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Real-Time and Embedded systems
Resource-bound computation

Resource-bound formalisms

- ACSR (Algebra of communicating shared resources)

- Schedulability Analysis Problem

- PACSR (Probabilistic ACSR)

- Schedulability analysis for soft real-time systems

- Design framework for embedded systems

- P2ACSR (Probabilistic ACSR with power consumption)
- Scheduling synthesis and parametric schedulability analysis
- ACSR-VP (ACSR with Value-Passing)

Conclusions
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Real-time, Embedded Systems

Difficulties

- Increasing complexity
Decentralized
Safety critical
End-to-end timing constraints
Resource constrained

* Non-functional: power, size, etc.

Development of trustworthy (i.e., reliable, robust,
safe, secure, etc.) embedded software
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Properties of embedded systems

Adherence to safety-critical properties
* Meeting timing constraints
- Satisfaction of resource constraints
- Confinement of resource accesses
Supporting fault tolerance
Domain specific requirements
- Mobility
- Software configuration
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Real-time Behaviors

+ Correctness and reliability of real-time systems
depends on

- Functional correctness
- Temporal correctness
* End-to-end temporal constraints
* Factors that affect temporal behavior are
- Synchronization and communication
- Resource limitations and availability/failures
- Scheduling algorithms
- Interaction with physical world
* Anintegrated framework to bridge the gap between
concurrency theory and real-time scheduling
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Scheduling Problems

Priority Assignment Problem

Schedulability Analysis Problem

- Compositional analysis

- Hierarchical system
Soft timing/performance analysis (Probabilistic Performance
Analysis)
End-to-end Design Problem

- Parametric Analysis

- End-to-end constraints, intermediate timing constraints
- Execution Synchronization Problem

- Start-time Assignment Problem with Inter-job Temporal
Constraints

Fault tolerance: dealing with failures, overloads
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Scheduling Factors

+ Static priority vs dynamic priority
- Cyclic executive, RM (Rate Monotonic)
- EDF (Earliest Deadline First)
* Priority inversion problem
* Independent tasks vs. dependent tasks
- Single processor vs. multiple processors
- Communication delays
* Uncertainty in execution times
» Resource use tradeoffs
* End-to-end timing requirements
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Example: Simple Scheduling Problem

CPU; CPU: CPU3

(4,[2.3])

(period, [ e",e" ]), where e- and e* are the lower and upper bound of
execution time, respectively.

Goal is to find the priority of each job so that jobs are schedulable
Considering only worst case leads to scheduling anomaly
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Example (2)

Let Ji,1>J21and J22> J31
Consider worst case execution time for all jobs, i.e.,
Execution time E11 = 2, E;1=3, E22=2,E31=3

cPU J1,1 J21 T J1a | J21 J1,1
2
| o | L
4 v 8 12
J22
CPU;4
4 8 12
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Example (3)

CPU4 CPU: CPU;
Jo2
| (12, [1,2)) | | (4,[1,2]) |
Jaq | (4,[1,2]) |
(2,113 |

With same priorities, J1,1 > J21and J22> J3 1
Let execution time E11 =1, E21=1, E22=2,E31=3
Ji1 [ J21 Jia J11

CPU:

4 4 8 12
Ja2 / J3,1 missed its deadline

12

CPU;,

4 8
So with the priority assignment of J1,1 > J2,1and J2,2 > J3 1,
jobs cannot be scheduled and scheduling problems are in general NP-hard
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End-to-end Design Problem

Given a task set with end-to-end constraints on inputs and
outputs
- Freshness from input X to output Y (F(Y|X)) constraints:
bound time from input X fo output Y

- Correlation between input X1 and X2 (C(Y|X1,X2))
constraints: max time-skew between inputs to output

- Separation between output Y (u(Y) and I(Y)) constraints:
separation between consecutive values on a single output Y

Derive scheduling for every task
- Periods, offsets, deadlines
- priorities
Meet the end-to-end requirements
Subject to
- Resource limitations, e.g., memory, power, weight, bandwidth
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Example: Start-time Problem

Start-time Assignment Problem with Inter-job Temporal Constraints

< 25P
= 14D
<120 < 10D
[571) [341)
Job1 Job:
S1 si1teq S2 satez

Goal is to statically determine the range of start times for each job
so that jobs are schedulable and all inter-job temporal constraints
are satisfied.
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Example: power-aware RT scheduling

