
1

1

CIS 505: Software Systems
OS Overview -- System Calls and
Signals

Insup Lee
Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 Introduction 2

Selected Readings

 Some early systems
o E. W. Dijkstra, "The Structure of the THE

Multiprogramming System," Communications of the
ACM, Vol. 11, No. 5, May 1968, pp. 341–346.

o D. M. Ritchie and K. Thompson, "The UNIX Time-
sharing System," Bell System Technical Journal, Vol.
57, No. 6, 1978, pp. 1905–1929.

o D. M. Ritchie, "The Evolution of the Unix Time-
sharing System," Bell System Technical Journal, Vol.
63, No. 6, Part 2, October 1984, pp. 1577–1593.

CIS 505, Spring 2007 Introduction 3

Brief review on basic OS concepts

 What is an OS?
 System calls
 Signals
 Processes
 Threads
 Scheduling

CIS 505, Spring 2007 Introduction 4

A Typical Computer System

Operating System Software

Programs and data

MemoryCPU

CPU

...

OS
Apps
Data

Network

What is an OS?

CIS 505, Spring 2007 Introduction 5

What Is an OS?

“Code” that:

 Sits between programs & hardware
 Sits between different programs
 Sits betweens different users

But what does it do?

CIS 505, Spring 2007 Introduction 6

What Is an OS?

Resources
 Allocation
 Protection
 Reclamation
 Virtualization

Makes computers simpler

Services
 Abstraction
 Simplification
 Convenience
 Standardization



2

CIS 505, Spring 2007 Introduction 7

What Is an OS?

Resources
 Allocation
 Protection
 Reclamation
 Virtualization

Finite resources
Competing demands

Examples:
 CPU
 Memory
 Disk
 Network

CIS 505, Spring 2007 Introduction 8

What Is an OS?

Resources
 Allocation
 Protection
 Reclamation
 Virtualization

You can’t hurt me
I can’t hurt you

Implies some degree of
safety & security

CIS 505, Spring 2007 Introduction 9

What Is an OS?

Resources
 Allocation
 Protection
 Reclamation
 Virtualization

The OS gives and
The OS takes away

Voluntary at run time
Implied at termination
Involuntary
Cooperative

CIS 505, Spring 2007 Introduction 10

What Is an OS?

Resources
 Allocation
 Protection
 Reclamation
 Virtualization

Illusion of infinite, private
resources

Memory versus disk
Timeshared CPU

More extreme cases
possible (& exist)

CIS 505, Spring 2007 Introduction 11

OS Service Examples

 System calls: file open, close, read and write
 Control the CPU so that users won’t stuck by running

while ( 1 ) ;

 Protection:
o Keep user programs from crashing OS
o Keep user programs from crashing each other

 Read time of the day

CIS 505, Spring 2007 Introduction 12

System calls

 A mechanism for user programs to obtain OS
services

 Is it a procedure call?



3

CIS 505, Spring 2007 Introduction 13

System calls

 A mechanism for user programs to obtain OS
services

 Is it a procedure call?
o User can’t access kernel mode memory
o Kernel can access user memory

 Kernel runs in privileged mode

>> kernel vs. OS, why privileged?
CIS 505, Spring 2007 Introduction 14

Kernel =? OS

 Kernel – “heart” of the operating system
o Minimum set of mechanisms with universal applicability

 Operating system – usually includes more
o Various libraries
o Support programs

CIS 505, Spring 2007 Introduction 15

The Unix “Onion”

Applications

OS Service

Device

Driver

Hardware

User and Kernel
boundary

CIS 505, Spring 2007 Introduction 16

Why a Privileged Mode?

 Special Instructions
o Mapping, TLB, etc
o Device registers
o I/O channels, etc.

 Mode Bits
o Processor features

 Device access

CIS 505, Spring 2007 Introduction 17

Protection Issues

 I/O protection
o Prevent users from performing illegal I/Os

 Memory protection
o Prevent users from modifying kernel code and data structures

 CPU protection
o Prevent a user from using the CPU for too long

CIS 505, Spring 2007 Introduction 18

Support in Modern Processors: User ⇔ Kernel

User mode
Regular instructions
Access user-mode memory

Kernel (privileged) mode
Regular instructions
Access user-mode memory

An interrupt or exception (INT)

A special instruction (IRET)



4

CIS 505, Spring 2007 Introduction 19

User vs. System Mode

 Special mode-bit set in PSW register:
 mode-bit = 0  =>  user program executing
 mode-bit = 1  =>  system routine executing

 Privileged instructions possible only when mode-bit = 1!

