
1

Resource-bound process algebras for
Schedulability and Performance Analysis of

Real-Time and Embedded Systems

Insup Lee1, Oleg Sokolsky1, Anna Philippou2

 1 RTG (Real-Time Systems Group)
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA

 2 Department of Computer Science
 University of Cyprus

 Nicosia, CY

5/27/08 Korea University 2

Outline
•  Real-Time and Embedded systems
•  Resource-bound computation
•  Resource-bound formalisms

–  ACSR (Algebra of communicating shared resources)
–  Schedulability Analysis Problem
–  PACSR (Probabilistic ACSR)
–  Schedulability analysis for soft real-time systems
–  Design framework for embedded systems
–  P2ACSR (Probabilistic ACSR with power consumption)
–  Scheduling synthesis and parametric schedulability analysis
–  ACSR-VP (ACSR with Value-Passing)

•  Conclusions

2

5/27/08 Korea University 3

Real-time, Embedded Systems
•  Difficulties

–  Increasing complexity
–  Decentralized
–  Safety critical
–  End-to-end timing constraints
–  Resource constrained

•  Non-functional: power, size, etc.
•  Development of trustworthy (i.e., reliable, robust,

safe, secure, etc.) embedded software

5/27/08 Korea University 4

Properties of embedded systems
•  Adherence to safety-critical properties
•  Meeting timing constraints
•  Satisfaction of resource constraints
•  Confinement of resource accesses
•  Supporting fault tolerance
•  Domain specific requirements

–  Mobility
–  Software configuration

3

5/27/08 Korea University 5

Real-time Behaviors
•  Correctness and reliability of real-time systems

depends on
–  Functional correctness
–  Temporal correctness

•  End-to-end temporal constraints
•  Factors that affect temporal behavior are

–  Synchronization and communication
–  Resource limitations and availability/failures
–  Scheduling algorithms
–  Interaction with physical world

•  An integrated framework to bridge the gap between
concurrency theory and real-time scheduling

5/27/08 Korea University 6

Scheduling Problems
•  Priority Assignment Problem
•  Schedulability Analysis Problem

–  Compositional analysis
–  Hierarchical system

•  Soft timing/performance analysis (Probabilistic Performance
Analysis)

•  End-to-end Design Problem
–  Parametric Analysis
–  End-to-end constraints, intermediate timing constraints
–  Execution Synchronization Problem
–  Start-time Assignment Problem with Inter-job Temporal

Constraints
•  Fault tolerance: dealing with failures, overloads

4

5/27/08 Korea University 7

Scheduling Factors
•  Static priority vs dynamic priority

–  Cyclic executive, RM (Rate Monotonic)
–  EDF (Earliest Deadline First)

•  Priority inversion problem
•  Independent tasks vs. dependent tasks
•  Single processor vs. multiple processors
•  Communication delays
•  Uncertainty in execution times
•  Resource use tradeoffs
•  End-to-end timing requirements

5/27/08 Korea University 8

Example: Simple Scheduling Problem

•  (period, [e-, e+]), where e- and e+ are the lower and upper bound of
execution time, respectively.

•  Goal is to find the priority of each job so that jobs are schedulable
•  Considering only worst case leads to scheduling anomaly

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1
J1,2

CPU1 CPU2 CPU3

5

5/27/08 Korea University 9

Example (2)

Let J1,1 > J2,1 and J2,2 > J3,1
Consider worst case execution time for all jobs, i.e.,
Execution time E1,1 = 2, E2,1 = 3, E2,2 = 2, E3,1 = 3

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1 J1,2
CPU1 CPU2 CPU3

J1,1

J3,1

4 8 12

4 8 12

J2,1 J1,1 J2,1 J1,1

J3,1 J2,2 J3,1

CPU2

CPU1

5/27/08 Korea University 10

Example (3)

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1 J1,2

CPU1 CPU2 CPU3

So with the priority assignment of J1,1 > J2,1 and J2,2 > J3,1,
jobs cannot be scheduled and scheduling problems are in general NP-hard