Dynamic Voltage Scaling allows tradeoffs between
performance and power consumption

* Problem is how to minimize power consumption while
meeting timing constraints.
Example: three tasks with probabilistic execution
time distribution

Task Worst-case execution time Period
1 3 8
2 3 10
3 2 14
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Our approach and objectives

Design formalisms for real-time and embedded
systems

- Resource-bound real-time process algebras

- Executable specifications

- Logic for specifying properties

Design analysis techniques

- Automated verification techniques

- Parameterized end-to-end schedulability analysis

- Toolset implementation
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Resource-bound computation

+ Computational systems are always constrained in their
behaviors

Resources capture physical constraints

* Resources should be supported as a first-class notion
in modeling and analysis

* Resource-bound computation is a general framework
of wide applicability
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Resources

Resources capture constraints on executions
* Resources can be
- Serially reusable:
* processors, memory, communication channels
- Consumable
* power
* Resource capacities
- Single-capacity resources
- Multiple-capacity resources
- Time-sliced, etc.
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Process Algebras

Process algebras are abstract and compositional
methodologies for concurrent-system specification
and analysis.

"Design methodology which systematically allows to
build complex systems from smaller ones" [Milner]

-
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Process Algebras

A process algebra consists of

- a set of operators and syntactic rules for constructing
processes

- a semantic mapping which assigns meaning or
intferpretation to every process

- a notion of equivalence or partial order between
processes

- a set of algebraic laws that allow syntactic manipulation
of processes.

Ancestors
- CCS,CSP, ACP,...
- focus on communication and concurrency
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Advantages of Process Algebra

A large system can be broken into simpler subsystems and then
proved correct in a modular fashion.

1 A hiding or restriction operator allows one to abstract away
unnecessary details.

2 Equality for the process algebra is also a congruence relation;
and thus, allows the substitution of one component with another
equal component in large systems.

5/27/08 Korea University 19

ACSR
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ACSR

* ACSR (Algebra of Communicating Shared Resource)

- A real-time process algebra which features discrete
time, resources, and priorities

- Timeouts, interrupts, and exception handling

- Two types of actions:
+ Instantaneous events
+ Timed actions

5/27/08 Korea University 21

Events

Events represent non-time consuming activities

- events are instantaneous: crash

- point-to-point synchronization e

5/27/08 Korea University 22
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Events

Events

- have priorities: (30b,10")

- have input and output capabilities

or (er P1) (g/ pz)

(e?,p,) (e',p,) %
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Actions

Actions represent activities that

- take time

- require access to resources

- each resource usage has priority of access

A= {(ﬁ:ﬂ)a(rz:pz)}

- each resource can be used 0‘5 most once
- resources of action 4: /O(A

- idling action:
Examples:
{(cpu.2}}, {(cpus.3).(cpu,.4)},
{(semaphore,b)}
5/27/08 Korea University 24
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Syntax for ACSR processes

* Process terms P := NIL

+ Process names

def
C=P

5/27/08

| A:P

| (a,n).P

| P+ P

| PP

| PAYQO.R.S)
| [P],

| P\ F

| b— P

| C

Korea University 25

Constant and Nil

P=NIL

5/27/08

P does nothing

C is a constant that
represents the process
algebra expression P

Korea University 26
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Prefix Operators

P=A:Q P performs timed
action A and then
behaves as Q

P=(a,n).Q P performs event (a,n)
’ and then behaves as

Q

EXAMPLE
def
Operator = (ring,1).(pickup,l).Talk
Talk = {(phone,2)} : (hangup,l).Operator

5/27/08 Korea University 27

Choice

P=Q+R P can choose
nondeterministically
to behave like Q or R

EXAMPLE

X / def
C GEY] CAR =(golef 1).CAR'

+(goright1).CAR"

5/27/08 Korea University 28
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Parallel Composition

P=Q| R P is composed by Q and R
that may synchronize on
events and must synchronize
on timed actions

EXAMPLE
def
Operator =(ring ?,1).{(phone,2)}
: (hangup?,1).0Operator

def
Caller = (ring!,2).{(phoné 3)}
: (hangup!,1).Caller

def
Converse = Operator || Caller

5/27/08 Korea University 29
Scope
def
P=Q A, (R,S,T) Q may execute for at most t

time units. If message a is
produced, control is delegated
to R, else control is delegated to
S. At any time T may interrupt.

