment (e.g., penetration tests and vulnerability 
scans) are critical for providing a complete picture of how the software will behave under such 
conditions. 

SUGGESTED RESOURCES 

• Ollmann, Gunter. “Second-order Code Injection: Advanced Code Injection Techniques 
and Testing Procedures”. Undated whitepaper posted on his Weblog. Accessed 16 
January 2008 at: http://www.technicalinfo.net/papers/SecondOrderCodeInjection.html 

8.2.1.2 Dynamic code analysis 

Dynamic code analysis entails the execution of the software, with the tester tracing the external 
interfaces in the source code to the corresponding interactions in the executing code, so that 
any vulnerabilities or anomalies that arise in the executing interfaces are simultaneously 
located in the source code, where they can then be fixed. 

Unlike static analysis, dynamic analysis enables the tester to “exercise” the software in ways 
that expose vulnerabilities introduced by interactions with users and changes in the 
configuration or behavior of environment components. Because the software isn’t fully linked 
and deployed in its actual target environment, these interactions and their associated inputs 
and environment conditions are essentially simulated by the testing tool. 
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Current dynamic analysis tools test only conditions that are likely to occur during the 
software’s execution. This means that dynamic analysis enables the tester to validate 
assumptions about how the software is likely behave only under anticipated operating 
conditions. 49 

                                                 

49 An example of a dynamic code analysis toolset is the open source Valgrind, which can be downloaded from: 
http://valgrind.org/ 
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SUGGESTED RESOURCES 

• Stytz, Martin R. and Sheila B. Banks. “Dynamic Software Security Testing”. IEEE 
Security and Privacy, Volume 4 Issue 3, May 2006, pages 77-79.  

• Secure Software, Inc. “Risk in the Balance: How the Right Mix of Static Analysis and 
Dynamic Analysis Technologies Can Strengthen Application Security”. 2004. Accessed 3 
January 2008 at: 
http://secureitalliance.org/blogs/files/164/1137/Risk%20in%20the%20Bal_wp.pdf 

8.2.1.3 Property-based testing 

Property-based testing is a formal analysis technique developed by University of California at 
Davis. It is intended for use after the software’s functionality has been implemented, to 
narrowly examine desirable security-relevant properties revealed by the source code, such as 
the absence of insecure state changes. The test then compares these desirable properties in the 
code against the corresponding portions of the software’s requirements specification and 
design, to aid the tester in determining whether the security assumptions reflected in the 
specification and design have, in fact, held true the implemented code.  

Property-based testing is detailed and time-consuming, so as with direct code analysis, it will 
probably be limited in usefulness to the small subset of the overall software code base that 
implements high-consequence functions. To be effective, the property-based tests themselves 
must be formally verified to be complete. 

8.2.2 Black box testing techniques 

The following tests can be performed when only binary executables are available for analysis, 
making them the only tests possible for the vast majority of COTS and GOTS software, as well 
as for legacy components for which source code is no longer accessible. Black box tests should 
also be performed on the executables compiled from custom-developed source or open source 
code. 

8.2.2.1 Binary fault injection 

Binary fault injection is most useful when performed as an adjunct to security penetration 
testing to enable the tester to obtain a more complete picture of how the software responds to 
attack.  

Recognizing that a software program interacts with its execution environment though 
operating system calls, remote procedure calls, application programmatic interfaces, man-
machine interfaces, etc., binary fault injection involves monitoring the fault-injected software’s 
execution at runtime. For example, by monitoring system call traces, the tester can decipher 
the names of system calls (which reveal the types of resources being accessed by the calling 
software); the parameters to each call (which reveal the names of the resources, usually in the 
first parameter, and how the resources are being used); and the call’s return code/value 
(which reveals success or failure of the access attempt).  
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In binary fault injection, faults are injected into the environment resources that surround the 
program. Environmental faults in particular are useful to simulate because they are most likely 
to reflect real world attack scenarios. However, injected faults should not be limited to those 
simulating real world attacks. As with penetration testing, the fault injection scenarios 
exercised should be designed to give the tester as complete as possible an understanding of the 
security of the behaviors, states, and security properties of the software system under all 
possible operating conditions. 

Environment perturbation via fault injection provides the tester with several benefits: 

1. The ability to simulate environment anomalies without understanding how those 
anomalies occur in the real world. This enables fault injection by testers who do not 
have a deep knowledge of the environment whose faults are being simulated. Fault 
injection can emulate environment anomalies without needing reference to how those 
anomalies occur in the “real world”.  

2. The tester can decide which environment faults to emulate at which times, thus 
avoiding the problem that arises when doing a full environment emulation in which the 
environment state when the software interacts with it may not be what is expected, or 
may not have the expected effect on the software’s behavior.  

3. Unlike penetration tests, fault injection tests can be automated with relative ease. 

Binary fault injection tools include source and binary fault injectors and brute force testers. The 
main challenges in fault injection testing are determining the most meaningful number and 
combination of faults to be injected and, as with all tests, interpreting the results. Also, just 
because a fault injection does not cause the software to behave in a non-secure manner, or fail 
into a non-secure state, the tester cannot interpret this to mean that the software will be 
similarly “well-behaved” when exposed to the more complex inputs it typically receives 
during operational execution. For this reason, security tests that are performed with the 
software deployed in its actual target environment (e.g., penetration tests and vulnerability 
scans) are critical for providing a complete picture of how the software will behave under such 
conditions. 

SUGGESTED RESOURCES 

• Wysopal, Chris, et al. “Testing Fault Injection in Local Applications”. SecurityFocus, 23 
January 2007 (excerpt from The Art of Software Security Testing). Accessed 14 
December 2007 at: http://www.securityfocus.com/infocus/1886 

• Du, Wenliang and Aditya P. Mathur. “Vulnerability Testing of Software Systems Using 
Fault Injection”. Technical Report COAST TR98-02, 6 April 1998. Accessed 2 January 
2008 at: 
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/98-02.pdf 

• Sivaramakrishnan, Hariharan. On the Use of Fault Injection to Discover Security 
Vulnerabilities in Applications. University of Maryland master of science thesis, May 
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2006. Accessed 31 December 2007 at: 
https://drum.umd.edu/dspace/bitstream/1903/3566/1/umi-umd-3404.pdf 

8.2.2.2 Fuzz testing 

As in binary fault injection, fuzz testing inputs random invalid data (usually produced by 
modifying valid input) to the software via its environment or via another software component. 
Fuzz testing is implemented a “fuzzer”—a program or script that submits a combination of 
inputs to the software to reveal how that software responds. Fuzzers are generally specific to a 
particular type of input, such as HTTP input, and are written to be used to test a specific 
program; they are not easily reusable. But their value is in their specificity, because they can 
often reveal security vulnerabilities that generic testing tools such as vulnerability scanners 
and fault injectors cannot. 

Effective fuzz testing requires the tester to have a thorough understanding of the software 
being tested, and how that interfaces with external entities whose data will be simulated by the 
fuzzer. As with other simulation-based security tests, the software’s secure behavior in the face 
of fuzzed input data should not be interpreted as entirely indicative of how the software will 
behave when exposed to more complex real-world inputs. 

SUGGESTED RESOURCES 

• Sutton, Michael, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnerability 
Discovery. Indianapolis, Indiana: Addison-Wesley Professional, 2007. 

8.2.2.3 Binary code analysis 

Tools that support reverse engineering and analysis of binary executables include decompilers, 
disassemblers, and binary code scanners, reflecting the varying degrees of reverse engineering 
that can be performed on binaries: 

The least intrusive technique is binary scanning. Binary scanners, such as those used by 
Veracode, analyze machine code to model a language-neutral representation of the program’s 
behaviors, control and data flows, call trees, and external function calls. Such a model may 
then be traversed by an automated vulnerability scanner in order to locate vulnerabilities 
caused by common coding errors and simple back doors. A source code emitter can use the 
model to generate a human-readable source code representation of the program’s behavior, 
enabling manual code review for design-level security weaknesses and subtle back doors that 
cannot be found by automated scanners. 

The next least intrusive technique is assembly, in which binary code is reverse engineered to 
intermediate assembler. The disadvantage of disassembly is that the resulting assembler code 
can only be meaningfully analyzed by an expert who both thoroughly understands that 
particular assembler language and who is skilled in detecting security-relevant constructs 
within assembler code; 
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The most intrusive  reverse engineering technique is decompilation, in which the binary code 
is reverse engineered all the way back to source code, which can then be subjected to the same 
security code review techniques and other white box tests as original source code. Note, 
however, that decompilation is technically problematical: the quality of the source code 
generated through decompilation is often very poor. Such code is rarely as navigable or 
comprehensible as the original source code, and may not accurately reflect the original source 
code. This is particularly true when the binary has been obfuscated or an optimizing compiler 
has been used to produce the binary. Such measures, in fact, may make it impossible to 
generate meaningful source code. In any case, the analysis of decompiled source code will 
always be significantly more difficult and time consuming than review of original source code.  
For this reason, decompilation for security analysis only makes sense for the most critical of 
high-consequence components. 

Reverse engineering may also be legally prohibited. Not only do the vast majority of software 
vendors’ license agreements prohibit reverse engineering to source code and  assembler) form, 
software vendors have repeatedly cited the Digital Millennium Copyright Act (DMCA) of 1999 
to reinforce such prohibitions, even though the DMCA explicitly exempts reverse engineering 
as well as “encryption research” (which involves intentional breaking of encryption applied to 
the software being reverse-engineered) from its prohibitions against copy-protection 
circumvention.50 

SUGGESTED RESOURCES 

• Eliam, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis, Indiana: Wiley 
Publishing, 2005. 

• McGraw, Gary and Greg Hoglund. “Chapter 3: Reverse Engineering and Program 
Understanding” (excerpt from Exploiting Software: How to Break Code). Accessed 19 
January 2008 at: http://www.amazon.com/Exploiting-Software-Break-Addison-Wesley-
Security/dp/0201786958/ref=pd_sim_b_title_3 

• Wysopal, Chris. “Putting trust in software code”. USENIX ;login:, Volume 29, Number 6, 
December 2004. Accessed 26 December 2007 at: 
http://www.usenix.org/publications/login/2004-12/pdfs/code.pdf 

• Carnegie Mellon University Software Engineering Institute. Function Extraction Webpage. 
Accessed 21 January 2008 at: http://www.cert.org/sse/fxmc.html 

8.2.2.4 Byte code analysis 

The Java language is compiled into a platform-independent byte code format. Much of the 
information contained in the original Java source code is preserved in the compiled byte code, 
thus making decompilation by attackers easy. Byte code scanners enable the tester to examine 
the byte code for presence of information that would be useful in a reconnaissance attack. 

                                                 

50  See 17 U.S.C. (United States Code) § 1201(f) and (g) for the language of these exemptions. 
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8.2.2.5 Black box debugging 

When only binary is available, and particularly when that binary was compiled from code 
with no compiler symbols or debug flags set (which would ease reverse engineering), 
traditional debugging is not possible. Black box debugging, however, provides a technique 
whereby the analyst can monitor behaviors external to the binary component or system while 
it is executing, and thereby observe the data that passes between that component/system and 
external entities.  

By observing how data passes across the software’s boundary, the analyst can also determine 
ways in which externally-sourced data might be manipulated to force the software down 
certain execution paths, or to cause the software to fail, in this way revealing errors and 
failures that originate not in the software itself, but which are forced by the external entities 
with which it interacts, or by an incorrectly implemented programmatic interface (errors in 
interface implementations are often the result of the developer relying on inaccurate 
documentation).  

SUGGESTED RESOURCES 

• Whittaker, James A. and Herbert H. Thompson. “Black Box Debugging”. Queue, Volume 
1 Number 9, December/January 2003-2004. 

8.2.2.6 Vulnerability scanning 

Automated vulnerability scanning is supported for application-level software, as well as for 
Web servers, database management systems, and some operating systems. Application 
vulnerability scanners51 are the most useful for software security testing. These tools scan the 
executing application software for input and output of known patterns that are associated 
with known vulnerabilities. These vulnerability patterns, or “signatures”, are comparable to 
the signatures searched for by virus scanners, or the “dangerous coding constructs” searched 
for by automated source code scanner, making the vulnerability scanner, in essence, an 
automated pattern-matching tool.  

While they can find simple patterns associated with vulnerabilities, automated vulnerability 
scanners are unable to pinpoint risks associated with aggregations of vulnerabilities, or to 
identify vulnerabilities that result from unpredictable combinations of input and output 
patterns.  

                                                 

51 An open source Web vulnerability scanner of interest is the OWASP’s WebScarab which can be downloaded 
from: http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project. A number of commercial 
scanners are also available, almost exclusively targeting Web applications and Web services vs. other types of 
software. Examples include Watchfire’s AppScan, SPI Dynamics’ WebInspect, N-Stalker’s Web Application 
Security Scanner, Acunetix’s Web Vulnerability Scanner, Cenzic’s Hailstorm, and NT Objectives’ NTOSpider. 
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In addition to signature-based scanning, some Web application vulnerability scanners attempt 
to perform “automated stateful application assessment” using a combination of simulated 
reconnaissance attack patterns and fuzz testing techniques to “probe” the application for 
known and common vulnerabilities. Like signature-based scans, stateful assessment scans can 
detect only known classes of attacks and vulnerabilities.  

This said, most vulnerability scanners do attempt to provide a mechanism for aggregating 
vulnerability patterns. The current generation of scanners is able to perform fairly 
unsophisticated analyses of risks associated with aggregations of vulnerabilities. In many 
cases, especially with COTS vulnerability scanners, the tools also provide information and 
guidance on how to mitigate the vulnerabilities they do detect. 

Typical application vulnerability scanners are able to identify only 30% of the types of 
vulnerabilities that exist in large applications: they focus on vulnerabilities that need to be 
truly remediated vs. those that can be mitigated through patching. As with other signature-
based scanning tools, application vulnerability scanners usually have a high false positive rate, 
unless recalibrated by the tester, in which case they may swing too far in the other direction, 
and manifest an excessive false negative rate. In both cases, the tester must have enough 
software and security expertise to meaningfully interpret the scanner’s results to weed out the 
false positives and negatives, so as not to identify as a vulnerability what is actually a benign 
issue, and not to ignore a true vulnerability that has been overlooked by the tool. This is why, 
as stressed before, it is important to combine tests to examine the software for vulnerabilities 
in a variety of ways, none of which is adequate on its own, but which in combination can 
greatly increase the likelihood of vulnerabilities being found.  

Because automated vulnerability scanners are signature-based, as with virus scanners, they 
need to be frequently updated with new signatures from their vendor. Two important 
evaluation criteria for selecting a vulnerability scanner are (1) how extensive the tool’s 
signature database is, and (2) how often the supplier issues new signatures.  

Vulnerability scanners are most effective when used: 

1. During the security assessment of binary components prior to acquisition/reuse; 

2. Before penetration testing, in order to locate straightforward common vulnerabilities, 
and thereby eliminate the need to run penetration test scenarios that check for such 
vulnerabilities. 

In the software’s target environment, vulnerabilities in software are often masked by 
environmental protections such as network- and application-level firewalls. Moreover, 
environment conditions may create novel vulnerabilities that cannot be found by a signature-
based tool, but must be sought using a combination of other black box tests, most especially 
penetration testing of the deployed software in its actual target environment.  

As noted earlier, in addition to application vulnerability scanners, there are scanners for 
operating systems, databases, Web servers, and networks. Most of the vulnerabilities checked 
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by these other scanners focus on configuration deficiencies and information security 
vulnerabilities (e.g., is data disclosed that should not be). However, these scanners do often 
look for conditions such as buffer overflows, race conditions, privilege escalations, etc., at the 
environment level that can have an impact on the security of the software executing in that 
environment; therefore, it is a good idea to run execution environment scanners with an eye 
towards observing problems at the environment’s interfaces with the hosted application, in 
order to get an “inside out” view of how vulnerabilities in the environment around the 
application may be exploited to “get at” the application itself. 

SUGGESTED RESOURCES 

• BuildSecurityIn Black Box Testing tools resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box.html  

• Anantharaju, Srinath. “Automating Web application security testing”. Google Online 
Security Blog, 16 July 2007. Accessed 11 December 2007 at: 
http://googleonlinesecurity.blogspot.com/2007/07/automating-Web-application-
security.html 

• Suto, Larry. “Analyzing the Effectiveness and Coverage of Web Application Security 
Scanners”. October 2007. Accessed 14 July 2008 at: 
http://www.stratdat.com/Webscan.pdf 

• Grossman, Jeremiah. “The Best Web Application Vulnerability Scanner in the World”. On 
his Weblog, 23 October 2007. Accessed 14 July 2008 at: 
http://jeremiahgrossman.blogspot.com/2007/10/best-Web-application-vulnerability.html 

8.2.2.7 Penetration testing 

In penetration testing, the whole software system in its “live” execution environment is the 
target of the tests. Penetration testing observes whether the system resists attacks successfully, 
and how it behaves when it cannot resist an attack. 

Penetration testing should focus on those aspects of system behavior, interaction, and 
vulnerability that cannot be observed through other tests performed outside of the live 
operational environment. Penetration testers should subject the system to sophisticated multi-
pattern attacks designed to trigger complex series of behaviors across system components, 
including non-contiguous components, as these are the types of behaviors that cannot be 
forced and observed by any other testing technique. Penetration testing should also attempt to 
find security problems that are likely to originate in the software’s architecture and design (vs. 
coding flaws that manifest as vulnerabilities), as it is this type of problem that tends to be 
overlooked by other testing techniques. 

The penetration test plan should include “worst case” scenarios that reproduce threat vectors 
(attacks, intrusions) that are considered highly damaging, such as insider threat scenarios. The 
test plan should capture: 

• The security policy the system is supposed to respect or enforce; 
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• Anticipated threats to the system; 

• The sequences of likely attacks that are expected to target the system. 

Actual test techniques employed by penetration testers include: spidering, querying for known 
vulnerable scripts or components, testing for conditions like forceful browsing, directory 
traversal, running input validation checks, and using the results of spidering to identify all 
points of user input to test for flaws like SQL injection, cross-site scripting, CSRF, command 
execution, etc. A combination of fuzzing and injection of strings known to cause error 
conditions may be used. 

SUGGESTED RESOURCES 

• BuildSecurityIn Penetration Testing resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/penetration.html 

• Andreu, Andres. Professional Pen Testing for Web Applications. Indianapolis, Indiana: 
Wiley Publishing, 2006. 

• Thompson, Herbert H. “Application Penetration Testing”. IEEE Security and Privacy, 
Volume 3 Number 1, January/February 2005, pages 66-69. 

8.3 INTERPRETING AND USING TEST RESULTS 

As soon as each test is completed, test results and the exact version of the software artifact 
tested should be checked in to the configuration management. 

The results of the requirements- and risk-based software security testing regimen should 
provide adequate information for the software’s developers to: 

• identify missing security requirements that need to be evaluated to determine the risk 
posed to the software if those requirements are not added to the specification and the 
software is not modified to implement them. These could include requirements for 
constraints, countermeasures, or protections to eliminate or mitigate weaknesses, 
vulnerabilities, and unsafe behaviors/state changes; 

• determine the amount and nature of reengineering (or refactoring) needed to satisfy the 
new requirements. 

Note that just because software successfully passes all of its security tests, this does not mean 
that novel attack patterns and anomalies will never arise in deployment to compromise the 
software. For this reason, iterative testing throughout the software’s life time is imperative to 
ensure that its security posture does not degrade over time. 

In terms of providing meaningful security metrics for risk management, the aggregation of test 
results should provide an indication of whether the software is able to resist, withstand, 
and/or recover from attacks to the extent that risk can be said to be mitigated to an acceptable 
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level. This is the best that can be hoped for given the current state of the art of software 
security test technique and tools. 
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SUGGESTED RESOURCES 

• Alhazmi, O.H., Y.K. Malaiya, and I. Ray. “Measuring, analyzing and predicting security 
vulnerabilities in software systems”. Computers and Security, Volume 26 Issue 3, May 
2007, pages 219-228. Preprint version accessed 26 December 2007 at: 
http://www.cs.colostate.edu/~malaiya/pub/com&security_darticle.pdf 

• Jones, Jeffrey R. “Estimating Software Vulnerabilities”. IEEE Security and Privacy, 
July/August 2007, pages 28-32. Accessed 11 September 2008 at: 
http://www.computer.org/portal/cms_docs_security/security/2007/n4/j4jones.pdf 
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9 SECURE DISTRIBUTION, DEPLOYMENT, AND 
SUSTAINMENT  
This section discusses what can be done to prepare for distribution, deployment, and 
sustainment to ensure that software remains secure throughout these phases, until it is retired. 

9.1 PREPARATIONS FOR SECURE DISTRIBUTION 

The following are sound practices for preparing the software to be distributed/deployed. 

• Before deployment, change any default configuration settings, etc., not already 
addressed prior to whole-system testing. Distribute all software in a default 
configuration that is as secure and restrictive as possible. Document a set of secure 
configuration instructions, to be delivered with the software, that explain the risk 
associated with each possible change to a secure default. This includes: 

o Setting the default parameters for the software’s environment to different values 
than provided to those parameters in the development environment; this will 
prevent developers from being able to see any details of the deployed software 
once it has been installed its operational environment.  

o Setting all default account passwords to unpredictable values. Moreover, the 
software should be written to force the administrator or user to reset all default 
passwords upon first software invocation. There should be no way for the 
default passwords to be retained after that first invocation.  

o Setting the default privileges assigned to the software’s executable files to be 
execute-only for any role other than “administrator”. 

• Deliver all default passwords in encrypted form “out of band”, i.e., separate from 
software itself. 

