
1

CIS 505: Software Systems

Lecture Note on Consistency and

Replication

Instructor: Insup Lee

Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 consistency 2

Replication of Data

Data are replicated
o To enhance reliability

o To improve performance

Replication for performance
o Scaling in numbers, scaling in geographic areas

o Caveat - Cost of increased bandwidth for marinating replication

Problems and issues: keeping them consistent
o The notion of correctness: consistency models

Data-centric consistency

Client-centric consistency

o Implementation Issues
Distribution of replicas

Placement of replicas

How to update them

How to keep replicas consistent

when to update them (immediate, lazy, pull/push, etc.)

Scalability (e.g., Web servers)

CIS 505, Spring 2007 consistency 3

Reliability vs. Availability

Reliability: measured by time between system failures

o Distributed system should be more reliable than single system

o 3 machines with .95 probability of being up. 1 - .05**3 probability of
being up.

Availability: fraction of time the system is usable.

o Redundancy improves it

o Need to maintain consistency

o Need to be secure

o Need to tolerate failures: mask failures, recover from errors.

Consistency tradeoff between improved reliability and performance
vs. overheads in keeping them consistent

o Weakening consistency can improve performance and availability

CIS 505, Spring 2007 consistency 4

Data-Centric Consistency Models

The general organization of a logical data store,
physically distributed and replicated across multiple
processes.

2

CIS 505, Spring 2007 consistency 5

Symmetric Multiprocessor (SMP)

proc1 proc3

X=0

X=0 X=0

proc2

X=0

CIS 505, Spring 2007 consistency 6

Distributed Shared Memory (DSM)

mem0

proc0

mem1

proc1

mem2

proc2

memN

procN

network

...

shared memory

CIS 505, Spring 2007 consistency 7

Cache/Memory Coherence and consistency

Replicated shared data and concurrent access by many processors

Coherence: every cache/processor must have a coherent view of

memory

o Informally, memory is coherent if the value returned by a read op is

always the value that the programmer expects, e.g., read mostly

recently written value

o If P writes X to A, then reads A, if no other proc writes A, then P reads X

o If P1 writes X to A, and no other processor writes to A, then P2 will

eventually read X from A.

o If P1 writes X to A, and P2 writes Y to A, then every processor will either

read X then Y, or Y then X, but all will see the writes in the same order.

Consistency: memory consistency model tells us when writes to

different locations will be seen by readers.

CIS 505, Spring 2007 consistency 8

Consistency models

Strict consistency

Linearizability and sequential consistency

Causal consistency

FIFO consistency

Other weaker notions:

Weak consistency

Release consistency

Entry consistency

3

CIS 505, Spring 2007 consistency 9

Strict Consistency

Any read to a memory location X returns the value stored by the
most recent write to X

o Total ordering on operations

o Inefficent

Behavior of two processes, operating on the same data item.

(a) A strictly consistent store.

(b) A store that is not strictly consistent.

CIS 505, Spring 2007 consistency 10

Sequential Consistency

Figure 7-4. Behavior of two processes operating

on the same data item. The horizontal axis is

time.

Should this be allowed?

CIS 505, Spring 2007 consistency 11

Sequential Consistency

The result of any execution is the same as if

o the (read and write) operations by all processes were

executed in some sequential order and

o the operations of each individual process appear in

this sequence in the order specified by its program.

CIS 505, Spring 2007 consistency 12

Linearizable & Squential Consistency Models

Consider a sequence of (possibly

concurrent) Reads, Writes & local

operations:

Sequentially consistent: if consistent with a
permutation of that preserves order of

writes within each process.

Linearizable: if sequentially consistent and

also if ts of Op1(x) is before ts of Op2(y),

then Op1(x) should precede Op2(y).

4

CIS 505, Spring 2007 consistency 13

Sequential Consistency (1)

a) A sequentially consistent data store.

b) A data store that is not sequentially consistent.

CIS 505, Spring 2007 consistency 14

Sequential Consistency (2)

Three concurrently executing processes.

z = 1;

print (x, y);

y = 1;

print (x, z);

x = 1;

print (y, z);

Process P3Process P2Process P1

CIS 505, Spring 2007 consistency 15

Possible execution sequences

How many distinct sequences are there?

o 720 (6!)

o Start with x=1: 120 (5!), not all possible, just 30 of

them are valid

o 30 x 3 = 90 valid execution sequences

o Signature: only consider outputs as concatenation of

the outputs of P1, P2, P3 in that order

There are 64 (2**6) signature patterns

Not all of them are permitted; e.g., 00000, 001001

CIS 505, Spring 2007 consistency 16

Sequential Consistency (3)

Four valid execution sequences for the processes of the
previous slide. The vertical axis is time.