EXAMPLE
def - ”

Runner = Run A)*" (GoForCoffee, a
GoToWork, ‘
BeepedToWork)

def
Run ={(run,1)} : Run + finish!.NIL
5/27/08 Korea University 30
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Hiding/Restriction

~
P =[Q], </ P behaves just as Q but

resources in [ are no longer
Kvisible to the environmentj

<
P=Q\F </ P behaves just as Q but

labels in F are no longer
Kvisible to the environmeny

EXAMPLE

Caller || PayPhone || [Home]

phone

5/27/08 Korea University 31

ACSR semantics

* Gives an unambiguous meaning to language expressions.

+ Semantics is operational, given by a set of semantic
rules.

ACSR Semantic Labeled
‘ - transition
specification rules system

+ Example of a labeled transition system:
P o

NC {gate, train} {gate, train} IC
B h h h

5/27/08 Korea University 32
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ACSR semantics

Two-level semantics:

- A collection of inference rules gives the unprioritized
transition relation

p—asp
- A preemption relation on actions and events disables

some of the transitions, giving a prioritized transition
relation

P—a%nP,

5/27/08 Korea University 33

Unprioritized transition relation

Prefix operators

ActT PP Actl (a,p):PJﬂi)eP
Choice
ChoiceLL pf;}i)lp’
Parallel
p_fap) | pr

5/27/08 Korea University 34
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Unprioritized transition relation (I1)

Resource-constrained execution
P A P/ A !
. — A D AV S

ParT
P||Q—*==—P'| Q'

Priority-based communication
ParCom p— P9 - o
Pllo—treels P 0f

Resource closure
p_A|_> P

CloseT Pl APy 4, ={r0)rer-4}

5/27/08 Korea University 35

Examples

« Resource conflict

P={(rD}: P O0={(r2)}:0 Pl|Q~NIL
* Processes must provide for preemption
P={r)}:P+T:P QO={r2)):0+3:0
* Unprioritized transitions:
(D
{(r} / \ {(r2);

5/27/08 Korea University 36
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Unprioritized transition relation (ll1)

p—L L p

ScopeCT - v — (t>0)
PAt(QaR:S)—_)P Ar—l(Q’RaS)

ScopeCI P P, (l(e) = a,t>0)

PA{(OQ,R,S)——PA(O,R,S)
p—n s p
ScopeE t>0
P Pa (0. RS =50 >0

ScopeT R R - (t=0)
PA(Q,R,S)——R

Scopel S S - (t>0)
PA(Q,R,S)——S

5/27/08 Korea University 37
Example

« A Scheduler

Sched = ¢ : Sched
+(tc,).9"A; (NIL kill .Sched, rc.Sched)

tc, 1

(te,1) [ [ [
Sched — ¢~ N, (.)=>¢" N ()= .. —¢7 IN(.)

) Sched Sched Sched

5/27/08 Korea University 38
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Preemption relation

To take priorities into account in the semantics we
define the relation « is preempted by p: a < fp

An action  preempts an action o iff
- no lower priorities: Vrep(a),r, (o) <m, ()

- some higher priorities: Irep(B),x,(a)<m,(B)
- it contains fewer resources  p(B)C p(a)

6-9- {(rl 53)5 (rz 95)} =< {(}"1 97)5 (rz 95)}

An event preempts another event iff

- same label, higher priority eg. (a.)=(al3)
An event preempts an action iff

-t with non-zero priority preempts all
actions eg. {rAi=@)

5/27/08 Korea University
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Prioritized transition relation

+ We define
[Pt [P
when
- there is an unprioritized fransition

P—*—P'

- thereisno pP—£ s p"’ suchthat a=<p

+ Compositional

5/27/08 Korea University

40
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Example

* Unprioritized and prioritized transitions:

P={r):P+@:P Q={(r2)}:0+3:0

@C (D
{(r1)} < {(r.2)} = \ {(r2)}

5/27/08 Korea University 41

Example (cont.)