• Provide an automated installation tool with a dialogue that prompts the installer to set 
OS directory privileges as restrictively as possible. 

o Establish a means for strong authentication of the individual who will run the 
installation and configuration routines, tools, and interfaces. Neither the software 
itself, nor its installation routines, should be installable under a default 
password. Instead, each software distribution should be assigned a unique 
strong password. This password should be sent to the purchaser via a different 
distribution path and mechanism, and at a different time, than that used to 
distribute the software, e.g., in an encrypted email or in a document mailed via 
the postal service. It should not be shipped with the software itself. 
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o The configuration interfaces provided by the tool or installation script should be 
clear and secure. The sample configuration file, if there is one, should contain 
sufficient, clear comments to help the administrator understand exactly what the 
configuration does. If there is a configuration interface to the software, the 
default access rights to this interface should disallow access to any role other 
than “administrator”. 

• Review and “sanitize” all user-viewable source code (e.g., client-side Web application 
code), and apply countermeasures to source code copying, if desired. See Section 9.1.1 
for specific practices to this end. 

SUGGESTED RESOURCES 

• Software Security Assurance, Section 5.6. 

9.1.1 Review and sanitization of user-viewable source code 

If a client includes a function such as a browser’s “view source” function, plaintext HTML 
code and embedded scripting code are made visible to the user by that function should be 
examined to ensure that it cannot be assist the reconnaissance attacker by increasing his/her 
knowledge of the software component specifics that would help him/her determine whether 
the component contained known vulnerabilities, or of the platform’s directory structures that 
could be targeted, or any information that could be leveraged in a social engineering attack.  

Content that should not be included in viewable HTML and scripting code includes: 

1. Sensitive comments: Comments that include sensitive or potentially exploitable 
information, such as information about the file system directory structure, problems 
associated with the software’s development, the software’s configuration, release, and 
version details (COTS and OSS components), the location of root, cookie structures, or 
personal information about the code’s developers (names, email addresses, phone 
numbers, or any other information the disclosure of which would compromise the 
developer’s privacy). Of particular concern are comments within source code that can 
be viewed by attackers using a Web browser. 

The following types of comments may be included in user-viewable source files: 

• Structured comments: Included regularly by members of large development 
teams at the top of the viewable source code page, or between a section of 
scripting language and a subsequent section of markup language, to inform 
other developers of the purpose or function implemented by the code. 

• Automated comments: Comments automatically added to viewable source 
pages by many commercial Web application generation programs and Web 
usage programs, such comments reveal precise information about the 
version/release of the package used to auto-generate the source code—
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information that can be exploited by attackers to target known vulnerabilities in 
Web code generated by those packages. (Note that the HTTP daemon httpd 
restricts what can be included in a filename, unless the Web server has exec 
disabled.) 

• Unstructured comments: Informal comments inserted by developers as memory 
aids, such as “The following hidden field must be set to 1 or XYZ.asp breaks” or 
“Do not change the order of these table fields”. Such comments represent a 
treasure trove of information to the reconnaissance attacker. 

The following HTML comments represent security violations: 

<!—#exec cmd=“rm -rf /”—> 

<!—#include file=“secretfile”—> 

A less complicated filter can be written to locate and strip out all comments from 
user-viewable source code. In the case of automatically-generated comments, an 
active filter may be required to locate and remove comments on an ongoing basis 
after the application has been deployed. This is particularly true of code that will be 
maintained using the same package that originally generated it because the package 
is likely to add undesirable comments when it is used to generate new versions of 
the code. 

2. Pathname references: Pathname references can reveal significant details about the 
directory structure of the host running the software and detailed version information 
about the development tools used to produce the code and the environment 
components of the host on which the software runs. These are particularly useful, as 
they indicate to the attacker whether the version of COTS or OSS component used 
contains a published known vulnerability. For example, embedded SQL queries in 
database applications should be checked to ensure they do not refer to a specific 
relational database management system version, and Web-based code should be 
checked for information about the brand name and versions of development tools used 
to produce, or runtime-interpret or compile the code.  

Relative pathnames are a particular issue. If the software calls a library or another 
component, that call should be explicit and specific. The software should not contain 
calls to relative pathnames (pointing to the current directory) nor rely or search paths 
(such constructs render network-based software vulnerable to cross-site scripting, 
directory traversal, and similar attacks). Full pathnames should be used for URL/URIs 
and other file paths that users will reference. As search rules for dynamic link libraries 
and other library routines become more complex, vulnerabilities will be more easily 
introduced into system routines that can parse filenames that contain embedded spaces.  

Other pathnames of concern are those indicating paths directories that are not explicitly 
intended to be accessed by users and those indicating paths to unreferenced, hidden, 
and unused files. If the software includes user-viewable source code, all 
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pathname/Uniform Resource Identifier (URI) references that point to unused and 
hidden files that could be exploited in enumeration attacks in which the attacker 
searches for files or programs that may be exploitable or otherwise useful in 
constructing an attack. 

3. Explicit and implicit debug information or elements: Web applications should have 
been implemented to validate the content of name-value pairs within the URL or URI 
submitted by the user. Because of this validation, the URLs/URIs sometimes include 
embedded commands such as debug=on or Debug=YES. For example, consider the 
following URI: 

http://www.creditunion.gov/account_check?ID=8327dsddi8qjgqllkjdlas& Disp=no 

An attacker may intercept and alter this URI as follows: 

http://www.creditunion.gov/account_check?debug=on&ID=8327dsddi8qjgqllkjdlas&
Disp=no 

This change results in the inserted “debug=on” command forcing the application into 
debug mode, which then enables the attacker to observe its behavior more closely, i.e., 
to discover exploitable faults or other weaknesses. 

Debug constructs may also be planted within the HTML, eXtensible HTML (XHTML), 
or Common Gateway Interface (CGI) scripting code of a Web form returned from a 
client to a server. To do this, the attacker merely adds another line element to the form’s 
schema to accommodate the debug construct, then inserts that construct into the form. 
This would have the same as the URL/URI attack above. 

If the source code containing the implicit debugger commands is user-viewable, such as 
that of Web pages in HTML/XHTML, Java Server Pages (JSP), or ASP (Active Server 
Pages), as well as scripts, such embedded commands can be easily altered by an 
attacker with devastating results. When using JSP or ASP, these comments may be 
available to users and may provide an attacker with valuable information. 

For example, consider an HTML page in which the developer has included an element 
called “mycheck”. The name is supposed to obscure the purpose of this implicit 
debugger command: 

<!- begins -> 

<TABLE BORDER=0 ALIGN=CENTER CELLPADDING=1 CELLSPACING=0> 

<FORM METHOD=POST ACTION=“http://some_poll.gov/poll?1688591” 
TARGET=“sometarget” MYCHECK1=“666”> 

<INPUT TYPE=HIDDEN NAME=“Poll” VALUE=“1122”> 

<!- Question 1 -> 

<TR> 

<TD align=left colspan=2> 
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<INPUT TYPE=HIDDEN NAME=“Question” VALUE=“1”> 

<SPAN class=“Story”> 

Attackers are usually well aware to such obfuscation attempts (which constitute 
“security through obscurity”; please note that security through obscurity is inadequate 
to hinder any but the most casual and novice attackers). 

4. Hard-coded credentials: Basic authentication should not have been used in a Web 
application, even over SSL/TLS-encrypted connections. However, if basic 
authentication has been used, hard-coded credentials may appear in the application’s 
HTML or XHTML pages or other user-viewable source code. Such credentials must be 
flagged by testers so they can be removed before deployment. 

5. Data-collecting trapdoors: Non-policy-compliant52 cookies must be located, along with 
“Web bugs”,53 spyware, and trapdoors (particularly malicious trapdoors) the intent of 
which is either to collect or tamper with privacy data, or to open a back-channel over 
which an attacker could collect or tamper with such data. All <IMG> tags in 
HTML/XHTML code should be checked to ensure that they do not implement Web 
bugs. 

The source code reviewer should also keep an eye out for any other information that could be 
exploited by an attacker to target the software, its data, or its environment. 

9.1.1.1 Preventing disclosure of user-viewable source code and copying of all browser-
displayed content 

                                                 

52 Federal government policy (Office of Management and Budget Director Jacob J. Lew’s Memorandum for the 
Heads of Executive Departments and Agencies, M-00-13, 22 June 2000) states that cookies must not be used on 
Websites operated by the federal government or by contractors on behalf of federal agencies, unless certain 
conditions are met: 

• There is a compelling need to gather the data on the site; 

• Appropriate, publicly disclosed privacy safeguards have been implemented to handle information 
extracted from cookies; 

• The head of the agency owning the Website has personally approved use of data collecting cookies. 
This policy was particularized for U.S. DoD in the Office of the Secretary of Defense memorandum, dated 13 July 
2000, “Privacy Polices and Data Collection on DoD Public Websites” (13 July 2000). 

53 A Web bug is a graphic on a Web page or in an email message that is designed to monitor who is reading the 
Web page or email message. Web bugs are often invisible because they are typically only one pixel-by-one pixel 
(1x1) in size. They are represented as HTML <IMG> tags. Here is an example: 

<IMG SRC=“http://ad.doubleclick.net/ad/ pixel.whoreads/NEW” WIDTH=1 HEIGHT=1 border=0> 
<IMG WIDTH=1 HEIGHT=1 border=0 SRC=“http://user.preferences.gov/ping? 
ML_SD=WebsiteTE_Website_1x1_RunOfSite_A ny&db_afcr=4B31-C2FB-
10E2C&event=reghome&group=register&time=2002.10.27.20.5 6.37”> 
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In addition to removing sensitive content from user-viewable source code, some access control 
measures may be implemented to protect such code, as well as other Web content, from being 
copied and misused (e.g., Web page defacement; plagiarism of Web content). These techniques 
cannot prevent determined users from manipulating viewable source code, even if it means 
printing the content of a Web page and scanning it with an optical character reader or retyping 
it. However, these techniques should inhibit less determined, less resourceful attackers and 
casual plagiarists from: 

• Copying HTML source code; 

• Cutting and pasting text content; 

• Screen capture. 

To inhibit copying of user-viewable HTML content, including viewable source code, consider 
use of an HTML authoring tool or add-on that enables source code encryption (e.g., 
Authentica’s NetRecall, Andreas Wulf Software’s HTML Guard). 

Unfortunately, there is no way the Web server can prevent the browser from being able to 
display HTML source code. The user can choose to turn off source viewing in the browser, but 
this cannot be controlled by the server. If HTML source viewing is seen as a major problem, 
you may want to code the main elements of the Website (navigation, header, etc.) in a Java 
applet, if possible, instead of using HTML. Unlike HTML source, Java applet source code, as 
well as CGI source code, cannot be displayed using a browser’s VIEW SOURCE function 
(though use of a Turing technology like Java vs. a non-Turing technology like HTML presents 
its own security issues). 

Another countermeasure for inhibiting the cutting and pasting of Web content is to serve 
content as Portable Document Format (PDF) files instead of HTML. Although it is possible to 
cut and paste PDF files downloaded and displayed in an Acrobat Reader (versus via the 
Acrobat browser plug-in, which does prevent PDF cut and paste), the process is somewhat 
awkward and may inhibit casual plagiarism. 

An even more effective approach is to scan any text documents that you do not want to be cut 
and paste into image files such as Graphics Interchange Format (GIF) or Joint Photographic 
Experts Group (JPEG, or JPG) files, which would enable the text to be served as images and 
thereby bypass any text-based filtering software. While these image files in their entirety can 
be copied and pasted, the text within them cannot be extracted electronically. 

None of these technical countermeasures can prevent a user from printing a hard copy of a 
Web page (even one posted as an image file) and scanning it with an optical character reader. 
However, some COTS products designed to control copyright-protected material do advertise 
the ability to prevent browsers from sending protected Web content to a printer. However, 
even such products cannot prevent a determined user from simply re-keying the text 
contained in a Web page.  
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To prevent screen capture by a browser, write a plug-in that wraps the system-level 
commands that implement the browser’s screen capture function. This wrapper plug-in, when 
installed in the browser, will effectively disable those commands and thus, prevent the screen 
capture process from occurring. 

 

 

9.1.2 Bytecode obfuscation to deter reverse engineering 

Bytecode obfuscation is a technique designed to help protect Java bytecode from 
decompilation. Preventing bytecode decompilation is a countermeasure both against 
disclosure and tampering (i.e., confidentiality and integrity issues). 

9.2 SECURE DISTRIBUTION 

Several of the principles and practices of trusted distribution as described in the National 
Computer Security Center’s Guide to Understanding Trusted Distribution in Trusted Systems (see 
reference at end of this section) are widely applicable to ensure the integrity of software 
distributions by reducing the number of opportunities for malicious or nefarious actors to gain 
access to and tamper with the software after it has shipped.  

Many features of trusted distribution have, in fact, become standard mechanisms for 
protecting COTS software from tampering while in transit from supplier to consumer, 
including tamperproof or tamper-resistant packaging and read-only media, secure and 
verifiable distribution channels (e.g., HTTP-Secure downloads, registered mail deliveries), and 
digital integrity mechanisms (such as hashes and code signatures). 

The following practices will help preserve the integrity of the software, including the 
installation routines and tools shipped with it. 

9.2.1 Protection for online distributions 

If the software will be distributed via a network download, establish a protected channel for 
distribution. This protection should include at a minimum encryption, digital hash and/or 
digital watermarking of the package to be downloaded (to enable tamper-detection), and 
digital code signature to provide.  

Authentication of the individual downloading the software may also be desirable, in which 
case a mechanism needs to be provided that uses a realistic basis for identification and 
authentication, such as the name and purchase/order number associated with the individual. 
Digital rights management may be used to deter tampering (vs. providing tamper-detection). 

While code signatures cannot guarantee that the code was not malicious to begin with, or is 
otherwise error-free, they do provide validated evidence to the entity (user or process) that 
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will execute the software that the code came from a trusted source. Code signatures also act as 
tamper-detection mechanisms. Code signatures cannot, however, attest to the quality or 
trustworthiness of the entity (person or signature application) that affixed the signature to the 
code. 

9.2.2 Protection for offline distributions 

If the software will be distributed on physical storage media, the easiest way to tamperproof 
the content is to use a storage medium that is non-rewritable (e.g., non-rewritable compact 
disc-read-only memory [CD-ROM]). Use of CD-ROM has the additional advantage of being 
the least expensive physical storage medium. It may also be desirable to apply a digital code 
signature so that the installer can verify that the code on the CD-ROM came from the expected, 
trusted source, and was not corrupted or tampered with while it was being written to the disc.  

SUGGESTED RESOURCES 

• Menendez, James N. and Scott Wright. A Guide to Understanding Trusted Distribution in 
Trusted Systems (the “Dark Lavender Book”). NCSC-TG-008, 15 December 1988. 
Accessed 19 December 2007 at: http://handle.dtic.mil/100.2/ADA392816 —and— 
http://www.fas.org/irp/nsa/rainbow/tg008.htm 

9.3 SECURE INSTALLATION AND CONFIGURATION  

The software may have been designed and developed to be extremely secure, but it will not 
remain secure if its configuration parameters are not set as the designer intended. Similarly, 
the configuration parameters of its execution environment must be set so the software is not 
unnecessarily exposed to potential threats.  

The main purpose of reconfiguration of the software upon installation is to reset the default 
parameters set in the delivered software; this includes establishing and setting access control 
parameter values for the accounts, roles, groups, file system directories, etc. associated with the 
software in its installed environment. 

The installation documentation for the software should specify configuration parameters that 
are as restrictive as possible, to make sure the software is as resistant as possible to anticipated 
attacks and exploits. The installation documentation should also strongly encourage the use of 
secure installation procedures, not just for the initial installation, but for every additional 
component, update, patch, etc. installed after initial deployment.  

Ideally, the configuration procedures will require the administrator or user to explicitly 
approve the software installation before that installation can occur. This is of particular 
importance for software that is retrieved via download. 

The installation and configuration procedures for the software system should include the 
specific instructions described in the sections below. 
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If there is an operational security team responsible for “locking down” the execution 
environment, the developer should provide that team with any system-specific configuration 
settings of COTS, GOTS, OSS, or legacy execution environment components. Such settings 
include all additional environment constraints required above and beyond those in the 
operational security team’s standard “locked down” configuration.  

Moreover, the developer’s configuration information for the security team should document 
any circumstances in which the violation of one of the “lock down” configuration parameters 
was truly unavoidable, i.e., because the software could not be implemented in a way that 
would enable it to run correctly with that particular environment configuration setting (e.g., a 
particular service or interface disabled). 

9.3.1 Instructions for configuring restrictive file system access controls for 
initialization files and target directories 

The administrator should configure the most restrictive access control policy possible when 
installing the software, only adjusting those restrictions as necessary when the software goes 
into production. Sample “working users” and access rights for “all configurations” should 
never be included the software’s default configuration.  

Many software systems read an initialization file to allow their defaults to be configured. To 
ensure that an attacker cannot change which initialization file is used, nor create or modify the 
initialization file, the file should be stored in a directory other than the current directory. Also, 
user defaults should be loaded from a hidden file or directory in the user’s home directory. If 
the software runs on Unix or Linux and is setuid/setgid, it should be configured not to read any 
file controlled by a user without first carefully filtering that file as untrusted input. Trusted 
configuration values should be loaded from a different directory (e.g., from /etc in Unix).  

9.3.2 Instructions for validating install-time security assumptions 

When installing, the administrator should be guided in verifying that all security assumptions 
made by the software are valid. For example, the administrator should check that the system’s 
source code, and that of all library routines used by the software, are adequately protected by 
the access controls of the execution environment (OS) in which the software is being installed. 
Also, the administrator should verify that the software is being installed on the anticipated 
execution environment before making any assumptions about environment security 
mechanisms and posture. 

9.3.3 Instructions for removing all unused and unreferenced files 

The administrator should remove all unnecessary (unused or unreferenced) files from the 
software’s execution environment, including: 

• Commercial and open source executables known to contain exploitable faults; 
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• Hidden or unreferenced files and programs (e.g., demo programs, sample code, 
installation files) often left on a server at deployment time; 

• Temporary files and backup files stored on the same server as the files they duplicate; 

• Dynamic link libraries, extensions, and any other type of executable that is not explicitly 
allowed. 

If the host operating system is Unix or Linux, the administrator can use a recursive file grep to 
discover all extensions that are not explicitly allowed.  

9.3.4 Instructions for changing of passwords and account names on default 
accounts 

Note that a lot of COTS software is preconfigured with one or more default user (and 
sometimes group) accounts, such as “administrator”, “test”, “guest”, and “nobody”. Many of 
these accounts have widely-known default passwords, making them subject to password 
guessing attacks.  

Some software vendors have begun delivering their products with default accounts locked and 
expired, to force the installer to change them. Others provide tools to scan for the default 
passwords. For example, the Oracle Installer automatically locks and expires most accounts 
and/or forces password resets on newer Oracle products, while the Oracle Default Password 
Scanner that can be run against legacy Oracle installations to locate unchanged default 
passwords.  

9.3.5 Instructions for deleting unused default accounts 

Web and database application vulnerability scanners should be run, if possible, to detect any 
commonly used default passwords that may have been overlooked. If possible without 
“breaking” the Web server’s correct operation, its “nobody” account should be renamed to 
something less obvious. 

Instructions for ensuring the confidentiality of configuration data and include files: Place 
include files and configuration files outside of the Web documentation root in the Web server 
directory tree. This will prevent the Web server from serving these files as Web pages. For 
example, on the Apache Web server, add a handler or an action for .inc (include) files: 

<Files *.inc> Order allow,deny Deny from all</Files> 

This places the include files in a protected directory (e.g., .htaccess), and designates them as files 
that will not be served.  

Use a filter to deny access to the files. For example, on the Apache Web server use:  

<Files ~ “\.phpincludes”> Order allow,deny Deny from all</Files> 
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If full regular expressions must match filenames, also use the Apache FilesMatch directive. 

If the include file is a valid script file to be parsed by the server, make sure it is designed 
securely, and does not act on user-supplied parameters. In addition, change all file 
permissions to eliminate world-readable permissions. Ideally, the permissions will be set so 
that only the uid/gid of the Web server can read the files.  

Regardless of these configuration parameters, an attacker who is able to get the Web server to 
run his/her own scripts to access the files will be able to circumvent such permission 
limitations. One countermeasure to this problem is to run different copies of the Web server 
program: one for trusted users, and a second for untrusted users, each with appropriate 
permissions. This approach is difficult to administer, however. Yet, if the perceived threat is 
great, the additional administrative overhead may be worth it. Knowing that two (or more) 
versions of the program may be run at different sensitivity levels, the developer may want to 
tailor each version to its specific intended environment, e.g., to provide greater integrity 
assurance for the less sensitive version that will be subjected to greater risk from its untrusted 
users than the more sensitive version will from its trusted users. 

