
1

CIS 505: Software Systems

Lecture Note on Consistency and

Replication (2)

Instructor: Insup Lee

Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 replication 2

Client-Centric View

The principle of a mobile user accessing different replicas of a distributed

database.

CIS 505, Spring 2007 replication 3

Synchronous Replication

client A

Problem: low concurrency, low availability, and
high response times.

Partial Solution: Allow writes to any N replicas.
To be safe, reads must also request data from the
set of replicas.

Basic scheme: connect each client (or front-end) with every replica: writes go to all
replicas, but client can read from any replica (read-one-write-all replication).

client B

How to ensure that each replica

sees updates in the “right” order?

replicas

CIS 505, Spring 2007 replication 4

Asynchronous Replication

client B

Idea: build available/scalable information services with read-any-write-any
replication and a weak consistency model.

- no denial of service during transient network partitions
- supports massive replication without massive overhead
- “ideal for the Internet and mobile computing” [Golding92]

Problems: replicas may be out of date,

may accept conflicting writes, and may

receive updates in different orders.

client C

client A

asynchronous state
propagation

replica B

replica A

replica C

2

CIS 505, Spring 2007 replication 5

Disconnected Operation

Continue critical work when that repository is

inaccessible.

Key idea: caching data.

o Performance

o Availability

Server Replication

CIS 505, Spring 2007 replication 6

An Example

CIS 505, Spring 2007 replication 7

An Example

CIS 505, Spring 2007 replication 8

An Example

3

CIS 505, Spring 2007 replication 9

An Example

CIS 505, Spring 2007 replication 10

An Example

CIS 505, Spring 2007 replication 11

An Example

CIS 505, Spring 2007 replication 12

Four notions of Client-centric consistency

Monotonic-read consistency

o if a process reads x, any future reads on x by the process will

returns the same or a more recent value

Monotonic-write consistency

o A write by a process on x is completed before any future write

operations on x by the same process

Read your write

o A write by a process on x will be seen by a future read operation

on x by the same process

Writes follow reads

o A write by a process on x after a read on x takes place on the

same or more recent value of x that was read

4

CIS 505, Spring 2007 replication 13

Notation

Let Xi[t] denote the version of data x at local copy Li at

time t.

Version Xi[t] is the result of a series of write operations

at Li since initialization.

Use WS(Xi[t]) to denote this set of the series of writes at

Li.

If operations in WS(Xi[t]) has also been performed at
local copy Lj at a later time t2, we write WS(Xi[t1]; XJ[t2]).

Omit t if timing is clear.

CIS 505, Spring 2007 replication 14

Monotonic Reads

Def: if a process reads x, any future reads on x by the process will
returns the same or a more recent value

Fig: The read operations performed by a single process P at two
different local copies of the same data store.

a) A monotonic-read consistent data store

b) A data store that does not provide monotonic reads.

• Example: reading mail from different places

CIS 505, Spring 2007 replication 15

Monotonic Writes

Def: A write by a process on x is completed before any future write operations on x
by the same process

Fig: The write operations performed by a single process P at two different local
copies of the same data store

a) A monotonic-write consistent data store.

b) A data store that does not provide monotonic-write consistency

• Update to part of the library

CIS 505, Spring 2007 replication 16

Read Your Writes

Def: A write by a process on x will be seen by a future read operation on x by
the same process

Fig:
a) A data store that provides read-your-writes consistency.

b) A data store that does not.

• Example: update on web that is locally cached, update on password file

5

CIS 505, Spring 2007 replication 17

Writes Follow Reads

• Def: A write by a process on x after a read on x takes place on the same or
more recent value of x that was read

• Fig:
a) A writes-follow-reads consistent data store

b) A data store that does not provide writes-follow-reads consistency

• Example: reading netnews and posting of a reaction

CIS 505, Spring 2007 replication 18

Implementation

Each operation is assigned a unique global id

For each client, keep two sets of write ids:
o Read set: write ids relevant for reads by the client

o Write set: write ids of writes by the client

For monotonic-read consistency, use the read
set

For monotonic-write consistency, use the write
set

For read-your-write consistency, use both

For writes-follow-reads consistency,..

CIS 505, Spring 2007 replication 19

Replica Placement

The logical organization of different kinds of copies

of a data store into three concentric rings.