* Resource closure enforces progress

{(r,0)}

{(r,l)y/ < {(r2)} — (r2)}

5/27/08 Korea University 42

21



Compositionality of preemption relation

+ Given
Pi=(a22)S1+(b1).S>
P2=(a,2)Si
01 =(a,3)Ti+ (b5 T>
02=(a3)Ti+ (b,2)T>
Ri=(b2)S1+bDS>
R2=(b2)S:

* Given P, and P,, can they be treated as equivalent?
That is, forall Q, P, || 0= P, || 0?

+ How about R, and R,?
5/27/08 Korea University 43

Bisimulation

* Observational equivalence is based on the idea
that two equivalent systems exhibit the same
behavior at their interfaces with the environment.

* This requirement was captured formally through
the notion of bisimulation, a binary relation on
the states of systems.

*» Two states are bisimilar if for each single
computational step of the one there exists an
appropriate matching (multiple) step of the other,
leading to bisimilar states.

5/27/08 Korea University
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Prioritized strong equivalence

* An equivalence relation is congruence when it is
preserved by all the operators of the language.

* This implies that replacement of equivalent
components in any complex system leads to equivalent
behavior.

+ Strong bisimulation ~_over P—*—z P' isa
congruence relation with respect to the ACSR
operators.

5/27/08 Korea University 45

Equational Laws

+ Equational laws are a set of axioms on the syntactic
level of the language that characterize the
equivalence relation.

* They may be used for manipulating complex systems
at the level of their syntactic (ACSR) description.

* There is a set of laws that is complete for finite state
ACSR processes:

P+NIL=P P+P=P
P+Q=0+P (PIO)IR=PI(Q]IR)

5/27/08 Korea University 46
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Equational Laws

+ ACSR-specific laws for scope and resource closure:

A:PA* (O,R,S)

PN (O.R.S) = 4:(PA*, (O.R.S) S if 10
e.PA° (O,R,S) = A“(QRS)i if 1>0n1(e)=a

e.PA’ (O,R,S)
PA" (O,R,S)

A:P
e.P

5/27/08

@.7()o+s if 1>0nl(e)=a
R
(AUA):P A ={r0)rEl-p(4)}
e.[P
Korea University 47

Laws (1)

Choice(1)
Choice(2)
Choice(3)
Choice(4)
Choice(5)
Par(1)
Par(2)
Par(3)

5/27/08

P+NIL=P

P+P=P

P+O0=0+P
(P+Q)+R=P+(Q+R)
aP+p0=p0 ifa=<p
PllO=0]| P
(PIIOIR=PI(CIR)

4 :P,+2e/.Q,>||(23k R+ > 1i:8)

EZ(A (BB IR

P(A NP (B )=0

Z/e‘f ©, ”(sz R, +zfz‘sz))
+ 3 A (S AR+ T 0)IS)

E/Z(T r(e) + (A9, 11S)

1( D=1/

Korea University 48
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Laws (2)

Scope(l) 4: PN (Q,R,S) = A: (PN _(Q,R,8)+S ift>0
Scope(2) e.PAL(Q,R,S)=e(PN_(O,R,S)+S ift>0n l(e)=b
Scope(3)  e.PA(O,R,S) = (t,7(e)Q+S if1>0nl(e)=b
Scope(4)  PA,(Q,R,S)=R
Scope(5) (P, + P)AY(Q,R,S) = RAJ(Q,R,S) + PAI(O,R,S)
Scope(6)  NILA(Q,R,S)=S ift>0
Res(1)  NIL\F =NIL
Res(2) (P+Q)\F =(P\F)+(Q\F)
Res(3) (A:P)\F =A4:(P\F)
Res(4) ((a,n).P)\F =(a,n)(P\F) ifa,a¢&F
Res(3)  ((a,n)P)\F=NIL ifa,a€EF
Res(6) P\E\F=P\EUF
Res(7) P\Q=P
5/27/08 Korea University 49
Laws (3)
Close(1)  [NIL], =NIL
Close(2)  [P+Q], =[P], +[Q],
Close(3) [4,:P], =(4U4,):[P], whered, ={(r.,0)|rEl-p(4,)}
Close(4) [eP], =e[P],
Close(5) (P11, =[P,
Close(6) [Pl,=P
Close(7) [P\E], =[P],\E
Rec(1) rec X.P = Plrec X.P/X]
Rec(2) If P=Q[P/X] and X is guarded in Q then P = rec X.Q
Rec(3) rec X.(P+ g [X\E],)=rec X.(Z [P\E,],)
i 7
where £, = UE,, U, = UU,, 1 is finiteand X is guarded in P
i€ €]
5/27/08 Korea University 50
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Soundness of the laws