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);

print (x, y);

Prints: 111111

Signature:

 111111

 (d)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;

print (y, z);

Prints: 010111

Signature:

 110101

 (c)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;

print (x, y);

Prints: 101011

Signature:

 101011

 (b)

x = 1;

print ((y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Prints: 001011

Signature:

 001011

 (a)

5

CIS 505, Spring 2007 consistency 17

Casual Consistency (1)

Sequential consistency too restrictive

o Need to distinguish between events that are

potentially causally related and those that are not.

Definition

o Writes that are potentially casually related must be

seen by all processes in the same order.

o Concurrent writes may be seen in a different order on

different machines.

CIS 505, Spring 2007 consistency 18

Casual Consistency (2)

This sequence is allowed with a casually-consistent
store, but not with sequentially or strictly consistent
store.

CIS 505, Spring 2007 consistency 19

Casual Consistency (3)

a) A violation of a casually-consistent store.

b) A correct sequence of events in a casually-consistent store.

CIS 505, Spring 2007 consistency 20

The Sequential Consistency Memory Model

P1 P2 P3

switch randomly set

after each memory op

ensures some serial

order among all operations

sequential

processors

issue

memory ops

in program

order

Memory

Easily implemented with shared bus.

[Lebeck]

6

CIS 505, Spring 2007 consistency 21

Grouping Operations (1)

Necessary criteria for correct synchronization:

An acquire access of a synchronization variable, not
allowed to perform until all updates to guarded shared data
have been performed with respect to that process.

Before exclusive mode access to synchronization variable
by process is allowed to perform with respect to that
process, no other process may hold synchronization
variable, not even in nonexclusive mode.

After exclusive mode access to synchronization variable
has been performed, any other process’ next nonexclusive
mode access to that synchronization variable may not be
performed until it has performed with respect to that
variable’s owner.

CIS 505, Spring 2007 consistency 22

Grouping Operations (2)

Figure 7-10. A valid event sequence for entry consistency.

CIS 505, Spring 2007 consistency 23

Motivation for Weaker Orderings

Sequential consistency is sufficient (but not
necessary) for shared-memory parallel computations
to execute correctly

Sequential consistency is slow for paged DSM
systems.
o Processors cannot observe memory bus traffic in other

nodes.

o Even if they could, no shared bus to serialize accesses.

o Protection granularity (pages) is too coarse.

Basic problem: the need for exclusive access to
pages leads to false sharing.
o Causes a “ping-pong effect” if multiple writers to the same

page.

[Chase] CIS 505, Spring 2007 consistency 24

Read-Write False Sharing

x

y

7

CIS 505, Spring 2007 consistency 25

Read-Write False Sharing (Cont.)

w(x)

r(y) r(y) r(x)

synch

w(x) w(x)

CIS 505, Spring 2007 consistency 26

Weak Consistency Ordering

Solution: allow multiple writers to a page if their writes
are “nonconflicting”.

Careful access ordering only matters when data is
shared.
o Shared data should be synchronized.

Classify memory operations as data or synchronization

Can reorder data operations between synchronization
operations

Forces consistent view at all synchronization points

Cannot let synch operation complete until previous
operations complete (e.g., ACK all invalidations)

[Lebeck]

CIS 505, Spring 2007 consistency 27

Weak consistency

Accesses to synchronization variables
associated with a data store are sequentially
consistent.

No operation on a synchronization variable is
allowed to be performed until all previous writes
have completed everywhere.

No read or write operation on data items are
allowed to be performed until all previous
operations to synchronization variables have
been performed.

CIS 505, Spring 2007 consistency 28

Weak Consistency Example (1)

a) A valid sequence of events for weak consistency.

b) An invalid sequence for weak consistency.

8

CIS 505, Spring 2007 consistency 29

Weak Consistency Example (2)

Read / Write

…

Read/Write

Read / Write

…

Read/Write

Read / Write

…

Read/Write

Synch

Synch

A B

(x = y = 0;)

if (y > x) loop {

 panic(“ouch”); x = x + 1;

 y = y + 1;

}

A

acquire();

if (y > x)

 panic(“ouch”);

release();

B

loop() {

 acquire();

 x = x + 1;

 y = y + 1;

 release();

}

[Lebeck]
CIS 505, Spring 2007 consistency 30

Release Consistency (RC)

Data modifications are only propagated at the time of
synchronization.

Rules:
o Before a read or write operation on shared data is performed, all

previous acquires done by the process must have completed
successfully.

o Before a release is allowed to be performed, all previous reads
and writes by the process must have completed

o Accesses to synchronization variables are FIFO consistent
(sequential consistency is not required).

Works fine if program is properly synchronized through
system primitives.
o All programs should be …

o No busy waiting!

CIS 505, Spring 2007 consistency 31

Summary of Consistency Models

a) Consistency models not using synchronization operations.

b) Models with synchronization operations.

(b)

Shared data pertaining to a critical region are made consistent when a critical region is entered.Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from different

processes may not always be seen in that order
FIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in timeSequential

All processes must see all shared accesses in the same order. Accesses are furthermore ordered

according to a (nonunique) global timestamp
Linearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