9.3.6 Other considerations for locking down the execution environment 

The software’s installation instructions may need to include environment lockdown 
procedures, if no such guidelines/procedures already exist elsewhere. Specific environment 
lock-down considerations include: 

• Configuring the required security protections and services, and their interfaces, for 
protecting or interacting with the software; 

• Disabling all non-essential services; 

• Configuring the available file system directory access controls, virtual machine monitor, 
TPM, or other environment compartmentalization mechanisms to isolate the trusted 
components of the software from its untrusted components and from other higher-risk 
entities on the same host, and to constrain the execution of untrusted components of the 
software; 

• Setting access privileges on the directory in which the software executables will be 
stored to ensure that the software is execute-only accessible to all individuals except the 
administrator; 

• Disabling any non-secure protocols; 

• Moving production data if necessary to separate it from the program’s 
control/management data; 

• Installation of all current security patches for environment components; 
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• Establishment and testing of all environment recovery procedures; 

• Configuring of all intrusion detection, anomaly detection, firewall, 
honeypot/honeynet/honeytoken, insider threat/security monitoring, and 
event/incident reporting capabilities  

The developer responsible for documenting environment lockdown procedures may wish to 
consult one or more of the existing secure configuration guides and/or checklists for the 
environment in question; some are listed in the Suggested Resources below. 
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SUGGESTED RESOURCES 

• BuildSecurityIn Deployment and Operation resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/deployment.html 

• NIST. National Vulnerability Database National Checklist Program Repository Webpage. 
Accessed 26 January 2008 at: http://checklists.nist.gov/ncp.cfm?repository 

• DISA. Application Services STIG, Version 1, Release 1.1, 17 January 2006. Accessed 21 
January 2008 at: http://iase.disa.mil/stigs/stig/application-services-stig-v1r1.pdf  

• Microsoft Corporation. Baseline Security Analyzer 2.0 Webpage. Accessed 12 December 
2007 at: http://www.microsoft.com/technet/security/tools/mbsa2/default.mspx 

• Oracle Software Configuration Manager. Accessed 26 August 2008 at: 
http://www.oracle.com/support/premier/software-configuration-manager.html  

• Oracle Enterprise Configuration Management Pack. Accessed 26 August 2008 at: 
http://www.oracle.com/technology/products/oem/pdf/ds_config_pack.pdf 

9.4 SECURE SUSTAINMENT CONSIDERATIONS 

Although the developer’s main concern will be with producing software that starts out secure, 
he/she also has a role to play in ensuring that the software’s security is preserved during its 
sustainment. 

SUGGESTED RESOURCES 

• Black, Paul. “Software Assurance During Maintenance”. Proceedings of the 22nd IEEE 
International Conference on Software Maintenance, Philadelphia, PA: September 2006, 
pages 70-72. Accessed 9 September 2008 at: 
http://hissa.nist.gov/~black/Papers/softAssurDuringMaintICSM06.html 

9.4.1 Vulnerability management 

Object-oriented programming models that enforce principles such as inversion of control can 
complicate the problems of vulnerabilities emerging over time. This is because such models as 
the Spring framework for Java allows components to be “wired” together declaratively, so that 
individual components can be replaced without reengineering the system. When components 
are replaced in this way, the original security assumptions made by the developer regarding 
those components may be invalidated. For this reason, a security impact analysis needs to be 
performed whenever a component is replaced, no matter how little impact that replacement 
may have on other properties of the system.  

Similarly, security impact analyses should be performed before deploying any patches, 
updates, or maintenance changes that affect the software’s design, and any negative impact on 
the system’s security posture (i.e., by introducing vulnerabilities, non-secure behaviors/state 
changes) should be mitigated with the mitigations delivered as part of the patch or update. As 
each patch, update, and maintenance change is produced, the patch’s impact on the software 
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architecture and design should be evaluated, and the appropriate system documentation 
should be updated to include a description and rationale for the patch or change. Note also 
that risk exposure increases whenever a software product or software-intensive system has 
had multiple patches installed without first evaluating the impact of the patch on the system 
architecture and design. 

Review of the findings of regularly-scheduled periodic security audits of operational software 
(which should be performed using automated vulnerability scanners, penetration tests, and 
other post-deployment appropriate tools and techniques) will enable the developer 
responsible for software maintenance to observe and analyze how the software has behaved in 
real world usage and environment conditions over time, and compare that against the 
expectations engendered by the software’s pre-deployment and immediate post-deployment 
security test results. Analysis of audit results will also enable the developer to verify that the 
original secure deployment configuration of the software has not been changed in ways that 
introduce previously unobserved vulnerabilities. It is also the responsibility of the software’s 
vulnerability manager, configuration manager, or maintainer to issue reports to customers 
about vulnerabilities discovered; these reports should include information about plans for 
patch issuance to address the reported vulnerabilities. 

In addition to performing ongoing post-deployment vulnerability assessments and security 
audits, the developer responsible for the software’s sustainment should track and reacting to 
all COTS and OSS component suppliers’ vulnerability and patch notifications, as well as those 
of trusted third parties. Similarly, customer and CERT and CSIRT incident reports should be 
reviewed. 

The developer should also study the results of forensic analyses of security incidents involving 
the software. In all cases, the findings of the developer’s analysis should form the basis for 
identifying new security requirements for future software releases, as well as for strategizing 
security-focused refactoring or reengineering to satisfy those new requirements. Forensic 
security analyses assist the analyst in determining which vulnerabilities in the software’s 
functionality or interfaces were exploited in the attack; the focus is to analyze proven 
vulnerabilities, rather than to locate vulnerabilities that may or may not exist. The analyst 
should consider three areas for analysis: 

1. Intra-component: If the exploited vulnerability is suspected to lie within the component 
itself, the focus of the analysis should be on attaining static and dynamic visibility into 
behavior and state changes within the component to pinpoint where the vulnerability 
may lie (the vulnerability’s location in source code should be traced if the code is 
available);  

2. Inter-component: If the location of the vulnerability is suspected to lie in the interface 
between two components, the analysis should focus on the communication or 
programmatic interface mechanisms and protocols used between the components, and 
should attempt to reveal any incompatibilities between the implementation of those 
mechanisms/protocols from one component to another;  
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3. Extra-component: If the vulnerability is suspected to lie in an environment component 
or in the combined interactions of a series of components, the analyst should review 
audit and event logs for the software and its environment’s components, focusing on 
system-level security-relevant behaviors to reveal points of vulnerability in the 
configuration of the software and it environment components, and in the interaction of 
the software with its environment.  

The same secure software principles and disciplined secure development practices should be 
adhered to in the production of patches as were followed in the original development of the 
software.  

During regression testing, the developer should re-run a subset of the original software 
security tests to ensure that the software modifications cause only intended changes in the 
system’s behavior and do not inadvertently cause any unintended changes. In developing the 
regression security test plan, the misuse/abuse cases and attack scenarios (based in part on 
relevant attack patterns) used in earlier test cases should be augmented by any new 
abuse/misuse cases and attack scenarios suggested by real world attacks that have emerged 
since the software was last tested.  

SUGGESTED RESOURCES 

• BuildSecurityIn Deployment and Operation resources. Accessed 21 January 2008 at: 
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/deployment.html 

• Hanebutte, Nadine and Paul W. Oman. “Software vulnerability mitigation as a proper 
subset of software maintenance”. Journal of Software Maintenance and Evolution: 
Research and Practice, November 2001. 

9.4.2 Software aging and security 

Software programs that are required to execute continuously are subject to software aging. 
Software ages because of error conditions, such as memory leaks, memory fragmentation, 
memory bloating, missed scheduling deadlines, broken pointers, poor register use, build-up of 
numerical round-off errors, and other error conductions that accumulate over time with 
continuous use. Software aging manifests by increasing the number of failures that result from 
deteriorating operating system resources, unreleased file locks, and data corruption. Software 
aging makes continuously-running software a good target for DoS attacks, because such 
software is known to become more fragile over time.  

Software aging can occur in acquired or reused software, such as Web servers, database 
management systems, or public key infrastructure middleware, as well as in software 
developed from scratch. As the number of software components that are “always on” and 
connected to the publicly accessible networks (e.g., the Internet) increases, the possibility of 
DoS attacks targeted at likely-to-be-aging programs also increases. Attackers who are able to 
guess that a particular system is constantly online can exploit this knowledge to target the 
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kinds of vulnerabilities that manifest as a result of software aging. Two techniques that have 
proven effective against the problem of software aging are rejuvenation and reconfiguration. 

Software rejuvenation is a proactive approach that involves stopping executing software 
periodically, cleaning internal states, and then restarting the software. Rejuvenation may 
involve all or some of the following: garbage collection, memory defragmentation, flushing 
operating system kernel tables, and reinitializing internal data structures. Software 
rejuvenation does not remove bugs resulting from software aging but rather prevents them 
from escalating to the point where the software becomes significantly fragile and easily 
targeted.  

While rejuvenation incurs immediate overhead because some services become temporarily 
unavailable, these brief “outages” can be scheduled and predicted, and can help prevent 
lengthy, unexpected failures caused by successful DoS attacks. The critical factor in making 
scheduled downtime preferable to unscheduled downtime is determining how often a 
software system must be rejuvenated. If unexpected DoS could lead to catastrophic results, a 
more aggressive rejuvenation schedule might be justified in terms of cost and availability. If 
unexpected DoS is equivalent to scheduled downtime in terms of cost and availability, then a 
reactive approach might be more appropriate. 

By contrast with proactive rejuvenation, the reactive approach to achieving DoS-resistant 
software is to reconfigure the system after detecting a possible attack, with redundancy as the 
primary tool that makes this possible and effective. In software, reconfiguration implements 
redundancy in three different ways: 

• Independently-written programs that perform the same task are executed in parallel, 
with the developers comparing their outputs (this approach is known as n-version 
programming); 

• Repetitive execution of the same program while checking for consistent outputs and 
behaviors; 

• Use of data bits to “tag” errors in messages and outputs, enabling them to be easily 
detected and fixed. 

The objective of software redundancy is to enable flexible, efficient recovery from DoS, 
independent of knowledge about the cause or modus operandi of the DoS attack. While robust 
software can be built with enough redundancy to handle almost any failure, the challenge is to 
achieve redundancy while minimizing cost and complexity.  

In general, reconfiguring executing software for recovery from a failure in another part of the 
software system should only be performed if it can be accomplished without impacting users. 
However, there are cases when a high priority component fails and requires resources for 
recovery. In this scenario, lower priority components’ execution should be delayed or 
terminated and their resources reassigned to aid this recovery, resulting in intentional 
degradation. 
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SUGGESTED RESOURCES 

• Castelli, V., R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan, 
and W. P. Zeggert. “Proactive management of software aging”. IBM Journal of Research 
and Development, Volume 45 Number 2, 2001. Accessed 19 December 2007 at: 
http://www.research.ibm.com/journal/rd/452/castelli.pdf 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
218 

APPENDIX A: ABBREVIATIONS, ACRONYMS, AND 
DEFINITIONS 

A.1 ABBREVIATIONS AND ACRONYMS 

Acronym/ 
Abbreviation 

Amplification 

ACM Association for Computing Machinery 

AEGIS Appropriate and Effective Guidance for Information Security  

AJAX Asynchronous JavaScript And XML  

AOM Aspect Oriented Modeling  

AOSD Aspect Oriented Software Development  

API Application Programmatic Interface 

ARINC Aeronautical Radio Incorporated 

ASP Active Server Pages 

ASP .NET Active Server Pages for .NET  

BIOS Basic Input Output System 

CAPEC Common Attack Pattern Enumeration and Classification 

CBK Common Body of Knowledge 

CD-ROM Compact Disc-Read-Only Memory 

CERT Computer Emergency Response Team 

CGI Common Gateway Interface 

CLASP Comprehensive, Lightweight Application Security Process 

CLR Common Language Runtime  

CM Configuration Management  

CMU Carnegie Mellon University 

CORAS Consultative Object Risk Analysis System  

COTS Commercial-Off-The-Shelf 

CPU Central Processing Unit  

CSIRT Computer Security Incident Response Team 

CSRF Cross Site Request Forgery  

CWE Common Weakness Enumeration 

DACS Data and Analysis Center for Software 

DbC Design by Contract 

D.C. District of Columbia 
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Acronym/ 
Abbreviation 

Amplification 

DCE Distributed Computing Environment  

DCID Director of Central Intelligence Directive  

DHS Department of Homeland Security  

DISA Defense Information Systems Agency  

DoD Department of Defense 

DoS Denial of Service 

DTE Domain and Type Enforcement  

DTIC Defense Technical Information Center 

e.g. exempla grata (Latin term meaning “provided as an example”) 

FDD Feature-Driven Development 

FIPS Federal Information Processing Standard  

FMEA Failure Modes and Effects Analysis  

GIF Graphics Interchange Format 

GOTS Government Off The Shelf 

GSSP Global Secure Software Programmer  

GUI Graphical User Interface 

HTML Hyper Text Markup Language 

HTTP Hyper Text Transfer Protocol 

i.e. id est (Latin term meaning “that is”) 

IA Information Assurance  

IATAC Information Assurance Technology Analysis Center  

IAVA Information Assurance Vulnerability Alert 

IBM International Business Machines 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

Inc. Incorporated 

ISO International Organization for Standardization  

IT Information Technology  

IV&V Independent Verification and Validation 

JAR Java ARchive 

Java EE  Java Platform, Enterprise Edition 
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Acronym/ 
Abbreviation 

Amplification 

JPEG  Joint Photographic Experts Group 

JPG  Joint Photographic Experts Group 

JSP Java Server Pages 

JVM Java Virtual Machine  

KAOS Knowledge Acquisition in autOmated Specification  

Mac OS X Macintosh Operating System version 10 

MDA Model Driven Architecture 

MDD Model Driven Development  

MILS Multiple Independent Layers of Security  

MISRA Motor Industry Software Reliability Association 

ML MetaLanguage 

MSSDM Motorola Secure Software Development Model 

NASA National Aeronautics and Space Administration 

NIST National Institute of Standards and Technology  

NSA National Security Agency 

OS Operating System 

OSS Open Source Software 

OWASP Open Web Application Vulnerability Project 

PDF Portable Document Format  

Perl Practical extraction and report language 

PHP a recursive acronym that amplifies to PHP Hypertext Processor; PHP 
originally stood for Personal Home Page 

PITAC President’s Information Technology Advisory Committee 

RAII Resource Acquisition Is Initialization 

REVEAL Requirements Engineering VErification and vALidation  

RPC Remote Procedure Call  

RSA Rivest-Shamir-Adleman 

RUP Rational Unified Process 

S2e Secure Software Engineering 

SAFECode Static Analysis For safe Execution of Code 

SANS SysAdmin, Audit, Networking and Security  

SAX Simple API for XML 
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Acronym/ 
Abbreviation 

Amplification 

SCADA Supervisory Control And Data Acquisition 

SCM Software Configuration Management 

SDL Security Development Lifecycle 

SDLC Software Development Life Cycle 

SOA Service Oriented Architecture 

SQL Structured Query Language 

SQUARE System QUAlity Requirements Engineering 

SSE-CMM System Security Engineering Capability Maturity Model 

SSL/TLS Secure Socket Layer/Transport Security Layer 

STIG Security Technical Implementation Guide 

TCL Tool Command Language  

TDD Test Driven Development 

T-MAP Threat Modeling based on Attacking Path Analysis 

TPM Trusted Processor Module 

TRIAD Trustworthy Refinement through Intrusion-Aware Design  

TSP-Secure Team Software Process for Secure Software Development 

U.S. United States 

UDDI Universal Description, Discovery, and Integration 

UML Unified Modeling Language 

URI Universal Resource Identifier 

URL Universal Resource Locator 

VB.NET Visual Basic for .NET 

VBScript Visual Basic Script  

VM Virtual Machine 

VMM Virtual Machine Monitor 

vs. Abbreviation of versus, the Latin word meaning “against” (indicating a 
contrast) 

WSDL Web Service Definition Language 

XHTML eXtensible HyperText Markup Language 

XML eXtensible Markup Language 

XP eXtreme Programming 

XSD XML Schema Design 
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A.2 DEFINITIONS 

The following are definitions of terms used in this document, as they are intended to be 
understood. 

• ABUSE: Malicious misuse, usually with the objective of alteration, disruption, or 
destruction.  

• ACQUISITION: The procurement or purchase of a product or service under contract or 
licensing agreement. 

• ASSET: Anything that has value (e.g. data, executing process) to a stakeholder (e.g., 
organization who owns it).  

• ASSURANCE ARGUMENT: A justification that a given assurance claim (or sub-claim) is 
true or false. 

• ASSURANCE CASE: The set of assurance claims of critical system/software assurance 
properties (requirements of the system), assurance arguments that justify the claims 
(including assumptions and context), and assurance evidence supporting the 
arguments. 

• ASSURANCE CLAIM: The critical system/software requirements for assurance, including 
the maximum level of uncertainty permitted.  . [NDIA] 

• ASSURANCE EVIDENCE: Information that demonstrably substantiate the arguments in an 
assurance case. [adapted from NDIA] 

• ASSURANCE: (1) Grounds for confidence that an entity meets its security objectives.  (2) 
Justifiable grounds for confidence that the required properties of the software have been 
adequately exhibited. In some definitions, assurance also incorporates the activities that 
enable the software to achieve an assurable state and/or result in the verification of the 
software’s required properties.  

• ATTACK: An attempt to gain unauthorized access to a system’s services or to 
compromise one of the system’s required properties (integrity, availability, correctness, 
predictability, reliability, etc.). When a software-intensive system or component is the 
target, the attack will most likely manifest as an intentional error or fault that exploits a 
vulnerability or weakness in the targeted software. 

• AVAILABILITY: (1) Consistently timely and reliable access to and use of a system, its 
data, and its resources. (2) The degree to which the services of a system or component 
are operational and accessible when needed by their intended users. When availability 
is considered as a security property, the intended users must be authorized to access the 
specific services they attempt to access, and to perform the specific actions they attempt 
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to perform. The need for availability generates the requirements that the system or 
component be able to resist or withstand attempts to delete, disconnect, or otherwise 
render the system/component inoperable or inaccessible, regardless of whether those 
attempts are intentional or accidental. The violation of availability is referred to as 
Denial of Service or sabotage. 

• BUFFER OVERFLOW: A condition at an interface under which more input can be placed 
into a buffer or data holding area than the capacity allocated, overwriting other 
information. Attackers exploit such a condition to crash a system or to insert specially 
crafted code that allows them to gain control of the system. A buffer overflow condition 
exists when a program attempts to put more data in a buffer than it can hold or when a 
program attempts to put data in a memory area past a buffer. In this case, a buffer is a 
sequential section of memory allocated to contain anything from a character string to an 
array of integers. 

• BUG: A problem, often the result of an error, that exists in the software's code that may 
or may not represent a vulnerability.  

• COMMERCIAL-OFF-THE-SHELF (COTS): Commercial products that are ready-made and 
available for sale to the general public. 

• COMPONENT ASSEMBLY: Process of organizing and configuring components (by the 
strict definition of that term) to use their built-in interfaces to communicate/interact 
with each other. Also referred to as “composition” and “integration”. 

• COMPONENT: A part or element within a larger system. A component may be 
constructed of hardware or software and may be divisible into smaller components. In 
the strictest definition, a component must have a contractually-specified interface (or 
interfaces), explicit context dependencies, the ability to be deployed independently, the 
ability to be assembled/composed with other components by someone other than its 
developer. In the less restrictive definition used in this document, a component may 
also be a code module or code unit. A code unit is either: a separately testable element 
of a software component, or a software component that cannot be further decomposed 
into constituent components, or a logically-separable part of a computer program. A 
code module is either: a program unit that is discrete and identifiable with respect to 
compilation, combination with other units, and loading, i.e., a code unit, or a logically 
separable part of a computer program, i.e., a code unit. 

• COMPROMISE: A violation of the security policy of a system, or an incident in which any 
of the security properties of the system are violated.  

• CONFIGURATION MANAGEMENT: Management of security features and assurances 
through control of changes made to hardware, software, firmware, and documentation, 
test, test fixtures, and test documentation throughout the life cycle of an information 
system.  
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• CORRECTNESS: (1) The degree to which software is free from errors or inadequacies in 
its specification, design, and implementation. (2) The degree to which software, 
documentation, or other items satisfy their specified requirements. (3) The degree to 
which software, documentation, or other items meet user needs and expectations, 
whether those needs and expectations are specified or not. (4) CORRECTNESS: The 
property that ensures that software performs all of its intended functions as specified. 
Correctness can be seen as the degree to which: software is free from faults in its 
specification, design, and implementation; or software, documentation and other 
development artifacts satisfy their specified requirements; or software, documentation, 
and other development artifacts meet user needs and expectations, regardless of 
whether those needs and expectations are specified or not. In simple terms, software 
that is correct will be free of faults, and will operate consistently with its specification.  

• COUNTERMEASURE: An action, device, procedure, technique, or other measure that 
reduces the vulnerability/weakness of a component or system.  

• CRITICAL SOFTWARE: Software the failure of which could have a negative impact on 
national security or human safety, or could result in a large financial or social loss. 
Critical software is also referred to as high-consequence software.  

• CUSTOM SOFTWARE: Software developed either for a specific organization or function.  It 
is generally not targeted to the mass market, but usually created for a specific customer 
to satisfy that customer’s unique needs. 

• DENIAL OF SERVICE (DOS): (1) Prevention of authorized access to a system or resource 
by making that system/resource unavailable or inaccessible at its expected level of 
operation capacity and performance, e.g., by delaying system operations and functions, 
terminating system operations, or interfering with connectivity to/from the system. 
Any action or series of actions that prevents any part of a system from functioning 
constitutes a DoS. (2) The intentional violation of the software’s availability resulting 
from an action or series of actions that has one of the following outcomes: the system’s 
intended users cannot gain access to the system; or one or more of the system’s time-
critical operations is delayed; or a critical function in the system fails. Also referred to as 
sabotage. 

• DEPENDABILITY: The ability of a system to perform its intended functionality or deliver 
its intended service correctly and predictably whenever it is called upon to do so, 
including under hostile conditions such as when the software comes under attack or 
runs on a malicious host. The following properties of software directly contribute to its 
dependability: availability, integrity, reliability, survivability, trustworthiness, safety, 
fault-tolerance.  