* Theorem:

if P=Q0 then  P~,0

* Proof approach:

- Construct the set of prioritized derivations for
each P

- Prove that if P=0Q, then the sets of derivations
are the same

5/27/08 Korea University 51

Completeness of the laws

e Theorem:

if P and Q are finite-state processes and P~, O
then P=Q

5/27/08 Korea University 52
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Schedulability Analysis

Schedulability Analysis

Can all real-time tasks meet their deadlines?

Factors include

- Delay caused by synchronization between tasks

- Delay caused by precedence between tasks

- Delay caused by resource constraints

- Scheduling disciplines and synchronization protocols

5/27/08 Korea University
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Outline

ACSR-VP: ACSR with value-passing and dynamic
priorities

Specifying real-time systems using ACSR-VP

- Specifying task models

- Specifying scheduling disciplines

Analyzing real-time systems using bisimulation

- Specification correctness

- Schedulability analysis

Schedulability analysis using VERSA (ACSR Toolkit)

5/27/08 Korea University 55

ACSR (Algebra of Communicating Shared Resources)

A timed process algebra based on CCS with notions of time,
resources and priorities

Discrete time and dense time
Static priorities
Actions: Instantaneous Events + Timed Actions
- Timed action: a set of (resource, priority) pairs
{(cpu, 4) (data, 3)}, {(cpw, 2).(cpus, 3)}, O
- Instantaneous event: (event, priority) pair
(signal, 2), (chan, 2) (z, 3)
Real-time operators for timeout, interrupt, exception
Graphical specification language (GCSR)
Toolkit (VERSA)
No value passing communication, no variables for priorities

5/27/08 Korea University 56
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ACSR-VP (ACSR with Value Passing)

Extends ACSR with variables and value passing
communications
Values can be specifies using expressions
- Timed Actions:
{(cepu, x), (data, y + 1)}
- Instantaneous events:
(signal 18, x) - output
(chan?y, 2) - input

Dynamic priorities
Exchange priority information without global variables

5/27/08 Korea University 57

ACSR-VP Syntax

P = NIL process that does nothing
A:P timed action prefix
e.P instantaneous event prefix

be — P conditional process
(be :boolean expression)

B +P, choice

[P], resource close
P\F event restriction

P\\I  resource hiding

C(x) process name defined to be a process

|
|
|
|
| B ||P,  parallel composition
|
|
|
| Cx)=P

5/27/08 Korea University 58
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ACSR-VP Example

Preemptable and Non-preemptable Jobs
Both jobs execute ¢ time units on cpu with priority x

Non-preemptable job: once it acquires cpu, it executes
to completion

def
Job, —J:Job, + Exec,(0)
def

Exec,(s) =(s <c) = {(cpu,)} : Exec, (s +1)

Preemptable job: its execution can be preempted by
actions on cpu of other jobs with higher priorities

def
Job, = :Job, + Exec,(0)

Execz(s)d;j (s <c)—={(cpu,m)}:Exec,(s+1)
+ I Exec,(s)

5/27/08 Korea University 59

Unprioritized Operational Semantics

Act A:P—2sp
Actll  (12(x),ve).p—Lzled  pliy /]
Actl2 (I!<1ﬁ >,vel)' p_ e, J e, D P

Actl3  (r,ve).p—lel 5 p
A I A
ParT P P.o 0
P"Q A U4, Pl"Qv
P Nk ),m) P Q (2(k),n) Q'
P||Q (w.m+n) P'"Q’

(p(A)N () =@

ParC2

5/27/08 Korea University 60
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Unprioritized Operational Semantics

P——Pp'
CloseT [P] A UA [P’] (4, ={(r.0)|rEL-p(4)})
Closel ul . P'
PT—I7]
P——P'
HideT , ,p)EA 1
IRV P\\J({(r P)EA|r&l})
Hidel l P
P\\[ ——P\\I/
5/27/08 Korea University 61
Preemption

A preemption relation is defined for two any actions o
and g, denoted a<f, read g preempts .