J1,1

J3,1

4 8 12

4 8 12

J2,1 J1,1 J1,1

J2,2

CPU2

CPU1
J3,1 missed its deadline

6

5/27/08 Korea University 11

End-to-end Design Problem
•  Given a task set with end-to-end constraints on inputs and

outputs
–  Freshness from input X to output Y (F(Y|X)) constraints:

bound time from input X to output Y
–  Correlation between input X1 and X2 (C(Y|X1,X2))

constraints: max time-skew between inputs to output
–  Separation between output Y (u(Y) and l(Y)) constraints:

separation between consecutive values on a single output Y
•  Derive scheduling for every task

–  Periods, offsets, deadlines
–  priorities

•  Meet the end-to-end requirements
•  Subject to

–  Resource limitations, e.g., memory, power, weight, bandwidth

5/27/08 Korea University 12

Job1
s1 s1+e1

Job2
s2 s2+e2

[ 5,7 ]
 [ 3,4 ]

≤ 25

≥ 14

≤ 10
≤ 12

Start-time Assignment Problem with Inter-job Temporal Constraints

Goal is to statically determine the range of start times for each job
so that jobs are schedulable and all inter-job temporal constraints
are satisfied.

Example: Start-time Problem

7

5/27/08 Korea University 13

Example: power-aware RT scheduling

•  Dynamic Voltage Scaling allows tradeoffs between
performance and power consumption

•  Problem is how to minimize power consumption while
meeting timing constraints.

•  Example: three tasks with probabilistic execution
time distribution

Task Worst-case execution time Period

1 3 8

2 3 10

3 2 14

5/27/08 Korea University 14

Our approach and objectives
•  Design formalisms for real-time and embedded

systems
–  Resource-bound real-time process algebras
–  Executable specifications
–  Logic for specifying properties

•  Design analysis techniques
–  Automated verification techniques
–  Parameterized end-to-end schedulability analysis

•  Toolset implementation

8

5/27/08 Korea University 15

Resource-bound computation
•  Computational systems are always constrained in their

behaviors
•  Resources capture physical constraints
•  Resources should be supported as a first-class notion

in modeling and analysis
•  Resource-bound computation is a general framework

of wide applicability

5/27/08 Korea University 16

Resources
•  Resources capture constraints on executions
•  Resources can be

–  Serially reusable:
•  processors, memory, communication channels

–  Consumable
•  power

•  Resource capacities
–  Single-capacity resources
–  Multiple-capacity resources
–  Time-sliced, etc.

9

5/27/08 Korea University 17

Process Algebras
•  Process algebras are abstract and compositional

methodologies for concurrent-system specification
and analysis.

•  “Design methodology which systematically allows to
build complex systems from smaller ones” [Milner]

5/27/08 Korea University 18

Process Algebras
•  A process algebra consists of

–  a set of operators and syntactic rules for constructing
processes

–  a semantic mapping which assigns meaning or
interpretation to every process

–  a notion of equivalence or partial order between
processes

–  a set of algebraic laws that allow syntactic manipulation
of processes.

•  Ancestors
–  CCS, CSP, ACP,…
–  focus on communication and concurrency

10

5/27/08 Korea University 19

Advantages of Process Algebra

   A large system can be broken into simpler subsystems and then
proved correct in a modular fashion.

1  A hiding or restriction operator allows one to abstract away
unnecessary details.

2  Equality for the process algebra is also a congruence relation;
and thus, allows the substitution of one component with another
equal component in large systems.

ACSR

11

5/27/08 Korea University 21

ACSR
•  ACSR (Algebra of Communicating Shared Resource)

–  A real-time process algebra which features discrete
time, resources, and priorities

–  Timeouts, interrupts, and exception handling
–  Two types of actions:

•  Instantaneous events
•  Timed actions

5/27/08 Korea University 22

Events
•  Events represent non-time consuming activities

–  events are instantaneous: crash

–  point-to-point synchronization

12

5/27/08 Korea University 23

Events
•  Events

–  have priorities:

–  have input and output capabilities

 or

5/27/08 Korea University 24

Actions
•  Actions represent activities that

–  take time
–  require access to resources
–  each resource usage has priority of access

–  each resource can be used at most once
–  resources of action A:
–  idling action:

•  Examples:
 {(cpu,2}}, {(cpu1,3),(cpu2,4)},
 {(semaphore,5)}

13

5/27/08 Korea University 25

Syntax for ACSR processes
•  Process terms

•  Process names

5/27/08 Korea University 26

Constant and Nil

C is a constant that
represents the process
algebra expression P

P = NIL
P does nothing

14

5/27/08 Korea University 27

Prefix Operators
P performs timed
action A and then

behaves as Q

P = A:Q

P = (a,n).Q P performs event (a,n)
and then behaves as

Q

 EXAMPLE

5/27/08 Korea University 28

Choice
P can choose

nondeterministically
to behave like Q or R

P = Q+R

 EXAMPLE

15

5/27/08 Korea University 29

Parallel Composition
P is composed by Q and R
that may synchronize on

events and must synchronize
on timed actions

P = Q || R

 EXAMPLE

5/27/08 Korea University 30

Scope
Q may execute for at most t
time units. If message a is

produced, control is delegated
to R, else control is delegated to
S. At any time T may interrupt.

 EXAMPLE

16

5/27/08 Korea University 31

Hiding/Restriction
P behaves just as Q but

resources in I are no longer
visible to the environment

P = [Q]I

 EXAMPLE

P = Q\F
P behaves just as Q but
labels in F are no longer

visible to the environment

5/27/08 Korea University 32

ACSR semantics
•  Gives an unambiguous meaning to language expressions.

•  Semantics is operational, given by a set of semantic
rules.

•  Example of a labeled transition system:

ACSR

specification

Semantic

rules

Labeled
transition

system

17

5/27/08 Korea University 33

ACSR semantics
•  Two-level semantics:

–  A collection of inference rules gives the unprioritized
transition relation

–  A preemption relation on actions and events disables
some of the transitions, giving a prioritized transition
relation

5/27/08 Korea University 34

Unprioritized transition relation
•  Prefix operators

•  Choice

•  Parallel

18

5/27/08 Korea University 35

Unprioritized transition relation (II)
•  Resource-constrained execution

•  Priority-based communication

•  Resource closure

5/27/08 Korea University 36

Examples
•  Resource conflict

•  Processes must provide for preemption

•  Unprioritized transitions:

19

5/27/08 Korea University 37

Unprioritized transition relation (III)

5/27/08 Korea University 38

Example
•  A Scheduler

∅ Sched

rc

Sched

rc kill

Sched

20

5/27/08 Korea University 39

Preemption relation
•  To take priorities into account in the semantics we

define the relation α is preempted by β :
•  An action β preempts an action α iff

–  no lower priorities:
–  some higher priorities:
–  it contains fewer resources
e.g.

•  An event preempts an action iff
–  τ with non-zero priority preempts all

actions e.g.

•  An event preempts another event iff
–  same label, higher priority e.g.

5/27/08 Korea University 40

Prioritized transition relation
•  We define

 when
–  there is an unprioritized transition

–  there is no such that

•  Compositional

21

5/27/08 Korea University 41

Example

•  Unprioritized and prioritized transitions:

π

π

5/27/08 Korea University 42

Example (cont.)
•  Resource closure enforces progress

π

22

5/27/08 Korea University 43

Compositionality of preemption relation
•  Given

€

P1 = (a,2).S1+ (b,1).S2
P2 = (a,2).S1
Q1 = (a,3).T1+ (b,5).T 2
Q2 = (a,3).T1+ (b,2).T 2
R1 = (b,2).S1+ (b,1).S2
R2 = (b,2).S1

•  Given P1 and P2, can they be treated as equivalent?
 That is, for all Q, P1 || Q = P2 || Q?

•  How about R1 and R2?

5/27/08 Korea University 44

•  This requirement was captured formally through
 the notion of bisimulation, a binary relation on
 the states of systems.

•  Observational equivalence is based on the idea
 that two equivalent systems exhibit the same
 behavior at their interfaces with the environment.

•  Two states are bisimilar if for each single
 computational step of the one there exists an
 appropriate matching (multiple) step of the other,
 leading to bisimilar states.

A
a

B

A

C

E D

C D

B

a

b c

c b

a

∼

Bisimulation

23

5/27/08 Korea University 45

Prioritized strong equivalence

•  An equivalence relation is congruence when it is
preserved by all the operators of the language.