• EMBEDDED SOFTWARE: Software that is part of a larger physical system and performs 
some of the requirements of that system, such as monitoring, measuring, or controlling 
the actions of the system’s physical components, e.g., software used in an aircraft or 
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rapid transit system.  Typically, such software does not provide an interface with the 
user; however, this limitation is changing with some modern embedded software. 

• ERROR: (1) Deviation of one of the software’s states from correct to incorrect. (2) 
Discrepancy between the condition or value actually computed, observed, or measured 
by the software, and the true, specified, or theoretically correct value or condition. (3) A 
human action that leads to the presence of an error (e.g., a coding error) in software, or a 
failure of operational software.  

• EVENT: An occurrence of some specific situation, activity, or data handling.  

• EXECUTION ENVIRONMENT: The aggregation of hardware, software, and networking 
entities surrounding the software which directly affect or influence its execution.  

• EXPLOIT: A technique, which may be implemented by software code (often in the form 
of a script), that takes advantage of a vulnerability or security weakness in a piece of 
target software.  If implemented by software code, the code itself (rather than the 
activity it performs) is sometimes referred to as the exploit.  

• FAILURE: (1) Non-performance by a system or component of an intended/required 
function or service within the operational parameters specified for that function or 
service. (2) Deviation of the system’s performance from its specified, expected 
parameters (such as its timing constraints).  

• FAULT: The adjudged or hypothesized cause of an error.  

• FLAW: An error of commission, omission, or oversight in the creation of the software’s 
requirements, architecture, or design specification that results in an inadequate, and 
often weak, software design, or in one or more errors in its implementation. Some 
software assurance practitioners object to the word “flaw” because it is often confused 
with “error”, “fault”, and “defect”. (Just as “defect” is sometimes similarly confused 
with “flaw”.) A flaw may or may not represent a vulnerability.  

• FORMAL METHOD: A process by which the system architecture or design is 
mathematically modeled and specified, and/or the high-level implementation of the 
system is verified, through use of mathematical proofs, to be consistent with its 
specified requirements, architecture, design, or security policy. 

• FORMAL: Based on mathematics. (This narrow definition is used in this SOAR to avoid 
the confusion that arises when “formal” is used both to mean “mathematically-based” 
and as a synonym for “structured” or “disciplined”.)  

• IMPLEMENTATION: The SDLC phase at the end of which the software is able to operate. 
In this document, “implementation” is used to designate the activities that follow the 
design phase and precede the testing phase, e.g., coding and software integration. 
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• INDEPENDENT TESTING: A common practice of software testing is that it is performed by 
an independent group of testers after the functionality is developed but before it is 
shipped to the customer. This practice often results in the testing phase being used as 
project buffer to compensate for project delays, thereby compromising the time devoted 
to testing. 

• INDEPENDENT VERIFICATION AND VALIDATION (IV&V): Verification and Validation 
performed by a third party, i.e., an entity that is neither the developer of the system 
being verified and validated, nor the acquirer/user of that system. 

• INFORMATION ASSURANCE: Measures that protect and defend information and 
information systems by ensuring their availability, integrity, authentication, 
confidentiality, and non-repudiation. These measures include providing for restoration 
of information systems by incorporating protection, detection, and reaction capabilities. 
Often used interchangeably with “information security”, which is the protection of 
information and information systems from unauthorized access, use, disclosure, 
disruption, modification, or destruction in order to provide confidentiality, integrity, 
and availability.   

• INFORMATION SYSTEM: A discrete set of information resources organized for the 
collection, processing, maintenance, use, sharing, dissemination, or disposal of 
information.  

• INFORMATION TECHNOLOGY: Any equipment or interconnected system or subsystem of 
equipment that is used in the automatic acquisition, storage, manipulation, 
management, movement, control, display, switching, interchange, transmission, or 
reception of data or information by the executive agency.  Information technology 
includes computers, peripherals, software, firmware, services (including support 
services), and related resources.  

• INPUT VALIDATION: The act of determining that data input to a program is sound (e.g., 
for example, might include: the length, format, physical content of the data do not vary 
from the acceptable parameters defined for length, format, and physical content).  

• INTEGRITY: (1) Guarding against improper modification or destruction.  (2) The 
property of a system or component that reflects its logical correctness and reliability, 
completeness, and consistency. Integrity as a security property generates the 
requirement for the system or component to be protected against intentional attempts to 
either alter or modify the software in an improper or unauthorized manner (note that 
attempts to destroy the software in an improper or unauthorized manner are 
considered attacks on the system’s availability, i.e., Denial of Service attacks); or through 
improper or unauthorized manipulation to cause the software to either perform its 
intended function(s) in a manner inconsistent with the system’s specifications and the 
intended users’ expectations, or to perform undocumented or unexpected functions.  
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• JUSTIFIABLE CONFIDENCE: The actions, arguments and evidence that provides a basis for 
a defensible reduction in uncertainty. 

• LEAST PRIVILEGE: The principle whereby each subject (i.e., actor) in the system is granted 
only the most restrictive set of privileges needed by the subject to perform its 
authorized tasks, and whereby the subject is allowed to retain those privileges for no 
longer than it needs them.  

• MALICIOUS CODE: (1) Software or firmware intended to perform an unauthorized 
process that will have adverse impact on the confidentiality, integrity, or availability of 
an information system. (2) A virus, worm, Trojan horse, or other code-based malicious 
entity that successfully infects the host. (3) Undocumented software or firmware 
intended to perform an unauthorized or unanticipated process that will have adverse 
impact on the dependability of a component or system.  Malicious code may be self –
contained (as with viruses, worms, malicious bots, and Trojan horses), or may be 
embedded in another software component (as with logic bombs, time bombs, and some 
Trojan horses).   

• MALICIOUS CODE: Undocumented software or firmware intended to perform an 
unauthorized or unanticipated process that will have adverse impact on the 
dependability of a component or system. Malicious code may be self-contained (as with 
viruses, worms, malicious bots, and Trojan horses), or it may be embedded in another 
software component (as with logic bombs, time bombs, and some Trojan horses). Also 
referred to as malware. 

• MALWARE: A malicious program that is inserted into a system, usually covertly, with 
the intention of compromising the specified operation of that system, including its 
ability to protect the confidentiality, integrity, and availability of the system’s data, 
applications, or operating system or of otherwise annoying or inhibiting the operational 
abilities of the system’s users.  Often used interchangeably with “malicious code”. 

• MISTAKE: An error committed by a person as the result of a bad or incorrect decision or 
judgment by that person. Contrast with “error”, which is used in this document to 
indicate the result of a “mistake” committed by software (i.e., as the result of an 
incorrect calculation or manipulation). 

• MISUSE: Usage that deviates from what is expected (with that expectation usually based 
on the software’s specification).   If the misuse is maliciously motivated, it is referred to 
as abuse.  

• MOBILE CODE: Software modules obtained from remote systems, transferred across a 
network, and then downloaded and executed on local systems without explicit 
installation or execution by the recipient. In particular, “mobile code” is used to 
describe applets within web browsers based upon Microsoft's ActiveX, Sun's Java, or 
Netscape's JavaScript technologies. 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
228 

• NON-REPUDIATION: For purposes of information security, assurance the sender of data 
is provided with proof of delivery and the recipient is provided with proof of the 
sender’s identity, so neither can later deny having processed the data.  In terms of 
software’s activities, non-repudiation extends to the inability of software to deny having 
performed a specific action. 

• OPEN SOURCE SOFTWARE: Publicly-available software the source code of which can be 
obtained by license permitting users to study and change (improve) the software, as 
well as redistribute it in modified or unmodified form. 

• OUTSOURCING: The delegation of operations or jobs from internal production within a 
business to an external entity usually by contract. 

• PENETRATION TESTING: Security testing in which evaluators mimic real-world attacks to 
attempt to identify methods for circumventing the security features of an application, 
system, or network.  Penetration testing often involves issuing real attacks on real 
systems and data, using common tools and techniques used by attackers.  Most 
penetration tests involve looking for combinations of vulnerabilities on a single system 
or multiple systems that can be used to gain more access than could be achieved 
through any single vulnerability.   

• PREDICTABILITY: The properties, states, and behaviors of the system or component 
never deviate from what is expected. 

• PROBLEM: Used interchangeably with anomaly, though “problem” has a more negative 
connotation, and implies that the anomaly is, or results from, a flaw, defect, fault, error, 
or failure.  

• PROGRAM: The umbrella structure established to manage a series of related projects.  
The program does not produce any project deliverables.  The project teams produce 
them all.  The purpose of the program is to provide overall direction and guidance, to 
make sure the related projects are communicating effectively, to provide a central point 
of contact and focus for the client and the project teams, and to determine how 
individual projects should be defined to ensure all the work gets completed 
successfully. A program may also be an executable software entity. 

• QUALITY: The degree to which a component, system or process meets its specified 
requirements and/or stated or implied user, customer, or stakeholder needs and 
expectations.  

• RELIABILITY: (1) The ability of a software system, including all of its individual 
components, to accomplish their objectives without failure, degradation, or unspecified 
behavior. Software that possesses the characteristic of reliability to the extent that it can 
be expected to consistently perform its intended functions satisfactorily. This implies a 
time factor in that reliable software is expected to perform correctly over a period of 
time. It also encompasses environmental considerations in that the software is required 
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to perform correctly in whichever conditions it finds itself - this is sometimes termed 
robustness. (2) The probability of failure-free (or otherwise satisfactory) software 
operation for a specified/expected period/interval of time, or for a specified/expected 
number of operations, in a specified/expected environment under specified/expected 
operating conditions.  

• REQUIREMENT: A statement that identifies an operational, functional, or design 
characteristic or constraint of a product or process.  Ideally, a requirement should be 
unambiguous, testable or measurable, and necessary to the acceptability of the process 
or product (by consumers or those responsible for verifying the product’s/process’ 
conformance to internal quality assurance guidelines.  

• RISK: (1) The possibility that a particular threat will adversely impact an information 
resource (including information systems, information, and software, whether 
embedded or part of an information systems) by exploiting a particular vulnerability. 
(2) The level of impact on an organization’s business operations (including mission, 
functions, image, or reputation), assets, or individuals resulting from the operation of a 
system, given the potential impact of a threat and the likelihood of that threat occurring.  
The potential that a given threat will exploit vulnerabilities of an asset or group of 
assets and thereby cause harm to the organization.  It is measured in terms of a 
combination of the probability of an event and its consequence.  

• RISK: The likelihood that a particular threat will adversely impact a system by 
exploiting a particular vulnerability.  

• ROBUSTNESS: The degree to which a component or system can function correctly in the 
presence of invalid inputs or stressful environmental conditions, including inputs or 
conditions that are intentionally and maliciously created.   

• ROLE: An abstract definition of a set of functions performed and work products or 
deliverables owned.  Roles are typically realized by an individual, or a set of 
individuals, working together as a team.  Roles are not individuals; instead, they 
describe how individuals behave in the business and what responsibilities these 
individuals have.  

• SABOTAGE: See Denial of Service. 

• SAFETY: Persistence of dependability in the face of realized hazards (unsponsored, 
unplanned events, accidents, mishaps) that result in death, injury, illness, damage to the 
environment, or significant loss or destruction of property.  

• SANDBOXING: A method of isolating application-level components into distinct 
execution domains, the separation of which is enforced by software. When run in a 
sandbox, all of the component’s code and data accesses are confined to memory 
segments within that sandbox. In this way, sandboxes provide a greater level of 
isolation between executing processes than can be achieved when processes run in the 
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same virtual address space. The most frequent use of sandboxing to isolate the 
execution of untrusted programs (e.g., mobile code, programs written in potentially 
unsafe languages such as C) so that each program is unable to directly access the same 
memory and disk segments used by other programs, including trusted programs. 
Virtual machines (VMs) are sometimes used to implement sandboxing, with each VM 
providing an isolated execution domain.  

• SECURE CODING PRINCIPLES: A set of philosophical imperatives that collectively govern 
how coding is done by the programmer so that the resulting software will behave and 
function as securely as possible.   

• SECURE CODING: Software programming practices that reduce or eliminate software 
defects/programming errors as well as other programming practices that lead to 
software vulnerabilities.  

• SECURE DESIGN PRINCIPLES: A set of philosophical imperatives that collective govern 
how the design is conceived by the developer so that the resulting software will behave 
and function as securely as possible. 

• SECURE SOFTWARE PROJECT MANAGEMENT: Systematic, disciplined, and quantified” 
application of management activity that ensures the software being developed 
conforms to security policies and meets security requirements. 

• SECURE SOFTWARE: Software that consistently exhibits the properties of dependability, 
trustworthiness, and reliability.  For purposes of software assurance, secure software 
needs only realize these properties with a justifiably high confidence without having to 
guarantee absolutely the substantial set of explicit security properties and functionality, 
including all those required for its intended usage. 

• SECURE STATE: The condition in which no subject can access another entity in an 
unauthorized manner for any purpose.  

• SECURITY POLICY: A succinct statement of the strategy for protecting objects and subjects 
that make up the system. The system’s security policy describes precisely which actions 
the entities in the system are allowed to perform and which ones are prohibited.  

• SECURITY: Protection against subversion or sabotage (which includes denial of service). 
Security is a composite of four attributes – confidentiality, integrity, availability, and 
accountability plus aspects of a fifth, usability, all of which have the related issue of 
their assurance. To be considered secure, software must exhibit three properties: 
dependability, trustworthiness, and survivability (also referred to as resilience). 

• SERVICE: A set of one or more functions, tasks, or activities performed to achieve one or 
more objectives that benefit a user (human or process). 
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• SOFTWARE ASSURANCE: The level of confidence that software is free from vulnerabilities, 
either intentionally designed into the software or accidentally inserted at anytime 
during its life cycle, and the software functions in the intended manner.   

• SOFTWARE DEVELOPMENT LIFE CYCLE PROCESS: The process by which user needs are 
translated into a software product. the process involves translating user needs into 
software requirements, transforming the software requirements into architecture and 
design, implementing the design in code or obtaining existing code that is able to 
perform the actions specified in the design, integrating the code components, testing the 
code, and sometimes installing and checking out the software for operational activities. 
NOTE: Depending on the SDLC process in use, these activities may overlap or may be 
performed iteratively.  

• SOFTWARE PEDIGREE: Background/lineage of the software being acquired.  This 
includes such considerations as how the version of the software under consideration at 
a given point in time was originally conceived and implemented, and by whom.  While 
the software’s pedigree is extended, and thus changed, each time the software is 
modified in some way by its developer, at any given point in time, the software as it 
exists in that point in time, can be said to have a fixed pedigree.  

• SOFTWARE PROVENANCE: Experience of the software being acquired after it leaves the 
control of its developer(s) and enters the supply chain.  This includes such 
considerations as how the software is licensed, how it is installed and configured in its 
execution environment, and how it is modified through patching and updating, and by 
whom.  Provenance also reflects changes in responsibility for the ongoing development 
of the software (new versions, patches, etc.)----for example, if this responsibility shifts 
from the software’s original developer to an integrator or a new development 
organization (as when one software firm buys another).  

• SOFTWARE SECURITY ASSURANCE: Justifiable grounds for confidence that software’s 
security property, including all of security’s constituent properties (e.g., attack-
resistance, attack-tolerance, attack-resilience, lack of vulnerabilities, lack of malicious 
logic, dependability despite the presence of sponsored faults, etc.) has been adequately 
exhibited. Often abbreviated to software assurance. 

• SOFTWARE: A set of instructions, written in some form of symbolic language (i.e., a 
“programming language” or “scripting language”), which are ultimately interpreted or 
compiled into the low-level binary language directly understood by the hardware of the 
processor on which the software executes, in order for that processor to accomplish the 
functional tasks specified by the software. 

• SOFTWARE-INTENSIVE SYSTEM: A system in which the majority of components are 
implemented in/by software, and in which the functional objectives of the system are 
achieved primarily by its software components.  
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• STANDARD: An agreement among any number of organizations that defines certain 
characteristics, specification, or parameters related to a particular aspect of computer 
technology.   

• STATE: (1) A condition or mode of existence that a system or component may be in, for 
example the input state of a given channel. (2) The values assumed at a given instant by 
the variables that define the characteristics of a component or system.  

• SUBVERSION: (1) The intentional violation of the software’s integrity. (2) Changing a 
process or product so as to provide a means to compromise a required property, such as 
security. 

• SURVIVABILITY:  (1) Resilience sufficient for the software to resist or tolerate most 
known attacks and as many novel attacks as possible, or if unable to resist or tolerate 
them, to recovery as quickly as possible with as little damage as possible. In most cases, 
this will require the software to be able to isolate the source of the attack. (2) The ability 
to continue correct, predictable operation despite the presence of realized hazards and 
threats. 

• SYSTEM: (1) A collection of components organized to accomplish a specific function or 
set of functions. (2) System: A combination of interacting elements organized to achieve 
one or more stated purposes. These elements include hardware, software, data, 
computing resources, human users, etc.  

• TESTING: An activity performed for assessing the conformance of software with any or 
all of its required properties and/or behaviors, and for improving it, by identifying 
defects and problems. 

• THREAT MODELING: The analysis, assessment and review of audit trails and other 
information collected for the purpose of searching out system events that may 
constitute violations of system security.  The artifact of threat modeling is the threat 
model. 

• THREAT: (1) Any entity, circumstance or event with the potential to adversely impact 
harm the software system or component through its unauthorized access, destruction, 
modification, and/or denial of service. (2) An actor, agent, circumstance, or event with 
the potential to cause harm to a software-intensive system or to the data or resources to 
which it has or enables access. If intentional and malicious, the threat is likely to be 
realized by an attack that exploits a vulnerability in software.  

• TRUST: The confidence one element has in another that the second element will behave 
as expected. 

• TRUSTWORTHINESS: (1) Containing few if any vulnerabilities or weaknesses that can be 
intentionally exploited to subvert or sabotage the software’s dependability, and 
containing no malicious logic that would cause the software to behave in a malicious 
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manner. (2) Logical basis for assurance (i.e., justifiable confidence) that the system will 
perform correctly, which includes predictably behaving in conformance with all of its 
required critical properties, such as security, reliability, safety, survivability, etc., in the 
face of wide ranges of threats and accidents, and will contain no exploitable 
vulnerabilities either of malicious or unintentional origin. Software that contains 
exploitable faults or malicious logic cannot justifiably be trusted to “perform correctly” 
or to “predictably satisfy all of its critical requirements” because its ability to be 
compromised and the execution of unexpected and unspecified malicious logic renders 
prediction of its correct behavior impossible.  

• USER: Any person or process authorized to access an operational system.  

• VERIFICATION AND VALIDATION (V&V): The process of confirming, by examination and 
provision of objective evidence, that each step in the process of building or modifying 
the software yields the right products (verification). Verification asks and answers the 
question “Was the software built right?” (i.e., correctness); and the software being 
developed or modified will satisfy its particular requirements (functional and non-
functional) for its specific intended use (validation). Validation asks and answers the 
question “Was the right software built?” (i.e., suitability). In practical terms, the 
differences between verification and validation are unimportant except to the theorist. 
Practitioners use the term V&V to refer to all of the activities that are aimed at making 
sure the software will function as required. V&V is intended to be a systematic and 
technical evaluation of software and associated products of the development and 
maintenance processes. Independent V&V is a process whereby the products of the 
software development life cycle are reviewed, verified, and validated by an entity that 
is neither the developer nor the acquirer of the software, which is technically, 
managerially, and financially independent of the developer and acquirer, and which 
has no stake in the success or failure of the software. See also “independent testing”. 

• VULNERABILITY:  (1) Weakness in a software system that could be exploited by an 
attacker. Bugs and flaws collectively form the basis of most software vulnerabilities.  (2) 
A development error, bug, flaw, or weakness in deployed software that can be 
exploited with malicious intent by a threat with the objective of subverting (violation of 
integrity) or sabotaging (violation of availability) the software, often as a step towards 
gaining unauthorized access to the information handled by that software. 
Vulnerabilities can originate from weaknesses in the software’s design, faults in its 
implementation, or problems in its operation.  

• WEAKNESS: (1) A flaw, defect, or anomaly in software that has the potential of being 
exploited as a vulnerability when the software is operational. A weakness may originate 
from a flaw in the software’s security requirements or design, a defect in its 
implementation, or an inadequacy in its operational and security procedures and 
controls. The distinction between “weakness” and “vulnerability” originated with the 
MITRE Corporation Common Weaknesses and Exposures (CWE) project 
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(http://cve.mitre.org/cwe/about/index.html).  (2) An underlying condition or 
construct in software that has the potential for degrading the security of the software.   

• WEB SERVICE: A software component or system designed to support interoperable 
machine- or application-oriented interaction over a network.  A Web service has in 
interface described in a machine-processable format (specifically WSDL).  Other 
systems interact with the Web service in a manner prescribed by its descriptions using 
SOAP messages, typically conveyed using HTTP with an XML serialization in 
conjunction with other Web-related standards. 
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APPENDIX B: RESOURCES AND BIBLIOGRAPHY 
This appendix contains a complete listing of all online and print resources referenced in this 
document, both in the “Suggested Resources” boxes and in the footnotes.   