Examples:

* 1(n,2),(r,3); <4(r,7),(r,,9) }
* {(7"1 72)9 (rz 35)} 7K {(rl 97)9 (Vz 53)}
* {(rl 92)9 (7'2 90)} =< {(rl 97)}

¢ {(l/i 92)9 ("'2 91)} -ﬂ {(}/i 37)}

* (a,2) <(a,3)

* (a,1) £(b,2)

* (r,1)<(1,2)

* 1(1,2),(,9)) < (7,2)

5/27/08 Korea University
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Prioritized Operational Semantics

The operational semantics of ACSR-VP, the prioritized
transition relation — ., is defined as follows:

P——, P'iff (1)P——P'
(2) there is no P—£— P"such that o < f3

def
Example: P ={(cpu,2)}: P, +{(cpu3)}: P,

p—wlip

* Unprioritized transition : :

p—eii.p

2

* Prioritized transition : p—lwell s p
5/27/08 Korea University
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Modeling a Real-Time System

A real-time system consists of a set of tasks running in parallel
under a specific scheduling discipline

A task is a process composed of a sequence of jobs executed
serially

A task can be
- Independent or dependent
- Preemptable or non-preemptable
- Periodic or aperiodic
Possible timing constraints of a task are:

b Starting time
c,d Execution time and deadline
p Period for periodic task

p,»P, | Minimum and maximum inter - arrival times
for aperiodic task

5/27/08 Korea University
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Specification of a real-Time System

A real-time system is specified by the process RTS:

def
RTS = [T, |- Tn_]

Tasks are specified by the processes T;:

def
T, =(Job,

Activator,) \ {start,end}

Process Job, : internal characteristics, e.g.:
- resource requirements
- synchronization
Process Activator;: external timing attributes, e.g.,
- periodic or aperiodic
- period and deadline
Events start, end are synchronization events:
- start: activate jobs

- end: mark deadlines of jobs - deadlock if unsuccessful

5/27/08

Korea University
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Sample Activators

Activator 1. A periodic task with (b, d, p)

def

Activator &® : Activator'

(start),1).D* : (end,2).
@P . Activator'

def
Activator' =

Activator 2. An aperiodic task with (b, d, p,, p,)
def

Activator d=f &® : Activator'

Activator' = (start!,]).D : (end!2).

-d... —d .
GPré-P2=4 - Activator'

where
def
D'=D: (idling for n time units)
def
" ="+ D" et D
5127/08

Korea University
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Sample Jobs

Job 1

preemptable, independent jobs
running on cpu

priority = and execution time c:
def
Job @ Job + (start ?,1).Exec(0,0)

Exec(s, t) (s <c)— ({cpu,m)}:Exec(s+1L,t+1)
+ O : Exec(s,t +1))
+ (s =c) — Wait
def
Wait = & : Wait + (end ?,1).Job

s for accumulated execution time
t for the elapsed time

Job can response to end event only when its current execution is
finished

5/27/08 Korea University 67

Sample Jobs

Job 2

nonpreemptable, independent jobs
on multiprocessors cpu;, ..., cpuy
with priorities w;, ..., t,  and execution time c:

def
Job = O :Job + (start?,1) .Exec

Exec z E({(cpu,.,n,.)}c : Wait)

l=i<k
def
Wait = & : Wait + (end ?,1) .Job

* A job can be executed on any of the processors

+ Once a processor is assigned to a job, the job
executes on that processor until completion

5/27/08 Korea University 68
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Sample Jobs

Job 3

+ dependent jobs on Frocessor cpu wi'rh]frior'i'ry n and execution time ¢
a single preemptable critical section of length cs on resource data (with priority
w') after at ¢’ time units execution:

der
Job = :Job+ (start?,1) .Exec(0,0)
def

Exec = (s<cas#c')— ({(cpu,m)}:Exec(s+1,7+1)
+ I Exec(s,7+1))
+(s=c") — ((p!,0).CS(s,7)
+ O : Exec(s,7+1))
+(s=c) — Wait
Wait d; < : Wait + (end ?,1) .Job
CS(s,1) d;f (s <c+es) —= ({(cpu,m)} :CS(s+ 1,7 +1)
+J:CS(s,1+1))
+ (s =c'+es) — (v,0).Exec(s,?)
P = (p?0)V+IT:P