•  This implies that replacement of equivalent
components in any complex system leads to equivalent
behavior.

•  Strong bisimulation over is a
congruence relation with respect to the ACSR
operators.

5/27/08 Korea University 46

Equational Laws

•  Equational laws are a set of axioms on the syntactic
level of the language that characterize the
equivalence relation.

•  They may be used for manipulating complex systems
at the level of their syntactic (ACSR) description.

•  There is a set of laws that is complete for finite state
ACSR processes:

24

5/27/08 Korea University 47

Equational Laws

•  ACSR-specific laws for scope and resource closure:

5/27/08 Korea University 48

Laws (1)

25

5/27/08 Korea University 49

Laws (2)

5/27/08 Korea University 50

Laws (3)

26

5/27/08 Korea University 51

Soundness of the laws
•  Theorem:

 if P=Q then

•  Proof approach:
–  Construct the set of prioritized derivations for

each P
–  Prove that if P=Q, then the sets of derivations

are the same

5/27/08 Korea University 52

Completeness of the laws
•  Theorem:

if P and Q are finite-state processes and
then P=Q

27

Schedulability Analysis

5/27/08 Korea University 54

Schedulability Analysis
•  Can all real-time tasks meet their deadlines?
•  Factors include

–  Delay caused by synchronization between tasks
–  Delay caused by precedence between tasks
–  Delay caused by resource constraints
–  Scheduling disciplines and synchronization protocols

28

5/27/08 Korea University 55

Outline
•  ACSR-VP: ACSR with value-passing and dynamic

priorities
•  Specifying real-time systems using ACSR-VP

–  Specifying task models
–  Specifying scheduling disciplines

•  Analyzing real-time systems using bisimulation
–  Specification correctness
–  Schedulability analysis

•  Schedulability analysis using VERSA (ACSR Toolkit)

5/27/08 Korea University 56

ACSR (Algebra of Communicating Shared Resources)

•  A timed process algebra based on CCS with notions of time,
resources and priorities

•  Discrete time and dense time
•  Static priorities
•  Actions: Instantaneous Events + Timed Actions

–  Timed action: a set of (resource, priority) pairs
{(cpu, 4),(data, 3)}, {(cpu1, 2),(cpu2, 3)}, ∅

–  Instantaneous event: (event, priority) pair
(signal, 2), (chan, 2) (τ, 3)

•  Real-time operators for timeout, interrupt, exception
•  Graphical specification language (GCSR)
•  Toolkit (VERSA)
•  No value passing communication, no variables for priorities

29

5/27/08 Korea University 57

ACSR-VP (ACSR with Value Passing)

•  Extends ACSR with variables and value passing
communications

•  Values can be specifies using expressions
–  Timed Actions:

{(cpu, x), (data, y + 1)}
–  Instantaneous events:

(signal !8, x) – output
(chan?y, 2) – input

•  Dynamic priorities
•  Exchange priority information without global variables

5/27/08 Korea University 58

ACSR-VP Syntax

30

5/27/08 Korea University 59

ACSR-VP Example
Preemptable and Non-preemptable Jobs
•  Both jobs execute c time units on cpu with priority π
•  Non-preemptable job: once it acquires cpu, it executes

to completion

•  Preemptable job: its execution can be preempted by
actions on cpu of other jobs with higher priorities

5/27/08 Korea University 60

Unprioritized Operational Semantics

31

5/27/08 Korea University 61

Unprioritized Operational Semantics

5/27/08 Korea University 62

Preemption
A preemption relation is defined for two any actions α

and β, denoted read β preempts α .
Examples:

32

5/27/08 Korea University 63

Prioritized Operational Semantics
The operational semantics of ACSR-VP, the prioritized

transition relation is defined as follows:

5/27/08 Korea University 64

Modeling a Real-Time System
•  A real-time system consists of a set of tasks running in parallel

under a specific scheduling discipline
•  A task is a process composed of a sequence of jobs executed

serially
•  A task can be

–  Independent or dependent
–  Preemptable or non-preemptable
–  Periodic or aperiodic

