

	Laws (1)	
Choice(1)	P + NIL = P	
Choice(2)	P + P = P	
Choice(3)	P + Q = Q + P	
Choice(4)	(P+Q) + R = P + (Q+R)	
Choice(5)	$\alpha P + \beta Q = \beta Q$ if $\alpha \prec \beta$	
Par(1)	$P \parallel Q = Q \parallel P$	
Par(2)	(P Q) R = P (Q R)	
Par(3)	$(\sum_{i \in J} A_i : P_i + \sum_{j \in J} e_j . Q_j) \ (\sum_{k \in K} B_k : R_k + \sum_{i \in L} f_i : S_i)$	
	$\sum_{\substack{i \in J, k \in K, \\ \rho(A_i) \cap \rho(B_k) = \emptyset}} (A_i : B_k) : (P_i \parallel R_k)$	
	$+ \sum_{j \in J} e_j \cdot (Q_j \parallel (\sum_{k \in K} B_k : R_k + \sum_{l \in L} f_l \cdot S_l))$	
	$= \frac{+\sum_{j \in J} e_j \cdot (\mathcal{Q}_j \parallel (\sum_{k \in K} B_k : R_k + \sum_{j \in J} f_j \cdot S_j))}{+\sum_{k \in L} f_j \cdot ((\sum_{k \in J} A_i : P_i + \sum_{j \in J} e_j \cdot \mathcal{Q}_j) \parallel S_l)}$	
	$\sum_{\substack{j \in J, j \in L_i, \\ (e_i) \to \overline{\Gamma}(f_j)}} \overline{e_j} (\tau, \pi(e_j) + \pi(f_i)) . (Q_j S_i)$	

	Laws (2)	
Scope(1)	$A: P\Delta^b_t(Q, R, S) = A: (P\Delta^b_{t-1}(Q, R, S)) + S \text{if } t > 0$	
Scope(2)	$e.P\Delta_t^b(Q, R, S) = e.(P\Delta_{t-1}^b(Q, R, S)) + S \text{ if } t > 0 \land \overline{l(e)} \neq b$	
Scope(3)	$e.P\Delta_t^b(Q,R,S) = (\tau,\pi(e)).Q + S \text{ if } t > 0 \land \overline{l(e)} = b$	
Scope(4)	$P\Delta_0^b(Q, R, S) = R$	
Scope(5)	$(P_{1} + P_{2})\Delta_{t}^{h}(Q, R, S) = P_{1}\Delta_{t}^{h}(Q, R, S) + P_{2}\Delta_{t}^{h}(Q, R, S)$	
Scope(6)	$\operatorname{NIL}\Delta_{t}^{b}(Q,R,S) = S \text{if } t > 0$	
Res(1)	$NIL \setminus F = NIL$	
Res(2)	$(P+Q) \setminus F = (P \setminus F) + (Q \setminus F)$	
Res(3)	$(A:P) \setminus F = A: (P \setminus F)$	
Res(4)	$((a,n).P) \setminus F = (a,n).(P \setminus F)$ if $a, \overline{a} \notin F$	
Res(5)	$((a,n).P) \setminus F = \text{NIL} \text{if } a, \overline{a} \in F$	
Res(6)	$P \setminus E \setminus F = P \setminus E \cup F$	
Res(7)	$P \setminus \emptyset = P$	

Close(1)	$[NIL]_I = NIL$	
Close(2)	$[P+Q]_{I} = [P]_{I} + [Q]_{I}$	
Close(3)	$[A_1:P]_I = (A_1 \cup A_2):[P]_I$ where $A_2 = \{(r,0) r \in I - \rho(A_I)\}$	
Close(4)	$[e.P]_I = e.[P]_I$	
Close(5)	$[[P]_I]_J = [P]_{I \cup J}$	
Close(6)	$[P]_0 = P$	
Close(7)	$[P \setminus E]_I = [P]_I \setminus E$	
$\operatorname{Rec}(1)$	rec X.P = P[rec X.P / X]	
Rec(2)	If $P = Q[P/X]$ and X is guarded in Q then $P = rec X.Q$	
Rec(3)	$\operatorname{rec} X.(P + \sum_{i \in J} [X \setminus E_i]_{U_i}) = \operatorname{rec} X.(\sum_{J \subseteq I} [P \setminus E_J]_{U_J})$	
	where $E_J = \bigcup_{i \in J} E_i, U_J = \bigcup_{i \in J} U_i, I$ is finite and X is guarded in P	

Schedulability Analysis

ACSR-VP Syntax						
	P	::=	NIL	process that does nothing		
			A: P	timed action prefix		
			e.P	instantaneous event prefix		
			$be \rightarrow P$	conditional process (<i>be</i> : boolean expression)		
			$P_1 + P_2$			
			$P_1 \parallel P_2$	parallel composition		
			$[P]_I$	resource close		
			$P \setminus F$	event restriction		
			$P \setminus \setminus I$	resource hiding		
		I	$C(\underline{x})$	process name defined to be a process $C(\underline{x}) = P$		
5/27/08				Korea University	58	