B.1 FREELY-ACCESSIBLE ONLINE RESOURCES 

The following resources can be freely accessed on the Web. In the very few cases (noted here) 
in which online registration is required, this registration is free of charge. 
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http://cs.wwc.edu/~aabyan/FAS/book.pdf 

• Acegi project Website. Accessed 26 Mar 2008 at: http://www.acegisecurity.org 

• Ada Standards. Accessed 8 September 2008 at: http://www.adaic.org/standards/ 

• AdaCore GNAT Pro High-Integrity Edition. Accessed 5 September 2008 at: 
http://www.adacore.com/home/gnatpro/development_solutions/safety-critical/ 

• Aggarwal, Nakul and Ritesh Arora. Ruby on Rails Security Guide. Published on 
QuarkRuby Weblog, 20 September 2007. Accessed 26 March 2008 at: 
http://www.quarkruby.com/2007/9/20/ruby-on-rails-security-guide 

• Aime, Marco. “Modelling services for trust and security assurance”. Presented at 
Workshop on Software and Service Development, Security and Dependability, Maribor, 
Slovenia, 10-11 July 2007. Accessed 19 January 2008 at: 
http://www.esfors.org/esfors_ws2/D1_S1_Aime-
ModellingServicesTrustAndSecurityAssurance.pdf 

• Alexander, Ian. “Modelling the interplay of conflicting goals with use and misuse 
cases”. Proceedings of 8th International Workshop on Requirements Engineering Foundation 
for Software Quality, Essen, Germany, 9-10 September 2002, pages 145-15. Accessed 11 
September 2008 at: http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
109/paper1.pdf    

• Alhazmi, O.H., Y.K. Malaiya, and I. Ray. “Measuring, analyzing and predicting security 
vulnerabilities in software systems”. Computers and Security, Volume 26 Issue 3, May 
2007, pages 219-228. Preprint version accessed 26 December 2007 at: 
http://www.cs.colostate.edu/~malaiya/pub/com&security_darticle.pdf 

• Anantharaju, Srinath. “Automating Web application security testing”. Google Online 
Security Blog, 16 July 2007. Accessed 11 December 2007 at: 
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http://googleonlinesecurity.blogspot.com/2007/07/automating-Web-application-
security.html 

• Ankrum, T. Scott, and Alfred H. Kromholz. “Structured assurance cases: three common 
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APPENDIX C: SECURITY CONCERNS ASSOCIATED 
WITH SPECIFIC SOFTWARE TECHNOLOGIES, 
METHODOLOGIES, AND PROGRAMMING 
LANGUAGES 

C.1 SECURITY CONCERNS ASSOCIATED WITH WEB SERVICE SOFTWARE 

The security concerns associated with Web services and service oriented architectures (SOA), 
as well as the standard and vendor-specific mechanisms being defined and implemented to 
address those concerns, are described in the Suggested Resources at the end of this section. 
The security issues of Web services as software are discussed in: Goertzel, Karen. “The 
Security of Web Services as Software”. CrossTalk: The Journal of Defense Software Engineering, 
September 2007. Accessed 9 April 2008 at: 
http://www.stsc.hill.af.mil/CrossTalk/2007/09/0709Goertzel.html 
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C.2 SECURITY CONCERNS ASSOCIATED WITH EMBEDDED SYSTEM 
SOFTWARE55 

By virtue of their usage profile, embedded devices have a much higher reliability expectation 
than most of the other software systems. This means that embedded software must continue to 
operate in spite of security threats. It also renders the common software security policy of 
patching after a failure irrelevant.  

Embedded devices, especially portable devices, face many more security threats than a non-
embedded system, e.g., an information system. Hackers may use sensitive test equipment to 
steal, disassemble, and probe small devices to remove memory elements from the system to 
extract their contents, use debugging ports and software to read sensitive data or force 
unintended operation, measure electromagnetic radiation or power consumption to gain clues 
about hidden functions and concealed information. By forcing the system to operate outside its 
design parameters through introduction of extreme temperatures, voltage excursions, and 
clock variations the attacker can expose anomalous and vulnerable behaviors.  

Memory devices are a favorite target of attack because they store both the system’s firmware 
and software and its sensitive data. Many devices can be read while in circuit and may provide 
temporary plain text data during operation. If the device includes a tamper sensor, the 
designer can incorporate hardware or software resources that will rapidly erase sensitive data 
before it can be extracted.  

A threat unique to software within embedded systems is the fact that the physical system may 
fall into an adversary’s hands, allowing the scrutiny and reverse engineering of the system, 
including its software component. Once the system is well-understood, the adversary will be 
able to devise countermeasures to the system’s security protections or to the system itself (e.g., 
in the case of a SCADA or weapons system). There is also a possibility that the adversary will 
use information gained through the reverse engineering to design a new version of the system 
which can be employed against the copied system or its originator. 

Embedded software may be designed according to any of several dozen software architectures 
and hosted on any of numerous operating systems. These architectures and operating systems 
may provide good security protection or none at all. This abundance of existing and emerging 
embedded-system architectures is increasing the number of available attack paths, and 
inhibiting the development of an industry-wide security protection scheme for embedded 
software. These attack paths are targeted by an increasing number and variety of security 
threats intended to cause embedded system disruptions, force unplanned operations, or 
extract sensitive data.  

                                                 

55 The source for most of this discussion is Webb, Warren. “Hack this: secure embedded systems”. EDN, 22 July 
2004. Accessed 9 April 2008 at: http://www.edn.com/index.asp?layout=article&articleid=CA434871 
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Some key secure software design principles are particularly relevant to embedded software 
design: 

• Differentiation between low- and high-consequence functions and public and private 
data. By denying user access to high-consequence functions and private data, the 
designer can reduce the risks to these elements of the embedded system;  

• The design must provide protection during the embedded system’s normal operation, 
during attack through a network connection, and during electronic probing (e.g., in an 
attacker’s laboratory).  

Most embedded operating system security specifications focus on implementing security 
protections defined in the Common Criteria; one of these, from LynuxWorks, is intended to 
achieve certified assurance at Evaluation Assurance Level 7. The MILS system standard 
requires a partitioned real-time operating system that can be certified as secure through a set 
of rigorous tests. MILS systems provide memory protection and guaranteed resource 
availability, enabling the user to securely host both trusted and untrusted data on the same 
processor. Developers can create formally-verified, always-invoked, tamperproof application 
code with non-bypassable security features for MILS platforms. Green Hills Software, 
LynuxWorks, and Wind River Software are among vendors working on MILS-compliant 
RTOSs. 

At a loss for how to improve the security of their software, embedded systems designers are 
relying increasingly to strengthened physical packaging to protect their embedded software. 

TPMs, such as those conforming to the open industry standards defined by the Trusted 
Computing Platform Alliance can be used as secure platforms for embedded programs. An 
embedded TPM monitors the boot process to create hash values or checksums for important 
elements, such as BIOS, device drivers, and operating-system loaders. The TPM stores these 
values and compares them with the reference values that define the trustworthy status of the 
platform. The TPM also provides public/private-key Rivest-Shamir-Adleman (RSA)-based 
encryption and decryption along with a tamperproof on-chip memory for storing keys and 
passwords. 

Security concerns and precautions have changed the basic design guidelines for embedded 
products. Traditional criteria for evaluating embedded systems designs—smallness of 
circuitry, efficiency of code, and long mean times between failures—are no longer adequate; 
these criteria must be augmented by the requirement for dependability, trustworthiness, and 
resilience during not only normal operation, but also under attack.  
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In the UK, Praxis High Integrity Systems56 provides development methodologies, tools, 
services, and resources expressly intended to support the development of secure embedded 
software. 

Researchers at Virginia Tech are investigating the use of hardware-software co-design 
techniques using a design environment with specific support for secure embedded system 
design. According to the researchers, the objective of secure embedded system design is to 
protect the root-of-trust from being compromised by obtaining a systematic deployment of 
countermeasures that will protect the root-of-trust at different levels of abstraction. Specific 
techniques the researchers are applying include: 

1. Partitioning of systems into secure and non-secure parts; 

2. Development of secure interfaces to integrate those partitions back into a single system.  

Another major challenge in secure embedded system design being addressed in the Virginia 
Tech research is the implementation of end-point-security, i.e. the creation of trusted channels 
that reach out into the peripherals and off-chip, off-board interface. Hardware-software co-
design techniques are being used to build trusted channels to securely cross the hardware-
software interface. 

SUGGESTED RESOURCES 

• Lee, Edward A. “Embedded Software” in M. Zelkowitz, editor. Advances in Computers. 
Volume 56. London, United Kingdom: Academic Press, 2002. 

• Kocher, Paul, Ruby B. Lee, Gary McGraw, Anand Raghunathan, and Srivaths Ravi. 
“Security as a New Dimension in Embedded System Design”. Proceedings of the 41st 
Design Automation Conference, San Diego, California, 7-11 June 2004. Accessed 17 
January 2008 at: http://palms.ee.princeton.edu/PALMSopen/Lee-41stDAC_46_1.pdf 

• Seacord, Robert, Noopur Davis, Chad Dougherty, Nancy Mead, and Robert Mead. “How 
to write secure C/C++ application code for your embedded design: Part 1—Some secure 
software design principles”. Embedded.com, 10 September 2007. Accessed 13 
December 2007 at: http://www.embedded.com/design/202300629 —and— “Part 2—
Systems Quality Requirements Engineering”. Programmable Logic Design Line, 15 
October 2007. Accessed 13 December 2007 at: 
http://www.pldesignline.com/202402853 

• Debbabi, M., M. Saleh, C. Talhi, and S. Zhioua. Embedded Java Security: Security for 
Mobile Devices. Berlin, Germany: Springer-Verlag, 2007.  

• Ricci, Lawrence and Larry McGinnes. “Embedded System Security: Designing Secure 
Systems with Windows CE”. AppliedData.net white paper, not dated. Accessed 9 April 
2008 at: http://www.applieddata.net/WP/Whitepaper_Secure_Windows_CE.pdf 

                                                 

56 Website accessed 26 August 2008 at: http://www.praxis-his.com/ 
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• Rothbart, K., U. Neffe, C. Steger, R. Weiss, E. Rieger, and A. Muehlberger. “High level 
fault injection for attack simulation in smart cards”. In Proceedings of the 13th Asian 
Test Symposium, Kenting, Taiwan, 15-17 November 2004, pages 118-121. 

• Davidson, Jack W. and Jason D. Hiser. “Securing Embedded Software Using Software 
Dynamic Translation”. Position Paper for the Army Research Organization Planning 
Workshop on Embedded Systems and Network Security, 22-23 February 2007. Accessed 
31 December 2007 at: http://moss.csc.ncsu.edu/~mueller/esns07/davidson.pdf 

• Verbauwhede, I. and Patrick Schaumont. “Design Methods for Security and Trust”. 
Proceedings of the Design Automation and Test Conference in Europe, Nice, France, April 
2007. Accessed 11 September 2008 at: 
http://www.cosic.esat.kuleuven.be/publications/article-875.pdf 

C.3 FORMAL METHODS AND SECURE SOFTWARE 

The main purposes to which formal methods are put in the SDLC include: 

1. Writing the software’s formal specification; 

2. Proving properties about the software’s formal specification; 

3. Constructing the software program through mathematical manipulation of its 
formal specification; 

4. Using mathematical arguments and proofs to verify the properties of a program. 

The majority of formal methods support either formal construction or on after-the-fact 
verification, but not on both. 

The essence of a formal method is its ability to provide one or more of the following tools: 

• A mathematically-based specification language in which the developer can specify, 
with mathematical precision, the required properties (e.g., correctness, safety, 
security) of the software he/she will build and the mathematical proofs whereby the 
software’s exhibition of those properties can be verified; 

• The reasoning logic needed to model the software that needs to have its properties 
formally verified. 

• The tools to perform the proof-based formal verification of the formally-specified, 
modeled software artifacts. 

Formal methods have applications throughout the software life cycle. Figure C-1 maps 
possible uses of formal methods to each phase of the SDLC. Because formal methods can be 
used for correctness, independently of security concerns, the life cycle phases are not labeled 
in terms of security concerns.  



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
276 

 

SOURCE: Software Security Assurance: A State-of-the-Art Report 

Figure C-1. Formal methods in the SDLC 

Table C-1 describes each formal method artifact referenced in Figure C-1. Table C-2 maps 
formal method artifacts to SDLC activities. 

Table C-1. Formal methods artifacts defined 

Formal Method Artifact Description 

Formal models of user 
behavior 

Often describe sequences in which users invoke the 
functionality of a system. For example, decision tables, finite 
state machines, Markov models, or Petri nets can 
characterize user actions. 

Formal specifications Rigorously describe the functionality of a system or system 
component. Languages used, such as in the Vienna 
Development Method and Z, often involve extensions of a 
mixture of predicate logic and set theory. 

Consistency proofs Examine the components of a system in a formal 
specification developed at a single level of abstraction. They 
are useful at every phase in which a formal model is 
developed. 
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Formal Method Artifact Description 

Proofs of properties Prove that some proposition over states or combination of 
states is always maintained true in a system. For example, a 
formal method for safety might include the proof that some 
state never arises in a system. 

Formal verification: 
The development of proofs 
that a formal specification 
at a lower level of 
abstraction fulfills the 
requirements of a formal 
specification of a system at 
a higher level of 
abstraction. Formal 
verification can be used to 
check software 
requirements against the 
system requirements 
allocated to software, 
architecture design against 
software requirements, the 
detailed design against the 
architecture design, and 
code against the detailed 
design. 

• Software requirements 

• Software detailed design 

• Coding 

Model checking results A practical technique for automated formal verification. 
Model checking tools use symbolic expressions in 
propositional logic to explore a large state space. Model 
checking can be performed as part of formal verification is 
used, with the result of the model checking analyzed to 
determine whether the model is accurate and trustworthy 
enough to form the basis for positive assurance (note that 
the determination of assurance is not intrinsic to model 
checking). 

Formally-generated 
prototypes 

While prototyping is not a formal method per se, some 
formal tools can generate prototypes, especially when 
formal operational semantics are used.  

Model driven architecture 
(MDA)-generated 
architectural design 

The automatic generation of an architecture from a Unified 
Modeling Language (UML) specification of a system. 

Model driven development 
(MDD)-generated 
implementation 

Supports the construction of a system or system component 
by transforming a formal or semi-formal model into an 
implementation. 
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Formal Method Artifact Description 

Formally-generated black 
box test cases 

Test cases based on specifications of the system or 
component being tested, rather than on pre-existing 
knowledge of the internal implementation of the system or 
component. In so far as the original specifications are 
formal, formal techniques can be used to generate the 
associated black box test cases. 

Model-based test cases Efficient test cases automatically generated from models of 
requirements and functionality, based on the formal model 
of user behavior developed during the requirements phase. 

 

Table C-2. Formal methods artifacts mapped to SDLC activities 

SDLC Activity Formal Method Artifacts 

System analysis • Formal models of user behavior 

• Formal specifications 

• Consistency proofs 

• Proofs of properties 

• Formal tool-generated prototypes 

System requirements 
allocation 

• Formal models of user behavior 

• Formal specifications 

• Consistency proofs 

• Proofs of properties 

• Formal tool-generated prototypes 

Software requirements 
specification 

• Formal models of user behavior 

• Formal specifications 

• Consistency proofs 

• Proofs of properties 

• Formal verifications 

• Model checking results 

• Formally-generated prototypes 

Test case generation  
(especially black box tests, 
integration tests) 

• Formal (checked) models of user behavior 

• Formally-generated black box test cases 

• Model-based test cases 

Software architectural 
design 

• Formal specifications 

• Consistency proofs 

• Proofs of properties 

• Model checking results 

• Formal tool-generated prototypes 

• MDA-generated architectural design 
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SDLC Activity Formal Method Artifacts 

Software detailed design • Consistency proofs 

• Proofs of properties 

• Formal verifications 

• Model checking results 

• Formal tool-generated prototypes 

• Model-driven development (MDD)-generated 
implementation 

Coding • Consistency proofs 

• Proofs of properties 

• Formal verifications 

• Model checks 

• MDD-generated implementation 

 

The effectiveness of formal methods is determined in large part by the expertise and skill of 
the developer who uses them. It is quite possible for the reasoning behind formal proofs to be 
erroneous, and thus for those proofs to produce spurious results. Moreover, current formal 
methods verify properties in models of software, not implemented software itself. For this 
reason even software specified, modeled, and verified by formal methods will require 
adequate security testing, with some test cases based on formal models of user behavior and 
generated by formal tools. 

Barry W. Boehm of University of Southern California has also observed that formal methods 
can be useful for verification (demonstrating that each step in the development process has 
satisfied the requirements imposed by previous steps) of a system as it is developed, but they 
are not useful for validation of an implemented system (demonstrating that the system actually 
satisfies its objectives, including its security objectives).  

Moreover, while a formal verification can prove that an abstract description (i.e., model) of a 
software implementation satisfies its formal specification, or that some formal property is 
satisfied in the implementation, formal verification cannot prove that the formal specification 
itself has captured the users’ intuitive understanding of their requirements for the specified 
system. Nor can formal methods prove that the implementation of the formally-specified 
system will run correctly under all conditions including the unexpected conditions associated 
with novel attacks.  

Because software security requirements are often expressed in negative terms, as constraints 
defining what the software must not do, such requirements can be particularly difficult to 
specify formally, and it may not be possible to mathematically prove that such requirements 
have been correctly satisfied in implemented software. The same is true of safety properties, 
which tend to be stated in terms of “Nothing bad must happen as a result of x.” 
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As with other methods, such as aspect-oriented software development (AOSD) and secure 
UML variants (e.g., UMLsec), that are promoted for engineering “secure software”, when case 
studies and papers describe real world usage of those methods, it becomes clear that what 
some of these methods were actually used for was to improve the correctness of IT security 
functions implemented by software, e.g., role-based access control, encryption. In some of the 
documented projects, little if any consideration was given to whether the methods also 
improved the trustworthiness and survivability of the software or the system as a whole. 

While the reader of such studies and papers should not be deceived into believing that the 
experiences of their authors have much to teach about the effectiveness of formal methods in 
the production of secure software vs. rather functionally-correct security software, the same 
reader should also be aware that in other projects,57 more emphasis was placed on the security 
of the software architecture on the whole, and not just the correctness of its security 
mechanisms.  

C.4 SECURITY CONCERNS AND BENEFITS ASSOCIATED WITH SPECIFIC 
PROGRAMMING LANGUAGES 

This section focuses on features of individual programming languages that affect the 
likelihood that the programmer will be able to write secure code in that language. The section 
also discusses the security benefits and concerns associated with popular programming 
languages, as well as secure language variants, and tools that can be used to enable the secure 
use of otherwise non-secure languages. 

C.4.1 C and C++ 

C is one of the most widely used programming languages in the World. C is one of the 
primary languages used in the Windows, Macintosh Operating System Version 10 (Mac OS X), 
Berkeley Software Distribution, Linux, and Unix kernels. Introduced in the early 1970s, C was 
developed to require a straightforward compiler, low-level memory access, and language 
constructs that easily map to assembly-code constructs. Through these design goals, 
developers could create efficient and portable applications within the restrictive processing 
environments at the time. As such, C and C++ (the latter was originally an enhancement to C 
but is now considered a separate programming language) have a large installed-base of 
libraries and developers. Nevertheless, many of the design choices made in the 1970s to meet 
its original design goals (e.g., failing to perform run-time checks on arrays) have led many to 
claim that C and C++ are insecure programming languages. Due to its status as one of the 

                                                 

57 An example of a project in which the end-goal was defining a software architecture that would result in a more 
trustworthy, resilient software system is described in Jürjens, Jan,  Joerg Schreck, and Peter Bartmann. “Model-
based Security Analysis for Mobile Communications”. Proceedings of the 30th IEEE International Conference on 
Software Engineering, Leipzig, Germany, 10-18 May 2008. Accessed 25 August 2008 at: 
http://mcs.open.ac.uk/jj2924/publications/papers/icsetele08-jurjens.pdf 
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most popular programming languages in use, there are a wealth of resources on secure 
programming in C and C++. 

In 2007, the SysAdmin, Audit, Networking and Security (SANS) Institute introduced the 
Global Information Assurance Certification Global Secure Software Programmer (GSSP) C 
certification. This certification aims to recognize C developers who can mitigate C-specific 
security concerns. The GSSP C certification’s essential skills include eight tasks, which address 
specific aspects of C development: 

• Environment and input: Covers the skills and mechanisms necessary to securely 
interface with the environment and external input to the application; 

• Dynamic allocated resources: Covers the skills and mechanisms necessary to securely 
use dynamic resources in the C stack and heap memory spaces; 

• Input, output, and files: Covers the skills and mechanisms necessary to securely 
interact with output functions such as printf and reading and writing to the file system; 

• Security mechanisms: Covers identification, authentication, authorization, privacy, 
encryption and secure designs; 

• Concurrency: Covers the skills and mechanisms necessary to securely implement multi-
threaded applications; 

• C types: Covers the skills and mechanisms necessary to securely interact with built-in C 
types (e.g., null-terminated strings, pointers and arrays); 

• Error conditions: Covers the skills and mechanisms necessary to securely identify and 
handle error conditions in applications; 

• Coding correctness and style: Covers the skills and mechanisms necessary to write 
simple, readable and correct code to minimize the introduction of vulnerabilities (e.g., 
avoid dangerous functions and do not mix assignment and comparison operators). 

SUGGESTED RESOURCES 

• Carnegie Mellon University Software Engineering Institute/Computer Emergency 
Response Team Secure Coding Standards Webpage. Accessed 21 January 2008 at: 
https://www.securecoding.cert.org/ 

• SANS Institute. “C Secure Coding Tasks, Skills and Knowledge.” April 2007. Accessed 4 
April 2008 at: http://www.sans.org/gssp/SANS-SSI%20C%20Blueprint%20(9-07).pdf 

• Seacord, Robert C. Secure Coding in C and C++. Indianapolis, Indiana: Addison-Wesley 
Professional, 2005.  