•  Possible timing constraints of a task are:

33

5/27/08 Korea University 65

Specification of a real-Time System
A real-time system is specified by the process RTS:

Tasks are specified by the processes Ti :

•  Process Jobi : internal characteristics, e.g.,:
–  resource requirements
–  synchronization

•  Process Activatori : external timing attributes, e.g.,
–  periodic or aperiodic
–  period and deadline

•  Events start, end are synchronization events:
–  start: activate jobs
–  end: mark deadlines of jobs – deadlock if unsuccessful

5/27/08 Korea University 66

Sample Activators

34

5/27/08 Korea University 67

Sample Jobs
Job 1
•  preemptable, independent jobs

running on cpu
priority π and execution time c:

•  s for accumulated execution time
•  t for the elapsed time
•  Job can response to end event only when its current execution is

finished

5/27/08 Korea University 68

Sample Jobs
Job 2
•  nonpreemptable, independent jobs

on multiprocessors cpu1, … , cpuk
with priorities π1, …, πk and execution time c:

•  A job can be executed on any of the processors
•  Once a processor is assigned to a job, the job

executes on that processor until completion

35

5/27/08 Korea University 69

Sample Jobs
Job 3
•  dependent jobs on processor cpu with priority π and execution time c

a single preemptable critical section of length cs on resource data (with priority
π’) after at c’ time units execution:

•  P and V operations are modeled by the processes P and V with events (p?,0) and
(v?,0)

•  When s equals c’, Exec waits for (p?,0) to enter the critical section CS(s,t)

5/27/08 Korea University 70

Scheduling Disciplines

36

5/27/08 Korea University 71

Other Time-Driven Scheduling Disciplines

5/27/08 Korea University 72

The Priority Inversion Problem

37

5/27/08 Korea University 73

Task parameters

5/27/08 Korea University 74

Priority Inheritance Protocol

38

5/27/08 Korea University 75

Traces of tasks

5/27/08 Korea University 76

Weak Bisimulation

39

5/27/08 Korea University 77

Analyzing Real-Time Systems in ACSR-VP

•  Two types of analyses
–  Validation
–  Schedulability analysis

•  Basic idea
–  Checking weak bisimulation ≈π
–  Searching deadlocked states

•  Practical Issues
–  Ensure that the EDFSys and PIPSys processes are

finite state
–  Translate ACSR-VP processes to ACSR processes and

use VERSA, the toolkit for ACSR

5/27/08 Korea University 78

Validating the EDFSys Specification
Construct a correctness specification, EDFSpec, that is sequential

and easy to inspect
Verify that EDFSys ≈π EDFSpec

40

5/27/08 Korea University 79

Schedulability Analysis
Lemma 1 If EDFSys is deadlock free, then it is

schedulable.
Lemma 2 If

then EDFSys is deadlock free.
Lemma 3 If PIPSysis deadlock free, then it is

schedulable.
Lemma 4 If

then PIPSys is deadlock free

5/27/08 Korea University 80

Example 1
•  Consider an instance EDFSys1 of EDFSys where:

Task T1: c1 = 1, d1 = 2, p1 = 3
Task T2: c2 = 2, d2 = 3, p2 = 3

•  The following sufficient condition for schedulability from [Liu
and Lay 73] is not satisfied:

•  The following equation

is satisfied, i.e., the task system is schedulable.
More specifically, we have

41

5/27/08 Korea University 81

Example 2
•  Consider another instance EDFSys2 of EDFSys where:

Task T1: c1 = 2, d1 = 2, p1 = 3
Task T2: c2 = 2, d2 = 3, p2 = 3

•  The equivalence

is false and the task system is therefore not schedulable.

•  More specifically, we have

5/27/08 Korea University 82

Summary
•  The ACSR paradigm:

–  Formalism for modular specification of real-time
systems along with scheduling disciplines

–  Formal characterization of the schedulability analysis in
process algebra

•  Automated schedulability analysis
–  Provide techniques for detecting timing anomalies

before an implementation is developed
–  Integrate into a methodology for engineering reliable

real-time systems
•  Tools:

–  GCSR (Graphical ACSR)
–  XVERSA: VERSA and GCSR