	Comple Activatore	
	Sample Activators	
	periodic task with (b, d, p)	
Activator	$\stackrel{def}{=} \varnothing^{b}$: Activator'	
Activator'	$= (start!, 1). \emptyset^{d} : (end!, 2).$	
	\emptyset^{p-d} : Activator'	
Activator 2. A	$\frac{\text{An aperiodic task with } (b, d, p_1, p_2)}{def}$	
Activator	$= \bigotimes^{b}$: Activator'	
Activator Activator'	$ \stackrel{def}{=} \varnothing^{b} : \text{Activator'} $ $ = (start!, 1) . \varnothing^{d} : (end!, 2). $	
Activator Activator'	$= \bigotimes^{b}$: Activator'	
Activator'	$ = \varnothing^{b} : \text{Activator'} $ $ = (start!, 1) . \varnothing^{d} : (end!, 2). $	
Activator' where $\varnothing^n = \varnothing : \cdots$	$= \varnothing^{b} : \text{Activator'}$ $= (start!, 1) : \varnothing^{d} : (end!, 2).$ $: \varnothing^{p_{1}-dp_{2}-d} : \text{Activator'}$ $: \emptyset \qquad (idling \text{ for } n \text{ time units})$	
Activator' where $\bigotimes^{n} = \bigotimes : \cdots$	$= \emptyset^{b} : \text{Activator'}$ = $(start!, 1) : \emptyset^{d} : (end!, 2) :$ $\emptyset^{p_{1}-dp_{2}-d} : \text{Activator'}$	

Resources :	<i>cpu</i> ready time		$\frac{1}{1} = 5$	r = 10	r = 0
	comp. time	: c		$c_2 = 8$	$c_3 = 13$
Constants :	start time of CS length of CS	: c : c	$cs_1 = 3$ $c'_1 = 2$	$cs_{2} = 5$ $c'_{2} = 2$	$cs_3 = 1$ $c'_3 = 10$
	priority max priority		$\begin{aligned} & \pi_1 = 3 \\ & \pi_{max} = 4 \end{aligned}$	$\pi_2 = 2$	$\pi_3 = 1$

		Trac	ces of	tasks		
Time	process T	process T ₂	process T ₂	process P	1	
0	8	1	start?,{(cpu,1)}	P	-	
	ŏ	8	$reg!1, p!1, \{(cpu,1)\}$ •	reg?1, p?1, V(1)		
2	Ň.	Ř	{(cpu,1)} •	V(1)		
3	8		{(cpu,1)} •	V(1)		
4	Ň.	₿	$\{(cpu,1)\}$ •	V(1)		
5	start?,{(cpu3)}	8	0	V(1)		
	{(<i>cpu</i> ,3)}	8	8	V(1)	1	
7	req!3,{}	8	<i>chan</i> ?3,{(<i>cpu</i> ,3)} •	req?3, chan!3, V(3)	1	
8	8	8	{(cpu,3)} •	V(3)	1	
9	8	8	{(cpu,3)} •	V(3)	1	
10	Ő.	start ?,{}	{(cpu,3)} •			
11	8	8	{(cpu,3)} •	1 (3)	1	
	8	8	$\{(cpu,3)\}, v?$ •	v!, P	(•: in critical section)	
13	$p!3, \{(cpu,3)\}$ •	8	8	p?3,V(3)	(*: in entitear section)	
	{(cpu3)},v? •	8	8	v!, P		
	{(<i>cpu</i> ,3)}	8	8	Р		
	{(<i>cpu</i> ,3)}	8	8	Р		
	{}	{(<i>cpu</i> ,2)}	{}	P		
18	8	{(<i>cpu</i> ,2)}	8	Р		
19	Ő.	{(<i>cpu</i> ,2)}	8	Р		
	8	{(<i>cpu</i> ,2)}	{}	Р		
	8	{(<i>cpu</i> ,2)}	8	Р		
	8	$req!2, p!2, \{(cpu,2)\}\bullet$	{}	<i>req</i> ?2, <i>p</i> ?2, V(2)		
23	8	$\{(cpu,2)\}, v?$ •	8	<i>v</i> !P		
	8	{(<i>cpu</i> ,2)}	8	Р	-	
	8	8	{(<i>cpu</i> ,1)}	Р		
26	8	8	{(<i>cpu</i> ,1)}	P		

	Weak Bisimulation	
	Def. If $t \in D^*$, then $\hat{t} \in (D - \{\tau\})^*$ is the sequence derived by deleting all occurrences of π from <i>t</i> .	
	Def. If $t = \alpha_1 \dots \alpha_n \in D^*$, then $E \stackrel{t}{\Rightarrow} E'$ if $P(\xrightarrow{(\tau, -)})^* \xrightarrow{\alpha_1} (\xrightarrow{(\tau, -)})^* \dots (\xrightarrow{(\tau, -)})^* \xrightarrow{\alpha_n} (\xrightarrow{(\tau, -)})^* P'$, where "_" in $(\tau, _)$ represents arbitrary integer.	
	Def. For a given transition system " \rightarrow ", any binary relation <i>r</i> is a weak bisimulation if, for $(P,Q) \in r$ and for any action $\alpha \in D$, 1. if $P \xrightarrow{\alpha} P'$, then, for some $Q', Q \xrightarrow{\alpha} Q'$ and $(P',Q') \in r$, and 2. if $Q \xrightarrow{\alpha} Q'$, then, for some $P', P \xrightarrow{\alpha} P'$ and $(P',Q') \in r$.	
	Def. \approx_{π} is the largest weak bisimulation over " \rightarrow_{π} ". It is an equivalence relation (though not a congruence) for ACSR.	
5/27/08	Korea University	76

S	chedulability Analysis	
Lemma 1 If schedulabl	EDFSys is deadlock free, then it is e.	
Lemma 2 <i>If</i>		
	$\mathrm{EDFSys} \setminus \{ cpu \} \approx_{\pi} \varnothing^{\infty},$	
then EDFSys	s is deadlock free.	
Lemma 3 If schedulabl	PIPSys is deadlock free, then it is e.	
Lemma 4 <i>If</i>		
	$\operatorname{PIPSys} \setminus \{ cpu \} \approx_{\pi} \varnothing^{\infty},$	
then PIPSys	is deadlock free	
5/27/08	Korea University	79