C.4.2 Java 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
282 

Java allows the user to have almost full control of the virtual environment in which the Java 
bytecode is run. Many of the security flaws discovered in Java have been implementation 
problems in the Java Virtual Machine (JVM). Because portions of the JVM are written in C, it is 
subject to the same coding errors and security flaws as any other C program. Much of Java’s 
security mechanisms can be traced back to one of its original uses: running untrusted Java 
applets on client machines. Java has since become a popular platform for enterprise 
applications, where language portability and security are important concerns. 

While the Java language itself provides a number of security features, applications can only be 
secured when these features are used appropriately. Java applets run with almost all of Java’s 
security features enabled while server-side code is often run in less restrictive configurations. 
There are common requirements when the Java code runs on client or on the server. Input 
from untrusted sources should always be validated.  

Increasingly, Java is being used to implement Web services, enabling server-to-server 
communication via language-independent mechanisms. Web services are a conglomeration of 
software systems designed to support interoperable machine-to-machine interaction over a 
network. This encompasses services that use SOAP-formatted XML envelopes and have their 
interfaces described by WSDL. Inherently, Web services suffers from many of the same 
vulnerabilities as Web applications, with the methods for exploitation differing. Therefore, it is 
critical to ensure Web services are securely implemented. 

C.4.2.1 Secure Java development  

As one of the most popular development languages, a number of organizations have put 
together secure coding guidelines and considerations for Java developers. In 2007, the SANS 
Institute introduced the GIAC GSSP Java certification. This certification aims to recognize Java 
developers who understand Java security mechanisms and can mitigate Java-specific security 
concerns. The GSSP Java certification’s essential skills include nine tasks, which address 
specific aspects of Java development: 

• Input handling, which covers the skills and mechanisms necessary to deal with 
potentially malicious input; 

• Authentication and session management, which covers the skills and mechanisms 
necessary to securely provide authentication and session support in Java; 

• Access control, which covers the skills and mechanisms available for access control in 
Java, specifically the Java EE controls and Java Authentication and Authorization 
Service API; 

• Java Types and JVM Management, which covers the security implications of Java types 
and garbage collection; 

• Application Faults and Logging, which covers the skills and mechanisms available for 
securely handling application faults and logging output; 
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• Encryption Services, which covers the skills and mechanisms necessary to take full 
advantage of the Java Cryptographic Extensions API; 

• Concurrency and Threading, which covers the skills and mechanisms necessary to 
properly structure multi-threaded Java programs; 

• Connection Patterns, which covers the skills and mechanisms necessary to securely 
interface with other applications; 

• Miscellaneous, which covers language-specific security mechanisms, such as access 
modifiers, Java Archive (JAR) protections and Java EE filters. 

SUGGESTED RESOURCES 

• Sun Microsystems. Secure Coding Guidelines for the Java Programming Language, 
Version 2.0. Accessed 22 March 2008 at: 
http://java.sun.com/security/seccodeguide.html 

• Sun Developer Network Java SE Security page. Accessed 11 December 2007 at: 
http://java.sun.com/javase/technologies/security/ 

• Sun Java 6 Security Documentation page. Accessed 11 December 2007 at: 
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html 

• OWASP Java Project page. Accessed 11 December 2007 at: 
http://www.owasp.org/index.php/Category:OWASP_Java_Project 

• The Secure Programming Council. “Essential Skills for Secure Programmers Using 
Java/JavaEE.” November 2007. Accessed 4 April 2008 at: 
http://www.sans.org/gssp/essential_skills_java.pdf 

• TenorLogic.com Java Security Resources page. Accessed 11 December 2007 at: 
http://www.tenorlogic.com/ 

• Mikhalenko, Peter V. “Understanding the Java security model”. TechRepublic, 18 April 
2007. Accessed 11 December 2007 at: http://articles.techrepublic.com.com/5100-3513-
6177275.html 

• Nagappan, Ramesh. “Demystifying Java security—Part 1”. SearchSoftwareQuality.com, 
21 June 2006. Accessed 11 December 2007 at: 
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci119532
0,00.html —and— “Demystifying Java security—Part 2”. SearchSoftwareQuality.com, 23 
June 2006. Accessed 11 December 2007 at: 
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci119533
2,00.html 

• Chess, Brian. “Twelve Java Technology Security Traps and How to Avoid Them”. 
Presented at JavaOne 2006. Accessed 11 December 2007 at: 
http://developers.sun.com/learning/javaoneonline/j1sessn.jsp?sessn=TS-
1660&yr=2006&track=coreenterprise 
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• Vaas, Lisa. “Java Security Traps Getting Worse”. eWeek, 9 May 2007. Accessed 11 
December 2007 at: http://www.eweek.com/article2/0,1759,2128071,00.asp 

• Dubin, Joel. “Java security: Is it getting worse?”. SearchSecurity.com, 12 July 2007. 
Accessed 11 December 2007 at: 
http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1263607,00.html 

• IBM Java Security Research Webpage. Accessed 11 December 2007 at: 
http://domino.research.ibm.com/comm/research_projects.nsf/pages/javasec.index.html 

• Paul, Nathanael and David Evans. “Comparing Java and .NET Security: Lessons Learned 
and Missed”. Computers and Security, Volume 25 Issue 5, July 2006. Accessed 11 
December 2007 at: 
http://www.cs.virginia.edu/~nrp3d/papers/computers_and_security-net-java.pdf 

• Hennebrueder, Sebastian. “Java security in Web application, typical attacks, Tomcat 
security”. Tutorial, 3 March 2007. Accessed 11 December 2007 at: 
http://www.laliluna.de/java-security-Web-application.html 

• “Learning Guide: Developing secure enterprise Java applications”. 
ComputerWeekly.com, 19 April 2006. Accessed 11 December 2007 at: 
http://www.computerweekly.com/Articles/2006/04/19/218968/developing-secure-
enterprise-java-applications.htm 

• IBM alphaWorks Security Workbench Development Environment for Java (SWORD4J). 
Accessed 11 December 2007 at: http://alphaworks.ibm.com/tech/sword4j/ 

• JSecurity Java security application development framework project Website. Accessed 11 
December 2007 at: http://www.jsecurity.org/ 

• Acegi project Website. Accessed 26 Mar 2008 at: http://www.acegisecurity.org 

C.4.3 C# and VB.NET 

C# was developed by Microsoft as part of its .NET initiative to provide developers with the 
power of languages like Java and C++ for rapid application development. Like Java, C# runs 
in a secure environment through code access security, which provides a sandbox in which to 
run Common Language Runtime (CLR) applications, such as C# and VB.NET (Visual Basic for 
.NET). Like Java, C# provides improvements over C and C++ through strong type checking, 
array bounds checking, detection of attempts to use uninitialized variables, source code 
portability (through the .NET CLR) and garbage collection. Unlike Java, C# applications also 
support accessing raw memory—although these portions of the code must be marked as 
unsafe, allowing reviewers to easily locate such code. Through code access security, C# offers 
security similar to Java’s while providing native access to all functionality that the .NET 
framework provides. 

Visual Basic .NET was released along side of C# as a successor to the legacy Visual Basic 
language. While the VB.NET syntax is very similar to the original Visual Basic language, 
VB.NET provides a fully object-oriented language in place of the Component Object Model-
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based language of Visual Basic. While Visual Basic has long been notorious for its security 
concerns, VB.NET’s support of garbage collection, object-oriented design, code access security, 
and the .NET framework place it on equal footing with C#. Through the .NET framework and 
the CLR, C# and VB.NET have access to the same security libraries and both C# and VB.NET 
applications are subject to code access security. 

Like in Java, code written in C# or VB.NET can be downloaded and run from untrusted 
sources. To alleviate this problem, Microsoft has integrated code access security into the .NET 
Framework. Code access security provides varying levels of trust for code based on where the 
code originates and allows individual users to specify what permissions will be given to an 
application. Because code access security is part of the .NET Framework, all applications that 
access the .NET Framework can be subject to code access security. Because policies are defined 
on a per-machine basis, libraries are provided that allow applications to determine whether 
the application has a particular permission prior to performing a potentially restricted act—
allowing .NET applications to alter their behavior rather than simply throw a security 
exception. 

Windows security is principal-oriented with authorization decisions being based on the 
identity of an authenticated principal. Code Access Security adds another dimension of 
security by allowing authorization decisions to be based on the identity of the code rather than 
the user who runs the code.  

Code is authenticated and its identity is determined using attributes of the code called evidence. 
Evidence can include an assembly’s public key, which is part of its strong name, its download 
URL, or its installed application directory, among other attributes. Once all the evidence is 
gathered and passed through security policy, the policy is then used to determine the 
capabilities of the code and the permissions it has to access secure resources. 

Default policy ensures that all code installed on a local machine is fully trusted and granted an 
unrestricted set of permissions to access secure resources. As a result, any resource accessed is 
only subject to operating system security. Code installed on a local machine is fully trusted 
because a conscious decision is required by an administrator to install the software in the first 
place.  

The .NET Framework uses principal objects, which contain identity objects, to represent users 
when .NET code is running. Together they provide the backbone of .NET role-based 
authorization. For ASP.NET Web applications, a principal and identity object attached to the 
current thread and Web request represents the authenticated user. 

Identity and principal objects must implement the IIdentity and IPrincipal interfaces 
respectively. These interfaces are defined within the System.Security.Principal namespace. 

SUGGESTED RESOURCES 
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• Microsoft Corporation. “Secure Coding Guidelines”. Chapter in Visual Studio 2008 .NET 
Framework Developer’s Guide. Accessed 22 March 2008 at: 
http://msdn2.microsoft.com/en-us/library/d55zzx87.aspx 

• Security (C# Programming Guide). Accessed 25 March 2008 at: 
http://msdn2.microsoft.com/en-us/library/ms173195.aspx 

• Security Tutorial. Accessed 25 March 2008 at: http://msdn2.microsoft.com/en-
us/library/aa288469(VS.71).aspx 

• Shakil, Kamran. “Security Features in C#.” Csharphelp.com. Accessed 25 March 2008 
at: http://www.csharphelp.com/archives/archive189.html 

• Meier, J.D., Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla, and 
Anandha Murukan. “Code Access Security in Practice”. Chapter 8 of Improving Web 
Application Security: Threats and Countermeasures, Microsoft Developer Network, 
January 2006. Accessed 8 April 2008 at: http://msdn2.microsoft.com/en-
us/library/aa302424.aspx  

• The Code Project. “Understanding .NET Code Access Security”. 14 January 2004. 
Accessed 8 April 2008 at: http://www.codeproject.com/KB/security/UB_CAS_NET.aspx 

C.4.4 Ada 

Ada was designed from its introduction in 1983, with the first Ada standard, Ada-83, to 
support sound software engineering techniques and promote program reliability, 
predictability, and analyzability. Since its introduction in 1983, Ada has been used in the 
development of safety-critical systems. Many of the language issues that Ada addresses in 
safety-critical development are also relevant for secure software. For example, Ada includes a 
number of features that help address common software security vulnerabilities, including: 

• Strong typing that prevents many range errors that lead to buffer overflows in weakly 
typed or un-typed languages, such as C and C++; 

• Clear syntax for numeric literals; 

• Compile-time detection of typing errors; 

• Runtime checking that raises exceptions, thereby allowing controlled recovery; 

• Language semantics that are precisely-defined (by an international standard), and thus 
clearly understandable; 

• Encouragement for programming of well-defined, predictable program behaviors; 

• Ability to declare scalar data using explicit ranges, assisting in program readability and 
range analysis - a key differentiator between Ada and C, C++, and Java;  
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• Parameter passing whereby parameter modes are specified based on the direction of 
data flow (“in”, “out”, or “in out”), which facilitates data flow analysis; 

• Inclusion in Ada of a high-level model (“tasking”) that supports structured concurrent 
programming, enabling security functions to easily be mapped to individual Ada tasks, 
elegantly supporting one-security-function-per-thread-of-control. By contrast, C and 
C++ lack this facility entirely, and Java’s thread model is low-level and error prone;  

• Direct support for fixed point binary and decimal data; 

• A compiler directive, the pragma Normalise_Scalars, that directs the compiler to use an 
invalid value as the default initialization for scalar objects whenever possible. 

• Ability to easily specify use of only a complete, usable subset of the full language from 
which individual features have been removed, e.g., to impose restraints needed to 
achieve security objectives. This “subsetting” is accomplished through a compiler 
directive, pragma Restrictions set with arguments identifying the specific features to be 
excluded; this pragma can be used in concert with a higher-level directive, pragma 
Profile, which defines a collection of Restrictions pragmas.  

While there is no predefined secure subset of Ada, Ada’s subsetting feature enables developers 
to define their own subsets based on the expressability desired and the analysis techniques 
they plan to use. This said, there is a high-integrity Ada subset, SPARKAda (from Praxis High 
Integrity Systems). SPARK Ada is an Ada subset augmented with special annotations that 
identify various program properties, such as pre-conditions, post-conditions, and data 
dependencies. Through these annotations SPARKAda eliminates ambiguities that arise from 
language constructs that are not fully specified by the Ada standard. 

The Ada-95 standard Language Reference Manual includes Annex H, “Safety and Security”, 
which “addresses requirements for systems that are safety critical or have security 
constraints.” The specific information provided in the Annex includes information on: 

• How to leverage the pragma Normalize_Scalars to better understand an Ada program’s 
execution; 

• How to document the program’s effect when a bounded error is present, or the 
standard Ada language rules otherwise leave the effect undocumented. Among the 
situations that the Annex recommends be documented are parameter-passing 
conventions, runtime storage management methods, and the method used to evaluate 
numeric expressions when that evaluation requires extended range or extra precision.  

• How to leverage the pragmas Reviewable and Inspection_Point to produce object code 
that is more easily reviewed for security and safety concerns; 

• Which pragmas and other Ada language constructs should be restricted to ease the 
program analysis and verification of correctness and predictable execution;   
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The Annex also notes that the standard Ada Valid attribute is useful in avoiding safety and 
security problems that could arise from use of scalars that have values that fall outside their 
declared range constraints.  

The Language Reference Manual for newest version of the Ada standard, Ada-2005, has re-
titled Annex H “High Integrity Systems”, which the Manual states include “safety-critical 
systems and security-critical systems”. Otherwise the Annex is unchanged in its essentials. 
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SUGGESTED RESOURCES 

• Ada Standards. Accessed 8 September 2008 at: http://www.adaic.org/standards/ 

• Praxis High Integrity Systems. SPARKAda. Accessed 8 September 2008 at: 
http://www.praxis-his.com/sparkada/index.asp 

• Barnes, John. Safe and Secure Software: An Introduction to Ada 2005. Accessed 8 
September 2008 at: 
http://www2.adacore.com/home/ada_answers/ada_2005/safe_secure/ 

• Dewar, Robert B.K. and Roderick Chapman. “Building secure software: Your language 
matters!” Military Embedded Systems, Winter 2006. Accessed 8 September 2008 at: 
http://www.mil-embedded.com/articles/id/?2012 

• Brosgol, Benjamin M. and Robert B. K. Dewar. “Need Secure Software?”. Application 
Software Developer, June 2008. Accessed 8 September at: 
http://www.applicationsoftwaredeveloper.com/features/june07/article2.html  

• International Organization for Standards/International Electrotechnical Commission 
(ISO/IEC). “ISO/IEC TR 15942:2000: Information technology—Programming 
languages—Guide for the use of the Ada programming language in high integrity 
systems”. Accessed 9 September 2008 at: 
http://standards.iso.org/ittf/PubliclyAvailableStandards/c029575_ISO_IEC_TR_15942_2
000(E).zip 

• ISO/IEC. “ISO/IEC TR 24718:2005: Information technology—Programming languages—
Guide for the use of the Ada Ravenscar Profile in high integrity systems”. Accessed 9 
September 2008 at: 
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038828_ISO_IEC_TR_24718_2
005(E).zip 

C.4.5 Ruby 

Ruby is an object oriented scripting language developed in 1995 by Japanese developer 
Yukihiro “Matz” Matsumoto. It incorporates features provided by Perl, SmallTalk, Eiffel, Ada, 
and Lisp. Within the past few years, Ruby has become an increasingly popular for Web 
development using the Ruby on Rails framework, developed by David Heinemeier Hansson. 

Ruby on Rails provides a Web development stack similar to that provided by the Java EE or 
.NET Web development frameworks. It provides built-in support for integrating with 
relational databases, Web services and AJAX. 

Ruby on Rails aims to simplify Web development by relying on “convention over 
configuration.” In Java EE and .NET applications, developers are required to use a number of 
configuration mechanisms to describe how the application interacts with a database and how 
the Model, View and Controller components are related to one another. In Ruby on Rails, 
users are expected to follow a standard pattern in naming objects, variables and SQL tables. 
This provides allows for the rapid development of Web applications using little code. A 
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corollary to this is that the Web application has the potential to be more secure due to the 
reduced complexity of developed code. 

One important item to note regarding Ruby on Rails is that it is one of the first Web 
application frameworks to support a mechanism for protecting against Cross Site Request 
Forgery (CSRF) attacks. The CSRF-killer plug-in58 provides a transparent mechanism for 
supplying and verifying tokens to protect against CSRF attacks. 

While there are many benefits to Ruby on Rails, it faces a number of criticisms. One of the 
primary criticisms is that it is not as robust as its older counterparts (Ruby on Rails 1.0.0 was 
released December 2005). Another criticism is that Ruby on Rails relies on the RubyGems 
framework for distributing libraries for the Ruby language; while RubyGems provides support 
for digital signatures, it is not yet widely used. Additionally, Ruby is considered slower than 
other scripting languages (e.g., Perl and Python) and slower than other Web application 
frameworks such as Java EE and .NET.  

Some of the security concerns are alleviated by running Ruby on Rails on different Ruby 
interpreters. Two common interpreters are IronRuby, which will run Ruby applications on 
.NET environments; and JRuby, which runs supports Ruby on Rails on top of the Java Virtual 
Machine, including Java EE applications. 

SUGGESTED RESOURCES 

• Ruby on Rails Security Project Website. Accessed 28 January 2008 at: 
http://www.rorsecurity.info 

• Aggarwal, Nakul and Ritesh Arora. Ruby on Rails Security Guide. Published on 
QuarkRuby Weblog, 20 September 2007. Accessed 26 March 2008 at: 
http://www.quarkruby.com/2007/9/20/ruby-on-rails-security-guide 

• Anonymous author. SecurityConcerns in Ruby on Rails Wiki. 10 January 2008. Accessed 
26 March 2008 at: http://wiki.rubyonrails.org/rails/pages/SecurityConcerns 

C.4.6 Server-side scripting languages  

A script that runs on or interacts with a networked client is always a vulnerable target of 
attack, and should be written extremely carefully to minimize exploitable vulnerabilities that 
threaten the integrity of the system as a whole, or enable the attacker to gain unauthorized 
access to the underlying server. 

The following recommendations should increase the security of scripts: 

• Do not include or call out to shell scripts; 

                                                 

58 Downloadable from: http://activereload.net/2007/3/6/your-requests-are-safe-with-us 
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• Server-side include statements that display environmental variables and file statistics 
present a low security risk; these functions are issued with directives such as include and 
echo var. A significant security risk arises, however, when using server-side includes 
with the virtual and exec directives to execute programs on the server. Allowing the 
server to execute files in this way also gives attackers the means direct the server to 
disclose private information or issue unauthorized commands. The article “Security 
Hints for Server-Side Includes” provides useful guidance on mitigating the risk posed 
by using server-side includes with the exec directive.59 

• Do not allow “<“ and “>“ in user input; either reject the input, or escape the characters 
by prepending them with a back slash (“\”); 

• Only allow expected characters (A-Z, 0-9 and punctuation). In cases where minimal 
HTML is allowed, all characters should be properly encoded (e.g., “‘‘, “<“, and “>“); 

• Remove all comments from client-side script code (also remove comments from HTML, 
XHTML, and any other user-viewable source code); 

Only trust a client/browser for which there is strong evidence of trustworthiness. 
Browsers are particularly vulnerable to compromise by malicious code and attackers 
due to the frequent combination of lack of robustness of the client platform protections 
and the browser’s inherent configurability by their users, who are not always security-
savvy. A well-behaved browser or other client should escape all characters in query 
strings that have special meaning to the underlying operating system shell. This will 
avoid the possibility of the script misinterpreting those characters, and will thwart any 
malicious user’s attempt to include special characters in query strings in order to 
confuse the script and gain unauthorized access to the system shell;  

• Never trust data supplied to a script by a user, even if the script does not invoke the 
system shell; 

• Do not use the HTTP_REFERER header for authentication in a CGI program. This 
header originates in the browser, not the server, and thus can be easily tampered with; 

• Validate all data. Do not accept non-validated data or meta characters, or pass them to 
the system shell. Instead of simply detecting the meta characters, escape them;  

• The “\” (back slash), which acts as the shell escape character, may itself be present in 
input data and cause problems. If it is found in input (during input validation) it should 
be stripped out and the data following it should be validated; 

• Encode dynamic output to prevent the passing of malicious scripts to the user. 
                                                 

59 Accessed 12 September 2008 at: 
http://www.workz.com/content/view_content.html?section_id=482&content_id=5814 
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In 2006, the DHS Science and Technology Directorate established its Vulnerability Discovery 
and Remediation: Open Source Hardening Project, contracting Coverity to evaluate a number 
of popular open source applications, programs, and tools, to locate their software security 
vulnerabilities, and Symantec and Stanford University to remediate those vulnerabilities. As of 
March 2008, Coverity had evaluated over 40 open-source software packages, including the 
“LAMP” stack (Linux, Apache, MySQL, and Perl/Python/PHP). As of March 2008, the Project 
had reviewed, remediated, and reported on eleven open source software packages, including 
the Perl, PHP, Python, and Tool Command Language (TCL) scripting languages. 