V = (v?0)P+I:V

. l(’ and V operations are modeled by the processes P and V with events (p?,0) and
v?,0)

+ When s equals ', Exec waits for (p?,0) to enter the critical section CS(s,t)
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Scheduling Disciplines

Earliest Deadline First
def
*Tasks T, = Jobl+ Activatorl

¢ Priority &, =d,, —(d,-?)
def
where d,, = (1+max{d,,---,d,})

max

def
EDFSys = |Er1 H T, H"'HTnlpu,
T, d; (Job, HActivator,)\{start,end}
Job, & Job, + (start2,1) Exec, (0,0)

def
Exec,(s,0) = (s<c)—{(cpud,, —(d,~0)}
:Exec,(s,t+1)
+ I Exec,(s,t+1)
+(s =c)— Wait

def
Wait, = :Wait, +(end ?1).Job,

def
Activator, = (start!,1) D :(end!,2) D" : Activator,
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Other Time-Driven Scheduling Disciplines

def
Deadline Monotonic r,=d, -d,
def
Shortest Remaining Time First |7, = ¢, —(c; —5)
def
Least Laxity First m,=d, —(d,-1)-(c,—s)
def

wherec, = (l+max{c,,,c,})
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['he Priority | ion Probl
Without priority inheritance
blocked attempt to lock R lock(R) , unlock®R)
Tl l:l .
Ty T2 blocka T2 lock(®) unlock(R)
< o
- B
lock(®) unlock(®)
y
- [ N I B
0 H 10 15 20 25
nl > n2 > 713
With priority inheritance
lock(R) fails Tock(R)  unlock(R)
ok < ualo
Tl - -
lock(R)  unlock(R)
. s
T2 -
lock(R) unlock(R)
» [ N
7o 5 10 15 20 25
}x > T3 blocks T2
[— T3 directly blocks T1
T3 s priority is T |
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Task parameters

Resources:

cpu processor
ready time =5 =10 1=
comp. time c,=6 c, = c, =13
deadline d, =30 d,=30 d, =30
Constants : | start timeof CS : c¢s, =3 cs,=5 cs; =
length of CS c =2 c¢,=2 c5=10
priority m =3 =2 ;=
max priority o, =4
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def
T, = Job 3 + Activator 1 + Priority - Passing Events
PIPSys = [(l'] H TzH T, H P) {req,chan, p, v}]‘,’"’
T, d;/ (.Iob,H Activator, )\ {start,end}
Job, - & :Job, + (start ?,1).Exec,(0,0)
Exec,(s) d;/ (s <c; As#cs;)—> ({cpu,m,)}: Exec,(s +1)
+J : Exec,(s))
+(s=cs;) — ((req!m,,m;)Req,(s) + D : Exec,(s))
+(s=c¢;) — Wait
Wait, = &:Wait, + (end 2,1).Job,
Req,(s) = (plm,,7).CS,(5,7,) + D Req,(s)
CS,(s,m) d;/ (s <c';+cs;) = ({cpu,m)} : CS,(s +1,71)
+ (chan?new,1).CS, (s, new)
+@:CS,(s,m)
+(s =c',+cs,) = (v?,1).Exec,(s)
Activator, d=/ " (start! ). D" : (end!,2). D"
P d;/ (P?x1)V(x)+(req?x,7,,)(p?x).V(x)+ T :P
V(max) dj WL.).P+ I : V(max)
+(req?x,1) ((x> max) — (chan!x,1) V(x)
+ (x = max) — V(max))
Parameters of T, pty, Priority
[ Execution time of a job
¢'.  Time forenetring critical section
cs, Execution time in critical section
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Traces of tasks