CIS 505, Spring 2007 replication 20

Permanent Replicas

Two approaches for distributed date stores,

like web sites

1. Replicate files across a limited number of servers on

a single LAN; Forward a request to one of the

servers

2. Mirror sites; Users select one of the mirror sites

6

CIS 505, Spring 2007 replication 21

Server-initiated replicas

A server install temporary replicas to handle

increased requires.

Known as push caches.

Issues

o Where and when replicas should be added or deleted

o Dynamic replication algorithm

Replicate to reduce the load on a server

Place in the proximity of clients

Increasing used in Web hosting services

CIS 505, Spring 2007 replication 22

Server-Initiated Replicas

Counting access requests from different clients.

CIS 505, Spring 2007 replication 23

Client-initiated replicas

Known as (client) caches.

To improve access times to data.

How long data should be kept in a cache?

o May become stale

o Need to be deleted to make room for other data

(LRU, FIFO, etc.)

To improve cache hit, caches can be shared

between clients.

Prefetching

CIS 505, Spring 2007 replication 24

Update propagation

What to propagate
o A notification of an update

o Actual data

o Update operation

Invalidation protocols
o Use little network bandwidth

o Work best when many updates compared to reads (i.e., read-to-
write ratio is small)

Transfer of modified data
o Work best when read-to-write ratio is high

Active replication
o Transfer update operations with arguments

o Trade-off communication with computation

7

CIS 505, Spring 2007 replication 25

Pull versus Push Protocols

Update can be pushed or pulled.

In the case of multiple client, single server systems:
o A push-based approach uses server-based protocols

o A pull-based approach uses client-based protocols

Hybrid approach using lease

Fetch-update timeImmediate (or fetch-update time)
Response time at

client

Poll and updateUpdate (and possibly fetch update later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

CIS 505, Spring 2007 replication 26

Lease-based Approach

A lease is a promise by a server that it will push updates

to the client for a specified time.

When a lease expires, the client needs to poll the server

for updates and pull the modified data.

Leases introduced by Gray and Cheriton (1989)

Can be used to dynamically switch between push-base

and pull-base approaches

Questions: How long should be a lease

o for frequently updated data?

o for specified data that a client asks very infrequently?

CIS 505, Spring 2007 replication 27

Epidemic protocols

Update propagation in eventual-consistent data stores

A server that is part of a distributed data store is called

o Infective: holds an update that it wants to spread.

o Susceptible: has not yet been updated.

o Removed: is not willing to spread its update.

A server P picks another server Q at random to

exchange updates with Q. Three approaches:

1. P only pushes its own update to Q

2. P only pulls in new updates from Q

3. P and Q send updates to each other (i.e., pull-push)

CIS 505, Spring 2007 replication 28

Epidemic algorithms

PARC developed a family of weak update protocols
based on a disease metaphor (epidemic algorithms

[Demers et. al. OSR 1/88]):

Each replica periodically “touches” a selected
“susceptible” peer site and “infects” it with updates.

o Transfer every update known to the carrier but not the

victim.

o Partner selection is randomized using a variety of heuristics.

o Theory shows that the epidemic will eventually infest the

entire population (assuming it is connected).

Probability that replicas that have not yet converged decreases

exponentially with time.

Heuristics (e.g., push vs. pull) affect traffic load and the

expected time-to-convergence.

8

CIS 505, Spring 2007 replication 29

How to Ensure That Replicas Converge

Using any form of epidemic (randomized) anti-

entropy, all updates will (eventually) be known

to all replicas.

Imposing a global order on updates guarantees

th at all sites (eventually) apply the same

updates in the same order.

Assuming conflict resolution is deterministic, all

sites will resolve all conflicts in exactly the

same way.

CIS 505, Spring 2007 replication 30

Issues and Techniques for Weak Replication

How should replicas choose partners for anti-
entropy exchanges?
o Topology-aware choices minimize bandwidth demand

by “flooding”, but randomized choices survive
transient link failures.

How to impose a global ordering on updates?
o logical clocks and delayed delivery (or delayed

commitment) of updates

How to integrate new updates with existing
database state?
o Propagate updates rather than state, but how to

detect and reconcile conflicting updates? Bayou:
user-defined checks and merge rules.

CIS 505, Spring 2007 replication 31

Issues and Techniques for Weak Replication

How to determine which updates to propagate to

a peer on each anti-entropy exchange?

o vector timestamps

When can a site safely commit or stabilize

received updates?

o receiver acknowledgement by vector clocks