C.4.6.1 Perl 

In addition to the secure scripting guidance above, there are language-specific practices that 
will help secure applications written in Perl. Chief among these is the use of Perl taint mode 
and escaping of HTML data input to Perl scripts. 

Taint mode causes Perl to perform extra security validations when accessing variables and 
making function calls. Taint mode ensures that any tainted data received from outside the 
program are not used, directly or indirectly, to modify files, processes, or directories. 

Specifically, taint mode prevents data derived outside the program from accidentally affecting 
anything else inside the program. It marks such data as tainted. All externally obtained input 
is marked tainted, including: 

• Command-line arguments, 

• Environment variables, 

• Locale information (see perllocale()), 

• Results of the readdir and readlink system calls, 

• Results of the gecos field of getpw* calls, 

• All file input.  

Tainted data may not be used directly or indirectly in any command that invokes a sub-shell, 
nor in any command that modifies files, directories, or processes. There is one important 
exception: if the script passes a list of arguments to either system() or exec(), the elements of that 
list will not be checked for tainting. Be especially careful when using system() or exec() while in 
taint mode. Any data value derived from tainted data becomes tainted also. 

To untaint data, perform a regular expression against a substring of the tainted data. Do not 
simply use “*” as the substring will defeat the taint mode mechanism altogether. Instead, 
identify safe patterns allowed by the script, and use them to extract good values. Check all 
extracted values to ensure that they do not contain unsafe characters or exceed safe lengths. 

When invoking Perl (particularly when running the script as a Unix/Linux setuid program), 
place the -T flag at the end of the command line to put Perl into taint mode. For example:  
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#!/usr/bin/perl –T 
 

See the perlsec() manual page for details. It is important to note that Perl does not consider 
“print” function to be an unsafe function. 

Perl and mod_perl systems enable the developer to add input validation of HTML-escaped 
input data. For example, insert the following line of code before any output to eliminate any 
input that is not an alphanumeric character or a space:  

$text =~ s/[^A-Za-z0-9 ]*/ /g; 
 

Use the HTML::Entities::encode() function in the HTML::Entities module of the libwww-perl 
CPAN distribution to escape HTML characters in input data. This encodes data into HTML 
entity references.  

When using the Apache::Registry script or mod_perl handler, use Apache::Util::escape_html() in 
the Apache::Registry to encode all HTML input.  

Use the Apache::TaintRequest module to automate escaping of HTML data. This will HTML-
escape any tainted data item found and pass all untainted data to the browser without altering 
it. 

Also void the functions open(), glob, and backtick (`) that call the system shell to expand 
filename wildcard characters. Instead of open() use sysopen(), or in Perl v5.6 or later, use open() 
with three parameters (consult the perlopentut() manual page). Instead of backticks, use 
system() or a safer call. 

C.4.6.2 PHP 

PHP v4.1.0 and earlier versions are less secure than most scripting languages due to the way 
earlier versions of PHP load data into the PHP namespace. All environment variables and 
values sent to PHP over the Web as global variables are automatically loaded into the same 
namespace as normal variables, enabling attackers to set those variables to arbitrary values 
that persist until they are explicitly reset by a PHP program.  

When a variable is first requested, PHP automatically creates that variable with a default 
value. Therefore, PHP programs often do not initialize variables. If the programmer forgets to 
set a variable, PHP must be explicitly configured to report the problem. Otherwise, by default, 
it will simply ignore it. These behaviors in PHP allow attackers to completely control the 
values of all variables in the program, unless the program was written to explicitly reset all 
PHP default variables upon execution. Failing to reset a single variable may create a 
vulnerability in the PHP program. 

The following PHP program illustrates the problem. The program is intended to implement an 
authorization check to ensure that only users who submit the correct password are allowed 
access to sensitive information. However, by simply setting auth in his/her Web browser, the 
attacker can subvert this authorization check:  



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
294 

 



Enhancing the Development Life Cycle to Produce Secure Software Version 2.0 - October 2008 

 
295 

<?php 

if ($pass == “hello” 

$auth = 1; 

... 

if ($auth == 1) 

echo “sensitive information”; 

?> 
 

C.4.6.2.1 Setting register_globals to “Off” 

It is possible to eliminate the most common PHP attacks by setting register_globals to “off”; 
however, older versions of PHP are hard to use with register_globals off. In PHP 6.0, 
register_globals will be removed from the language. 

In PHP v4.7.0 and later versions, external variables received from the environment, or from an 
HTTP request, a cookie, or the Web server are no longer registered in the global scope by 
default. Instead, they are accessed using the language’s new Superglobal arrays. Several other 
special arrays—most notably $_REQUEST—make it easier to develop PHP programs with 
register_globals set to “off”.  

Note that many third-party PHP applications will not operate correctly, and in some cases not 
at all, with register_globals set to “off”; it may be necessary to use this setting selectively for 
only those programs that can operate with register_globals off. For example, on an Apache Web 
server, insert the following lines into the .htaccess file in the PHP directory: 

php_flag register_globals Off 

php_flag track_vars On 
 

Also consider using directory directives for further control. Also, note that the .htaccess file 
itself will be ignored unless the Apache Web server has been configured to permit overrides. 
Check to ensure that the Apache global configuration does not set AllowOverride to “none”. 
Instead, configure the AllowOverride options in the Apache configuration file so as to be able to 
write helper functions that load only the data needed by the PHP programs. 

Later versions of PHP also provide functionality that makes it easier to specify and limit the 
input the program should accept from external sources. Routines can be placed in the PHP 
library to enable users to list the input variables they want to accept. Then, functions can be 
written to check the validity of the patterns and types of variables before coercing the program 
to use them. 

If register_globals cannot be set to “off”, write the program to accept only values not provided 
by the user, and do not trust PHP default values. Do not trust any variable that has not been 
explicitly set. Remember that these variables must be set for every entry point into the 
program itself and in every HTML file that uses the program.  
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Following the guidelines below should provide additional safety and security to PHP scripts. 

• Begin each PHP program by resetting all variables, including global variables 
referenced transitively in included files and libraries, even if this means simply resetting 
those variables to their default values. Before doing this, the developer needs to learn 
and understand all the global variables that might be used by the functions called in the 
program. Search through the HTTP_GET_VARS, HTTP_POST_VARS, 
HTTP_COOKIE_VARS, and HTTP_POST_FILES to determine the originator of the 
data—it should not be a user. This search should be repeated whenever a new version 
of PHP is released, because it may add a new data source; 

• Write the program to record all errors by piping them to error reports in a log file; 

• Prevent remote file access by filtering all information that is used to create filenames. 
PHP defaults to functionality that allows it to use commands like fopen() to invoke Web 
or FTP requests from other sites; 

• Use only the HTTP_POST_FILES array and related functions to upload files and access 
them. PHP allows attackers to temporarily upload files with arbitrary content. This 
cannot be prevented in the language itself; 

• Place only protected entry points in the document tree, and place all other code—that is 
the majority of code—outside the document tree. Do not place include (.inc) files inside 
the document tree; 

• Do not use PHP’s session mechanism, which contains security vulnerabilities; 

• Because PHP is loosely typed, after validating all inputs use typecasting to coerce non-
string data into the type that data should have. Develop helper functions to check and 
import a selected list of expected inputs; 

• Use magic_quotes_gpc() where appropriate to help protect the script against several types 
of attacks; 

• Modify the php.ini file to disable file uploads, i.e., file_uploads = Off; 

• Be very careful when using the following functions (avoid using them if possible): 

Code Execution: 
eval() 
include() 
preg_replace() [with or without /e flag] 
require() 
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Command Execution: 
` [backtick] 
exec() 
passthru() 
popen() 
system() 

File Opening: 
file() 
fopen() 
readfile(). 

This list is not exhaustive; refer to the PHP specification for a complete list of all PHP code and 
command execution functions and file opening commands. 

 

C.4.6.2.2 PHP implementation of input validation 

To ensure that the design conforms with the following principles: 

• Non-bypassability of input validation; 

• Inability to mistake tainted (bad/unfiltered) data for validated data; 

• All data origins can be determined. 

There are two main input validation methods possible in PHP: Dispatch and Include. 

In PHP Dispatch, a single PHP script is available to the public (via URL). Everything else is a 
module included as needed with include or require. A GET variable is passed with every URL 
to identify the task (in modern frameworks and techniques, this requirement may be 
eliminated). This GET variable can be considered as a replacement for the script name. The 
following is a code example: 

http://example.org/dispatch.php?task=print_form 

Because dispatch.php is the only resource available to the public, the design of this application 
ensures that any global security measures taken at the top cannot be bypassed. It also lets a 
developer easily see the control flow for a specific task, so he/she can ensure that input 
filtering takes place without having to review a lot of code.  

The dispatch method leverages existing mechanisms that have been proven reliable, such as 
the fact that only files within document root can be accessed via URL. It also relies less on the 
developer remembering to do something about security. 
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In the PHP Include method, a single module is included at the top of every public script within 
document root. This module is responsible for all global security measures, such as ensuring 
that input filtering cannot be bypassed. If input filtering is placed in a separate module, the 
developer should make sure that no path through the application’s logic bypasses the 
initialization of that module. 

C.4.6.2.3 Naming conventions for variables  

Only choose methods that will not make it easy to mistakenly use tainted (unfiltered) data. 
One approach is to rename any variable that is filtered to something that distinguishes it as 
being clean. 

SUGGESTED RESOURCES 

• Hudson, Paul. “PHP—Secure Coding”. Linux Format, Issue 56, August 2004. Accessed 22 
March 2008 at: http://www.linuxformat.co.uk/wiki/index.php/PHP_-_Secure_coding 

• Oertli, Thomas. “Secure Programming in PHP”. 30 January 2002. Accessed 11 April 2008 
at: http://www.cgisecurity.com/lib/php-secure-coding.html 

• PHP Security Consortium Website. Accessed 26 March 2008 at: http://phpsec.org/ 

• Hardened-PHP Project Month of PHP Bugs Website. Accessed 26 March 2008 at: 
http://www.php-security.org/ 

• The PHP Group. “A Note on Security in PHP”. Not dated. Accessed 26 March 2008 at: 
http://www.php.net/security-note.php 

• Secure PHP Wiki. Accessed 14 December 2007 at: 
http://www.securephpwiki.com/index.php/Main_Page 

C.4.6.3 Python 

As with other languages, be very careful when using functions and calls that allow data to be 
executed as parts of a program, including the following: 

Functions: Calls: 
exec() compile() 
eval() input(). 
execfile() 

Privileged Python programs that can be invoked by unprivileged users must not import the 
user module, which causes the pythonrc.py file to be read and executed. Doing so could allow 
an unprivileged attacker to force the trusted program to run arbitrary code. 

Python does very little compile-time checking. It implements no static typing or compile-time 
type checking. Nor does it check that the number of parameters passed is legal for a given 
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function or method. There is an open source program, PyChecker, which can be used to check 
for common bugs in Python source code (see Bibliography and References).  

Python does support restricted execution through its RExec class. RExec is primarily intended 
for executing applets and mobile code, but can also be used to limit privileges in a program 
when the code originated external to the program. By default, a restricted execution 
environment permits reading (but not writing) of files, and does not allow operations for 
network access or graphical user interface (GUI) interaction. If these defaults are changed, 
beware of creating security vulnerabilities in the restricted environment. 

Python’s implementation calls many hidden methods and passes most objects by reference. 
When inserting a reference to a mutable value into a restricted program’s environment, first 
copy that mutable value or use the Bastion module. Otherwise, the program may change the 
object in a way that is visible outside the restricted environment. 

C.4.6.4 ASP and ASP.NET 

ASP is a fairly simple and secure language and is not prone to many of the vulnerabilities that 
plague other languages such as C/C++, Visual Basic, or Perl. The greatest extent of security 
violations for ASP occurs in the non-secure configuration of the Web server and in the failure 
to apply necessary patches.  

ASP.NET is very similar to the syntax and theory of ASP, with the addition of numerous 
security features that allow quick and easy deployment. Almost every Web application that 
has sensitive data is going to have some concept of access privileges and restricted user input. 
The ASP.NET model allows for scalable and efficient deployment regarding both of these 
topics. The security features of ASP.NET include: 

• Input validators; 

• Authentication modes and authorization options: ASP.NET works in conjunction with 
Microsoft’s Internet Information Services, the .NET Framework, and the underlying 
security services provided by the operating system, to provide a range of authentication 
and authorization mechanisms; 

• Gates and gatekeepers. 

When a client makes a request, the Web server is responsible for handling the file type 
requested. When creating a Website that uses ASP pages, the Web server must process all 
documents that end in the .asp extension before they are handed over to the client. Requesting 
pages or files that do not end in the .asp extension can circumvent the processing that is 
performed by the ASP engine. In such an instance, the unprocessed page will be sent to the 
client in text format. The two most common mistakes that cause such problems are as follows: 

• Most ASP files that are included in other ASP files have the .inc extension; this allows a 
client to make a direct request to the file and return the source code in text format; 
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• When files are modified directly on the server backup (.bak) files may be created by the 
development environment. These files may be requested by the client and returned in 
source form. 

Both of these vulnerabilities deal with files that are simply not processed by the ASP engine 
because they do not have the correct extension. This can be avoided by either appending .asp 
to the filename, deleting the file from the Web root, or placing the extension in the Web server 
configuration so that it must be processed before being sent to the client.  

If the ASP application accesses a Microsoft Access Database, it is critical that the folders on the 
Web server in which the MDB files are stored are not publicly accessible. Otherwise anyone 
who can guess the name and location of the database will be able to download it via a browser. 
Set up a “safe” data directory outside the Web root with permissions set that allows access by 
the Web server but denies access by any client, then store the MDB files in that “safe” 
directory. 

Despite all safeguards, given the history of IAVAs and CERT and CSIRT reports associated 
with Microsoft products, one must expect there to be exploitable vulnerabilities in the 
Windows operating system, Internet Information Server Web server, ASP components, and/or 
Access Database used in the ASP or ASP.NET application. Moreover, one should expect an 
attacker to successfully exploit one of these vulnerabilities at some point in its lifetime in order 
to compromise the application or its data. There are new patches and fixes coming out daily 
from Microsoft, and it is critical to apply each one in a timely fashion in order to ensure as 
secure a Web server, database, and Web application as possible. 

Even with all patches are kept up to date, the most restrictive user account should be used 
when connecting to the database and processing page requests. Unauthenticated 
“anonymous” access to Web server resources is usually controlled via the IUSR_MachineName 
or IWAM_MachineName Windows user account (where MachineName is the name of the 
Windows server). IUSR_MachineName is used by default, but if the Web server is configured to 
run out-of-process (i.e., with Application Protection set to “High Isolate” on the Home 
Directory tab of the Web server) then IWAM_MachineName will be used instead. 

For the highest level of security, disable all permissions for these accounts and other 
anonymous accounts, and strictly control their access through Windows user and group access 
control lists. Disable anonymous access via the Internet Services Control Panel. Remember 
when testing and troubleshooting that permissions can be inherited from multiple groups 
and/or from the parent folders. 

C.4.7 Client-side scripting languages 

With the advent of AJAX and other Web 2.0 technologies, client side scripting languages are 
becoming increasingly important. In the past, it has been sufficient to simply disable client-
side scripting to improve security, but many enterprise-level Web applications have begun 
introducing Web 2.0 concepts, requiring JavaScript or VBScript to be enabled. As such, it is 
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important for Web developers to understand the implications of relying on client-side 
processing in Web applications. 

Other scripting languages, such as shell and TCL scripts, are equally necessary for non-Web 
applications in Unix environments. Shell scripts perform vital functions in most—if not all—
Unix-like environments. As such, these scripting languages are used by many developers due 
to the implicit guarantee they will be part of the deployment environment (e.g., languages such 
as Perl, Python and Java, while very widespread, may not be as readily available). As such, 
this guide provides some insight into the security considerations that must be taken into 
account when using these languages. 

C.4.7.1 JavaScript  

JavaScript is a general purpose, cross-platform scripting language available in most Web 
browsers. It can be embedded within standard Web pages to create interactive documents. 
Each JavaScript interpreter supplies the needed objects to control the execution environment, 
and because of differences the functionality can vary considerably. Within the context of a 
Web browser, the language is powerful, allowing prepared scripts to modify the Web page 
and perform calculations on the client side, improving perceived performance and potentially 
reducing the load on the server. Within a browser context, JavaScript does not have methods 
for directly accessing a client file system or for directly opening connections to other 
computers besides the host that provided the content source. Moreover, the browser normally 
confines a script’s execution to the page in which it was downloaded.  

The name JavaScript is a misnomer since the language has little relationship to Java technology 
and arose independently from it. Netscape developed JavaScript for its Navigator browser, 
and eventually JScript, a variation of JavaScript, appeared in Microsoft’s Internet Explorer. 
Standardizing the core language and facilities of JavaScript and JScript resulted in the 
ECMAScript Language Specification,60 which most modern Web browsers support. Design 
and implementation bugs have been discovered in the commercial scripting products 
provided with many browsers, including those from Microsoft, Apple, Mozilla, and Opera.  

Visual Basic Script (VBScript) is a programming language developed by Microsoft for creating 
scripts that can be embedded in Web pages for viewing with the Internet Explorer browser. 
Alternative browsers do not support VBScript. Like JavaScript, VBScript is an interpreted 
language able to process client-side scripts. VBScript is a subset of the widely used Microsoft 
Visual Basic programming language and works with Microsoft ActiveX controls. The language 
is similar to JavaScript and poses similar risks. 

In theory, confining a scripting language to boundaries of a Web browser should provide a 
relatively secure environment. In practice, this has not been the case. Many browser-based 
attacks stem from the use of a scripting language in combination with a security vulnerability. 

                                                 

60 Available at: http://www.ecma-international.org/publications/standards/Ecma-262.htm 
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The main sources of problems have been twofold: the prevalence of implementation flaws in 
the execution environment and the close binding of the browser to related functionality such 
as an email client. Past exploits include sending a user’s URL history list to a remote site, and 
using the mail address of the user to forge email. The increasing use of scripting technologies 
for various Websites has opened new avenues for exploits through embedded scripts. 
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SUGGESTED RESOURCES 

• Taylor, John. “JavaScript Security in Mozilla”. Mozilla.org Website, undated. Accessed 26 
March 2008 at: http://www.mozilla.org/projects/security/components/jssec.html 

• Ruderman, Jesse. “JavaScriptSecurity: Same Origin”. Mozilla.org Website, undated. 
Accessed 26 March 2008 at: 
http://www.mozilla.org/projects/security/components/same-origin.html 

• Sun Microsystems. “JavaScript Security”. Chapter 14 of Client-Side JavaScript Guide, 27 
May 1999. Accessed 26 March 2008 at: http://docs.sun.com/source/816-6409-
10/sec.htm 

C.4.7.2. AJAX (Asynchronous JavaScript And XML) 

JavaScript is one of the main components of Asynchronous JavaScript And XML (AJAX), a 
collection of technologies that allows Web developers to improve the response times of Web 
pages. Through AJAX, developers rely on asynchronous JavaScript calls to fetch XML 
documents from the Web server in the background, without reloading the existing browser 
page.  

AJAX relies on the XMLHttpRequest object, which was originally developed by Microsoft for 
Outlook Web Access 2000. Since its introduction, other Web browsers have provided 
compatible implementations. In 2006, the World Wide Web Consortium published a working 
draft specification. Because there is no final specification, each browser implements the 
XMLHttpRequest object in a slightly different manner (e.g., IE uses an ActiveX object while 
Mozilla Firefox offers a built-in implementation). One of primary techniques for mitigating the 
effects of these differences is to rely on an AJAX framework, including Google’s Web Toolkit, 
ASP.NET AJAX, and the Yahoo! User Interface Library. 

In most cases, the Web browser will load an initial Web page containing JavaScript. This 
JavaScript code will instantiate the XMLHttpRequest object and send an HTTP request back to 
the Web server for additional data. Once the request is sent, a callback function is specified 
that will handle the data once it has been returned (allowing AJAX applications to handle 
multiple XMLHttpRequest calls at the same time). The content of these messages is arbitrary 
and can be defined by the developer. Traditionally, developers have relied on XML data but 
plaintext, HTML, and JavaScript Object Notation are becoming increasingly popular. Once the 
response has been received, the JavaScript code modifies the content within the browser, 
allowing the Web page to dynamically change without appearing to reload. 

Due to its support for XML, AJAX applications can interact with Web services (both REST and 
SOAP services) for data interaction, allowing the Web browser to act as a GUI to an 
organization’s SOA. In fact, many organizations have begun exposing Web service endpoints 
for these purposes, allowing Web developers to create “mashups,” or applications that rely on 
Web services from multiple organizations. Popular mashups use the GoogleMaps API to 
provide a visual representation of data from a second Web service.  
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AJAX allows Web content to behave more like traditional applications, while potentially 
reducing the load on the Web server by offloading the majority HTML generation to the 
browser. However, AJAX also typically increases the attack surface of the Web server. In 
particular: 

• AJAX increases the number of points where a client interacts with the application; 

• AJAX may reveal details of internal functions within the Web application; 

• AJAX inherits JavaScript security problems; 

• By some estimates, approximately 70% of today’s malicious code is downloaded via 
AJAX; 

• Inexperienced developers may not design AJAX applications securely; 

• In many cases, cross-site scripting attacks against Web applications in AJAX may be 
easier to accomplish, particularly when XMLHttpRequest calls retrieve JavaScript code; 

• Most processing occurs in the background, preventing the user from detecting the 
download of malicious software or the execution of harmful operations (e.g., CSRF). 