 System
(or kernel)
memory

 User Program
 (text)

 “trap”
to

O.S.

 case  i-call

 trap    n

 l :

 n :  code for read

 

CIS 505, Spring 2007 Introduction 20

System call

 User prospective
o Similar to function call
o But runs in kernel mode

 Difference from library routines?

CIS 505, Spring 2007 Introduction 21

System Calls

Application
Program

Library
Routine

OS
Routine

Device
Controller

Software Hardware

OS
Mode bit =1 

User
Mode bit =0

System
API

Special
Instructions

TRAP

CIS 505, Spring 2007 Introduction 22

Steps in System Call

 User program pushes parameters to read on stack
 User program executes CALL instruction to invoke library

routine read in assembly language
 Read routine sets up the register for system call number
 Read routine executes TRAP instruction to invoke OS
 Hardware sets the mode-bit to 1, saves the state of the

executing read routine, and transfers control to a fixed
location in kernel

 Kernel code, using a table look-up based on system call
number, transfers control to correct system call handler

CIS 505, Spring 2007 Introduction 23

Steps in System Call (cont)
 OS routine copies parameters from user stack, sets up

device driver registers, and executes the system call using
privileged instructions

 OS routine can finish the job and return, or decide to
suspend the current user process to avoid waiting

 Upon return from OS, hardware resets the mode-bit
 Control transfers to the read library routine and all

registers are restored
 Library routine terminates, transferring control back to

original user program
 User program increments stack pointer to clear the

parameters

CIS 505, Spring 2007 Introduction 24

Memory allocation functions

 Sbrk(size)
o Increase size of heap by size

 Malloc(size)
o Allocate size byte on heap

 Both allocates memory
 Which is a system call?



5

CIS 505, Spring 2007 Introduction 25

Memory allocation functions

 Sbrk – allocates “pages” – hw protection
 Programs use malloc( ) – fine grained
 Kernel doesn’t care about small allocs

o Allocates pages to library
o Library handles malloc/free

CIS 505, Spring 2007 Introduction 26

Library Benefits

 Call overhead
o Chains of alloc/free don’t go to kernel

 Flexibility – easy to change policy
o Fragmentation
o Coalescing, free list management

 Easier to program

CIS 505, Spring 2007 Introduction 27

Which is a System Call and Why

 read(int d, void *buf, size_t nbytes)
 fread(void *ptr, size_t size, size_t nmemb, FILE *stream)

 Both do the same thing, right?
 Buffered read

CIS 505, Spring 2007 Introduction 28

Feedback to the Program

 System calls and libraries are programs to OS
 What about other direction?

o Various exceptional conditions
o General information, like screen resize

 When would this occur?

Answer: signals

CIS 505, Spring 2007 Introduction 29

Polling Versus Interrupts

 Polling
o Check “constantly”
o Wastes resources – why?
o Simpler design

 Interrupts
o Controller free to do other work
o More mechanism needed

CIS 505, Spring 2007 Introduction 30

When Are They Appropriate?

 Polling
o Low cost systems
o Low-delay environments
o High-performance systems
o Example: Real-time systems

 Interrupts
o Multiprogrammed systems
o Power-conscious environments



6

CIS 505, Spring 2007 Introduction 31

Why Interrupts for Syscalls?

 Interrupts have to exist
o Hardware communication (IRQs)
o Must be delivered to OS
o Have to be in privileged mode

 Software interrupts for syscalls
o Same infrastructure
o Similar requirements

CIS 505, Spring 2007 Introduction 32

Interrupts and Exceptions

 Interrupt Sources
o Hardware (by external devices)
o Software: INT n

 Exceptions
o Program error: faults, traps, and aborts
o Software generated: INT 3, to debugger
o Machine-check exceptions

CIS 505, Spring 2007 Introduction 33

Signals

 Notification mechanism to program
o Used by OS/hardware to alert program
o Asynchronous – like an interrupt

 What can program do?
o Default action (signal-specific)
o Ignore it
o Perform some other action

 Man: signal, sigprocmask

CIS 505, Spring 2007 Introduction 34

Some Signals

SIGHUP          terminate process       terminal line hangup
SIGINT          terminate process       interrupt program
SIGILL          create core image       illegal instruction
SIGFPE          create core image       floating-point exception
SIGKILL         terminate process       kill program
SIGSEGV        create core image       segmentation violation
SIGPIPE        terminate process       write on a pipe with no reader
SIGALRM         terminate process       real-time timer expired
SIGURG          discard signal             urgent condition present on socket
SIGSTOP         stop process               stop (cannot be caught or ignored)
SIGCONT discard signal              continue after stop