Time : process T, process T, process Ty process P
o start U {(epu)y e
1 {3 } reqll, p!l,{(cpu,])}* |req?1, p?1,V(1)
2 (cpu]) «[vV()
310 (cpul) * V()
4 i) cpu,l) * V(1)
5 istart?,{(cpu3)} V(1)
6 i {(cpud)} { V()
7 treq'3, {} chan?3,{(cpu3)} * |req?3,chan'3,V(3)
8 {} {(cpu3) * VB
9 {3 (cpu,3) *|V(3)
10 () start 2,{} (cpu,3) V(33
[TEREY 0 (cpu3) VB
[P pudhv? e [P - .
3 %}i},{(cpu{j)) 5 i pu3)}.v ;?3’\/(3) (*: incritical section)
14 {(cpu3)}v? v,P
15 {(cpu3)} P
16 {(cpu3)} P
7 (cpu2) { P
Y (cpu2) { P
O 0 (cpu,2) { P
20 i} (cpu2)} P
21§ {(cpu.2)} P
22 1 req'2, p'2,{(cpu,2)} req?2,p?2,V(2)
23 1} {(cpu,2)},v? . vIP
2T {(cpu2)} | P
35 0 B {(cpu)} P
26 i} & {(cpub)} P
5/27/08 Korea University 75
Def. IftED",then?E(D-{r})"is the sequence derived
by deleting all occurrences of 7 fromz.
* ! .
Def. Ift=q,...a, €D ,then E=E' if
P( (T ) )* e ( (T, ) )* ( (T, ) )* a ( (T, ) )*Pv
where" "in (z,_)represents arbitrary integer.
Def. Fora given transition system"—", any binary relation
is a weak bisimulation if, for (P, Q) Er and forany action « € D,
a
1.if P—=— P', then, forsome Q',Q=>Q'and (P',Q")Er,and
o
2.if Q—*—Q', then, forsome P',P=> P'and (P',Q")Er.
Def. =_ is the largest weak bisimulation over"—_".Itis an
equivalence relation (though not a congruence) for ACSR.
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Analyzing Real-Time Systems in ACSR-VP

Two types of analyses

- Validation

- Schedulability analysis

Basic idea

- Checking weak bisimulation %,
- Searching deadlocked states
Practical Issues

- Ensure that the EDFSys and PIPSys processes are
finite state

- Translate ACSR-VP processes to ACSR processes and
use VERSA, the toolkit for ACSR
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Validating the EDFSys Specification

Construct a correctness specification, EDFSpec, that is sequential
and easy to inspect

Verify that EDFSys =, EDFSpec

def
EDFSpec =[S(0,---,0,0)],,,.,
def
S(Slat]:"'asntn) =

(s, =c,At,=p,)
e (T,I)S( .S >t,-_1 >O>O, S >ti+1 5T )
+ (s, <c,Ant,=d))
— (7,1).NIL
J+ (s, =c, AL, <D,;)
I=i=n —= D :SCLs, Lt Ls, L, +1,0)
+ (s, <c,At, <d))
— {(cpud,,, —(d, —)}
:SCGeL,s, .t +LLs, + Lt + s, 0, +1,-00)
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Schedulability Analysis

Lemmal If EDFSys is deadlock free, then it is
schedulable.

Lemma 2 If
EDFSys\\{cpu} = O~,

then EDFSys is deadlock free.

Lemma 3 If PIPSysis deadlock free, then it is
schedulable.

Lemma 4 If
PIPSys\\{cpu} = 7,

then PIPSys is deadlock free
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Example 1

Consider an instance EDFSys; of EDFSys where:

Task Ty: ¢;=1,d,=2,p;=3

Task T, c,=2,d,=3,p,=3
The following sufficient condition for schedulability from [Liu
and Lay 73] is not satisfied:

S5
dl d2
The following equation EDFSys\\{cpu} ~. &~

is satisfied, i.e., the task system is schedulable.
More specifically, we have

EDFSysl (r.2) . (r.2) . {(cpu,2)} . {(cpu,3)} . (.3)
{(cpu.3)} . (T3) . EDFSySl
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Example 2

Consider another instance EDFSys, of EDFSys where:
Task T2 ¢;=2,d;=2,p;=3
Task T,ic,=2,d,=3,p,=3
The equivalence
EDFSys, \\{cpu} = I~

is false and the task system is therefore not schedulable.

More specifically, we have

EDFSYSZ (t.2) . (x.2) . {(cpu.2)} . {(cpu.2)} . (@.3)

T

—lemdl > NIL
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Summary

The ACSR paradigm:

- Formalism for modular specification of real-time
systems along with scheduling disciplines

- Formal characterization of the schedulability analysis in
process algebra

Automated schedulability analysis

- Provide techniques for detecting timing anomalies
before an implementation is developed

- Integrate into a methodology for engineering reliable
real-time systems

Tools:
- GCSR (Graphical ACSR)
- XVERSA: VERSA and GCSR
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