It is important to note that while AJAX does have a built-in security model, it is increasingly 
being subverted by developers. AJAX relies on the same-origin restriction applied in most 
Web browsers. According to the Mozilla.org Website, the same origin policy prevents 
documents or scripts loaded from one origin from getting or setting the properties of a 
document from a different origin. This restricts AJAX HTTP requests to a single Web server. 
Nevertheless, many developers feel this is a “defective” security mechanism and have 
instituted a number of workarounds, allowing for cross-domain AJAX. In fact, Safari allows 
cross-domain AJAX without any workarounds. Should an attacker be able to succeed in a 
cross-site scripting attack that inserts malicious AJAX code, the attacker can perform any Web 
operation from the browser—potentially resulting in increasingly dangerous CSRF attacks. 
Without stringent protections against cross-site scripting, AJAX CSRF attacks can access any 
Website from the browser, including those corporate intranets, which may rely too much on 
the assumption that attackers will be stopped by the firewall or virtual private network. 

While AJAX has introduced some potential vulnerabilities, many of the trends in AJAX 
development may eventually lead to more secure Web applications. For example, relying 
primarily on XMLHttpRequest endpoints that perform simple distinct functions, developers 
have begun implementing more rigid interfaces—potentially allowing for the development of 
improved testing mechanisms. Similarly, developers have begun to rely on AJAX frameworks 
for generating much of the AJAX JavaScript code. This allows testers to focus primarily on 
these frameworks, increasing their robustness and security along with that of the Web 
applications that rely on them. In addition, AJAX applications can be platform-independent—
relying primarily on XML interfaces at the Web server. As such, whether a Web application is 
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written in PHP, Python, Java, or .NET is becoming increasingly irrelevant, as functionality can 
be re-implemented without requiring developers to alter any of the AJAX code. 

SUGGESTED RESOURCES 

• Hoffmann, Billy and Bryan Sullivan. Ajax Security. Boston, Massachusetts: Pearson 
Education, 2008.  

• OWASP AJAX Security Project Webpage. Accessed 13 December 2007 at: 
http://www.owasp.org/index.php/Category:OWASP_AJAX_Security_Project 

• Shah, Shreeraj. “Top 10 Ajax Security Holes and Driving Factors”. Help Net Security, 10 
November 2006. Accessed 13 December 2007 at: http://www.net-
security.org/article.php?id=956 

• Hayre, Jaswinder S. and Jayasankar Kelath. “Ajax Security Basics”. SecurityFocus, 19 
June 2006. Accessed 13 December 2007 at: http://www.securityfocus.com/infocus/1868 

• Stamos, Alex and Zane Lackey. “Attacking AJAX Web Applications: Vulns 2.0 or Web 
2.0”. Presented at Black Hat USA 2006, 3 August 2006. Accessed 26 January 2008 at: 
http://www.isecpartners.com/files/iSEC-Attacking_AJAX_Applications.BH2006.pdf 

• Di Paola, Stefano and Giorgio Fedon. “Subverting Ajax”. Proceedings of the 23rd Chaos 
Communication Conference, Berlin, Germany, 27-30 December 2006. Accessed 26 
January 2008 at: http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-
Subverting_Ajax.pdf 

• Apache Axis Web Service Security page. Accessed 11 December 2007 at: 
http://ws.apache.org/axis/java/security.html 

• Shiflett, Chris. “Cross-Domain Ajax Insecurity”. On his PHP and Web Application Security 
Weblog, 9 August 2006. Accessed 26 January 2008 at: 
http://shiflett.org/Weblog/2006/aug/cross-domain-ajax-insecurity 

C.4.7.3 VBScript 

Like JavaScript, VBScript contains no functions that enable disk or network access. However, 
unlike JavaScript, which “inherits” the benefits of the Java security model, VBScript benefits 
from no formal security model, because Visual Basic does not provide one. Therefore, as with 
Visual Basic, security is entirely dependent on the programmer’s adherence to secure coding 
guidelines, and on secure implementation by the browser. Rather than using VBScript, use a 
client-side scripting language that has more extensive security features built into the language 
itself. 

C.4.7.4 TCL 

TCL comprises two parts: the language and the library. The language is a simple text language 
used to issue commands to interactive programs and includes basic programming capabilities. 
The TCL library can be embedded in application programs. In an effort to make TCL as small 
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and simple as possible, however, its designers have created a language that is, from a security 
standpoint, somewhat limited. 

Because TCL was designed to be a scripting language, it has few of the capabilities of a full-
blown programming language. It has no arrays or other structures from which to create linked 
lists. It simulates numbers, which slows TCL programs. As a result, TCL is only suitable for 
small, simple programs.  

In TCL, there is only one data type, string. This and its other limitations make it difficult to 
program anything other than very simple scripts in TCL. With TCL, developers can 
accidentally create programs that are susceptible to malicious input strings. For example, an 
attacker can send characters with special meanings to TCL such as:  

• embedded spaces,  

• double quotes (“.”),  

• curly braces ({.}),  

• dollar signs ($),  

• brackets ([. ]). 

An attacker might even send input that causes these characters to be created during 
processing, triggering unexpected and even dangerous behavior in the TCL program.  

For all these reasons, TCL should not be used to write programs that perform security 
functions, such as mediating a security boundary.  

There is a promising alternative to generic TCL, Safe-TCL, which creates a sandbox in which 
the TCL program operates. Safe-TCL should be implemented in conjunction with Safe-TK, 
which implements a sandboxed portable GUI for Safe-TCL. Because it contains its own 
sandbox feature, Safe-TCL may be a good language in which to implement simple mobile code 
constructs. 

C.4.8 Mobile code security 

The main security considerations in development of client applications that include mobile 
code and/or active content are: 

• How to establish the trustworthiness of mobile code and active content; 

• How to protect integrity of mobile code and active content during distribution and in 
execution; 

• How to protect the browser and its host from untrustworthy mobile code and active 
content. This includes how to constrain mobile code/active content execution, so that 
the software internals and data of the browser and the application software are not 
exposed or disclosed. 
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The primary countermeasures for addressing these considerations are digital signing of mobile 
code and signature validation prior to execution, and sandboxing to isolate executing mobile 
code from the rest of the software application. Sandboxing has been discussed previously. The 
following discussion focuses on signing and signature validation for mobile code. 

C.4.8.1 Digital signing of mobile code 

Beyond code signing and validation of code signatures to determine, after the fact, whether 
openly transported mobile code has been tampered with in transit, secure distribution 
techniques can help prevent (rather than detect) code tampering, misrouting of mobile code, 
illicit copying, etc.  

The predominant commercial model for mobile code distribution identifies dynamically 
linkable parts of mobile programs by a URI. This model is based on the assumption that all 
constituent parts of the mobile program will be downloaded to a single location, where they 
will be verified, linked, possibly dynamically compiled, and ultimately executed at that 
location.  

Aside from the obvious defects of basing a distribution management and versioning scheme 
on untrustworthy URIs, this approach is neither flexible nor scalable enough to support other 
modes of mobile-code dissemination and deployment.  

If the Web application incorporates the use of mobile code, you will need to address the 
security of the distribution of that code. The examples below are provided to help stimulate 
the imagination while undertaking the definition an approach to solving the secure 
distribution problem for mobile code in Web applications.  

C.4.8.2 Mobile code signature validation 

Ideally, browsers used to interact with the Web server application will be able to verify that a 
mobile code executable has been signed by a certificate from a trusted certificate authority 
before allowing that executable to run. Optimally, these browsers will be able to distinguish 
between certificates to select only those that they will accept as code signers, while rejecting 
code signed by any other certificate.  

Unfortunately, most COTS browsers do not perform mobile code signature processing very 
well. It is pointless to have the server sign mobile code if the browsers to which that code will 
be served cannot process the code signature. For this reason, and remembering to “never trust 
the browser”, the safest approach to using mobile code that executes in the browser context is 
to avoid using any Category 1 and Category 2 mobile code. Instead, limit any client-side 
mobile code to Category 3, such as JavaScript, VBScript, and PDF (the latter for serving 
documents). 
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SUGGESTED RESOURCES 

• Jansen, Wayne A., Theodore Winograd, Karen Scarfone. Guidelines on Active Content 
and Mobile Code. NIST Special Publication 800-28, Version 2, March 2008. Accessed 26 
March 2008 at: http://csrc.nist.gov/publications/nistpubs/800-28-ver2/SP800-28v2.pdf 

• DoD Instruction 8552.01, “Use of Mobile Code Technologies in DoD Information 
Systems”. 23 October 2006. Accessed 19 January 2008 at: 
http://www.dtic.mil/whs/directives/corres/html/855201.htm 

C.4.9 Shell scripting languages 

Shell scripting languages, device languages, etc., should never be used in application-level 
software. “Escaping to shell” from within application-level software creates an interface that is 
much sought after by attackers, because it is an interface that gives the attacker a direct path to 
system-level functions, files, and resources. Instead of embedding shell script, device 
command strings, etc., in the system, the developer should use trustworthy APIs to the 
required system or device functions, data, or resources. If the developer uses an add-on library 
or file input/output library, the portion of the software that uses that library should be 
compartmentalized, and all of the system’s accesses to those libraries should be 
logged/audited. 

SUGGESTED RESOURCES 

• Anley, Chris, John Heasman, Felix Linder, and Gerardo Richarte. The Shellcoder’s 
Handbook: Discovering and Exploiting Security Holes. Indianapolis, Indiana: Wiley 
Publishing, 2007. 

C.4.10 Secure language variants and derivatives 

Much research has been done to produce secure variants of C and C++ and other languages, 
and to define new programming languages that contain few if any vulnerable constructs. Java 
is probably the most successful example of a type-safe programming language that also 
prevents pointer manipulation and has built-in garbage collection. These features, along with 
the JVM sandboxing mechanism for isolating the transformation and execution of untrusted 
byte code were conceived in part to ensure that Java would be free of the security deficiencies 
found in C and C++. Microsoft’s C#, similarly, attempts to extend C++ concepts into a safer 
(and more modern) language structure. This said, Java and C# could potentially produce less 
secure code, because the intermediate production of byte code means that the developer is one 
step removed from the actual functioning of the object code, and has no visibility into memory 
allocation. 

Languages designed with security as their main objective have not been widely adopted, and 
until recently their use was limited almost exclusively to academia and the science and 
technology community. With the emergence of languages such as MISRA (Motor Industry 
Software Reliability Association) C and Praxis High Integrity Systems’ SPARKAda, however, 
secure programming language use has expanded into industries in which the imperative for 
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software safety has expanded to encompass software security concerns. Table C-2 lists the 
most noteworthy secure programming languages. With the exception of SPARKAda, these are 
all secure variants on C or C++. Also refer back to the discussion of Ada in C.4.4 for a 
description of how Ada in particular supports programmer definition of fully-featured secure 
Ada subsets. 

Table C-3. Noteworthy secure language variants and derivatives 

Language Resource 

CCured CCured Documentation Web page. Accessed 21 January 2008 at: 
http://manju.cs.berkeley.edu/ccured  

CYCLONE CYCLONE Website. Accessed 21 January 2008 at: 
http://cyclone.thelanguage.org/ 

Hermes Hermes publications Webpage. Accessed 21 January 2008 at: 
http://www.research.ibm.com/people/d/dfb/hermes-publications.html  

MISRA C MISRA C Website. Accessed 21 January 2008 at: http://www.misra-c2.com/ 

SPARKAda SPARKAda Webpage. Accessed 21 January 2008 at: http://www.praxis-
his.com/sparkada/ 

Vault Vault: a programming language for reliable systems. Accessed 21 January 
2008 at: http://research.microsoft.com/vault/ 

 

C.5. LEVERAGING DESIGN BY CONTRACT™ FOR SOFTWARE SECURITY 

Design by Contract™ (DbC) enables the designer to express and enforce a contract between a 
piece of code (“callee”) and its caller. This contract specifies what the callee expects and what 
the caller can expect, for example, about what inputs will be passed to a method or what 
conditions that a particular class or method should always satisfy. DbC tools usually require 
the developer to incorporate contract information into comment tags, then to instrument the 
code with a special compiler to create assertion-like expressions out of the contract keywords. 
When the instrumented code is run, contract violations are typically sent to a monitor or 
logged to a file. The degree of program interference varies. The developer can often choose a 
range of monitoring options, including: 

1. Non-intrusive monitoring by which problems are reported, but execution is not 
affected;  

2. Throwing an exception when a contract is violated;  

3. Performance of user-defined action in response to a contract violation. 

DbC can enforce security boundaries by ensuring that a software program never accepts 
inputs known to lead to security problems, or never enters a state known to compromise 
security. The developer can start creating an infrastructure that provides these safeguards by 
performing unit testing to determine which inputs and conditions would make the software 
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program vulnerable to security breaches, then write contracts that explicitly forbid these 
inputs and conditions. The developer then configures program so that whenever the 
conditions specified in the contract are not satisfied, the code fires an exception and the 
requested action (for example, a method invocation) is not allowed to occur. When this 
infrastructure is developed after thorough unit testing, it provides a very effective last layer of 
defense. 

An example of a design contract is: 

• Each component has preconditions which must be satisfied by the caller.  

• One such precondition is: “All data delivered to the called function must be successfully 
validated before it is used by that called function.” 

• The intent of this precondition is to allow the called function to forego input validation 
because it trusts that the input it receives has already been validated. 

For a design contract to be enforceable, the assumption on which it is based must hold 
throughout the component’s lifecycle.  

Replacement of components (with substitutes or newer versions) is a point at which such a 
contract is likely to be violated. For this reason: 

• Change management must guarantee that all changes of the contract are inherited to all 
contracts with dependent modules. 

• The validating function must “know” what is considered unacceptable input is for all 
subsequent callable functions. 

• New calling functions may need to be changed to incorporate input validation for 
downstream callable functions. 

There are potential pitfalls with this approach, the most obvious being the difficulty in 
assuring the enforcement of a design contract over time, particularly in a component-based 
system. Furthermore such contract relationships between functionally unrelated modules are 
undesirable because they make it difficult (if not impossible) to decouple the components. 

Tools supporting use of DbC are now available. These are included among the Suggested 
Resources below. 
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SUGGESTED RESOURCES 

• Kevin McFarlane’s Design by Contract Framework. Accessed 7 July 2008 at: 
http://www.codeproject.com/KB/cs/designbycontract.aspx 

• The Jass Page. Accessed 7 July 2008: http://csd.informatik.uni-oldenburg.de/~jass/ 

• C4J: Design by Contract for Java. Accessed 7 July 2008 at: http://c4j.sourceforge.net/ 

• The Java Modeling Language (JML). Accessed 7 July 2008 at: 
http://www.eecs.ucf.edu/~leavens/JML/index.shtml 

• Nice Language. Accessed 7 July 2008 at: http://c2.com/cgi/wiki?NiceLanguage 

• Le Traon, Yves, Benoit Baudry, and Jean-Marc Jezequel. “Design by Contract to improve 
software vigilance”. IEEE Transactions on Software Engineering, Volume 32 Issue 8 
August 2006, pages 571-586. 

• Building bug-free O-O software: An introduction to Design by Contract. Accessed 7 July 
2008 at: http://archive.eiffel.com/doc/manuals/technology/contract/ 

• Meyer, Bertrand. “Applying ‘Design by Contract’”. IEEE Computer, Volume 25 Issue 10, 
October 1992, pages 40-51. Accessed 26 August 2008 at: 
http://se.ethz.ch/~meyer/publications/computer/contract.pdf 

• Jezequel, Jean-Marc and Bertrand Meyer. “Design by Contract: the lessons of Ariane”. 
IEEE Computer, January 1997, pages 129-130. Accessed 11 September 2008 at: 
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html 
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APPENDIX D: SECURITY CHECKLIST EXCERPTS 
The Internet Security Alliance and U.S. Cyber Consequences Unit Cyber-Security Checklist61 categorizes its entries by what it 
terms “areas” and “avenues”. There are a number of avenues within three areas that provide checklist entries that are relevant 
for software (as contrasted with system) security testing, and secure SDLC process verification. These checklist entries have been 
captured in Table D-1 below. 

The software assurance-relevant excerpts from the recent revision of the World Bank’s Technology Risk Checklist62 may provide 
useful in the SDLC phase and activity indicated. These appear in Table D-2 below.  

Table D-1. Secure SDLC-relevant sections of the U.S.  
Cyber Consequences Unit Cyber-Security Checklist 

Area Avenue Subheading(s) Applicability to secure software development 
Two: Software 
Access 
Vulnerabilities 

5: Application 
Privileges 

Customizing of Privileges; 
General Control of 
Privileges 

Useful in defining secure configuration parameters and in performing 
deployment-time verification of secure environment configuration 

 6: Input Validation  Useful in input validation design and implementation, and unit- and 
system-level test scenarios to verify correctness and effectiveness of 
input validation 

 7: Appropriate 
Behavior Patterns 

 Useful in design and implementation of error and exception handling, 
and in development of penetration test scenarios 

Six: Software 
Supply 
Vulnerabilities 

15: Internal Policies 
for Software 
Development 

Secure Procedures for 
Developing New Software 

Useful in defining secure development practices for security-
enhancing the SDLC process 

  Security Features to Build 
into New Software 

Useful in specifying functional security requirements and designing 
software’s security functionality 

  Security Testing of New 
Software 

Useful in developing security test plans for software 

 

                                                 

61 Bumgarner, John and Scott Borg. The U.S. Cyber Consequences Unit Cyber-Security Check List. Final Version, 2007. Accessed 28 January 2008 at: 
http://www.isalliance.org/content/view/144/292 

62 Kellerman, Thomas. “Technology Risk Checklist, Version 13.0”. Washington, DC: The World Bank, 2008. 
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Table D-2. Secure SDLC-relevant sections of World Bank Technology Risk Checklist 

Checklist 
Section 

Useful in Specific checks 

Patch 
Management 

Post-Deployment 
Phase, Patch 
Generation and 
Issuance 

When applying a patch to any system vulnerability, do you have a process for verifying the 
integrity, and testing the proper functioning of the patch? 

  Have you verified that the patch will not negatively affect or alter other system configurations? 
  Are patches tested on test beds before being released into the network? 
  Do you make a backup of your system before applying patches? 
  Do you conduct another vulnerability test after you apply a patch? 
  Do you keep a log file of any system changes and updates? 
  Are patches prioritized? 
  Do you disseminate patch update information throughout organization’s local systems 

administrators? 
  Do you add timetables to patch potential vulnerabilities? 
  Are external partners required to patch all non-critical patches within 30 days? 
Patch 
Management 
(continued) 

Post-Deployment 
Phase, Patch 
Generation and 
Issuance (continued) 

Are external partners required to patch critical patches to servers and clients within 48 hours? 
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Checklist 
Section 

Useful in Specific checks 

VI. Active Content 
Filtering 

Implementation 
Phase, Development 
of Input Validation 
Logic 

Is your system configured to filter (examine content) hostile ActiveX? 

  Is your system configured to filter JavaScript? 
  Is your system configured to filter Remote Procedure Calls (RPCs)? 
  Is your system configured to filter Perimeter-Based Security? 
  Is your system configured to filter Berkeley Internet Name Domain? 
  Is your system configured to filter Simple Network Management Protocol?  
  Is your system configured to filter the Java Virtual Machine vulnerability? 
  Does your organization have a standard desktop configuration and software standards?  
  Do you employ enterprise level desktop configuration management?  
  Do you filter all .exe, .zip, and .doc attachments? 
  Do you implement XML filtering and layered security? 
B. Active Content 
Filtering 

Implementation 
Phase, Development 
of Input Validation 
Logic 

Does your system filter the following Simple Network Management Protocol? If so, have you 
turned off RPC? 

Web Application 
Security 

Distribution/Deploym
ent Phase, Defining 
Secure 
Configuration; 
Testing Phase, Post-
Deployment Security 
Test Planning and 
Testing 

Do you check the lengths of all input? If greater than the maximum length, do you stop 
processing and return as failure?  

  Do you allow source packets coming from outside to have internal IP addresses. Conversely, do 
not allow inside packets to go out that do not have valid internal IP source addresses. 

  Are user names and passwords sent in plaintext over an insecure channel? 
  Do you restrict user access to system-level resources? 
  Do you limit session lifetimes?  
  Do you encrypt sensitive cookie states? 
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Checklist 
Section 

Useful in Specific checks 

X. Vulnerability 
and Penetration 
Testing 

Testing Phase, 
System and Post-
Deployment Security 
Penetration Test and 
Vulnerability 
Assessment Planning 
and Testing; 
Sustainment Phase: 
Ongoing 
Vulnerability 
Assessments 

Are vulnerability tests conducted on a quarterly basis? 

  Are penetration tests conducted on a bi-annual basis?  
  If they are conducted do they address the following:  

(a) Describing threats in terms of who, how and when;  
(b) Establishing into which threat class a threat falls;  
(c) Determining the consequences on the business operations should a threat be successful;  
(d) Assessing the impact of the consequences as less serious, serious or exceptionally grave 
injury;  
(e) Assigning an exposure rating to each threat, in terms of the relative severity to the business 
prioritization of the impacts according to the exposure rating. 

  Do penetration tests assess both the external and insider threat? 
  Do your tests include performing a network survey, port scan, application and code review, 

router, firewall, intrusion detection system, trusted system, and password cracking? 
  Do you employ network sniffers to evaluate network protocols along with the source and 

destination of various protocols for stealth port scanning and hacking activity? 
  Are penetration tests conducted upon hosting provider systems and existing partner systems 

before connecting them to the organization’s network? 
  Are vulnerability/penetration testing results shared with all appropriate security and network 

administrators? 
  Do your penetration tests encompass social engineering? 
  Are the results acted upon? 
  Is there a timetable for acting upon the above results?  

 




