
1

CIS 505: Software Systems

Lecture Note on Synchronization

Instructor: Insup Lee

Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 Synchronization 2

Mutual Exclusion and Synchronization

To solve synchronization problems in a

distributed system, we need to provide

distributed semaphores.

Schemes for implementation :

1 A Centralized Algorithm

2 A Distributed Algorithm

3 A Token Ring Algorithm

CIS 505, Spring 2007 Synchronization 3

A Centralized Algorithm

Use a coordinator which enforces mutual exclusion.

Two operations: request and release.

o Process 1 asks the coordinator for permission to enter a critical region.

Permission is granted.

o Process 2 then asks permission to enter the same critical region. The

coordinator des not reply.

o When process 1 exists the critical region, it tells the coordinator, which then

replies to 2.

CIS 505, Spring 2007 Synchronization 4

A Centralized Algorithm (continued)

Coordinator
 loop
 receive(msg);
 case msg of
 REQUEST: if nobody in CS
 then reply GRANTED
 else queue the REQ;
 reply DENIED
 RELEASE: if queue not empty then
 remove 1st on the queue
 reply GRANTED
 end case
 end loop

Client
 send(REQUEST);
 receive(msg);
 if msg != GRANTED then receive(msg);
 enter CS;

 send(RELEASE)

2

CIS 505, Spring 2007 Synchronization 5

A Centralized Algorithm

Algorithm properties

o guarantees mutual exclusion

o fair (if First Come First Served)

o a single point of failure (Coordinator)

o if no explicit DENIED message, then cannot

distinguish permission denied from a dead
coordinator

CIS 505, Spring 2007 Synchronization 6

A Decentralized Algorithm

Decision making is distributed across the entire system

Two processes want to enter the same critical region at
the same moment.

Both send request messages to all processes

All events are time-stamped by the global ordering
algorithm

The process whose request event has smaller time-
stamp wins

Every process must respond to request messages

CIS 505, Spring 2007 Synchronization 7

A Decentralized Algorithm

Decision making is distributed across the entire system

Two processes want to enter the same critical region
at the same moment.

Process 0 has the lowest timestamp, so it wins.

When process 0 is done, it sends an OK also; so, 2
can now enter the critical region.

CIS 505, Spring 2007 Synchronization 8

Decentralized Algorithm (continued)

1 When a process P wants to enter its critical section, it
generates a new time stamp, TS, and sends the msg
request (P,TS) to all other processes in the system (recall
algorithm for global ordering of events)

2 A process, which receives reply msgs from all other
processes, can enter its critical section.

3 When a process receives a request message,
 (A) if it is in CS, defers its answer;

 (B) if it does not want to enter its CS, reply immediately;

 (C) if it also wants to enter its CS, it maintains a queue of requests
(including its own request) and sends a reply to the request with the
minimum time-stamp

3

CIS 505, Spring 2007 Synchronization 9

Correctness

Theorem. The Algorithm achieves mutual exclusion.

Proof:

 By contradiction.

Suppose two processes Pi and Pj are in CS concurrently.

WLOG, assume that Pi’s request has earlier timestamp than
Pj. That is, Pi received Pj's request after Pi made its own

request.

Thus, if Pj can concurrently execute the CS with Pi, then Pi

must returned a REPLY to Pj before Pi exited the CS.

 But, this is impossible since Pj has a later timestamp than Pi.

CIS 505, Spring 2007 Synchronization 10

Properties

1 mutual exclusion is guaranteed

2 deadlock free

3 no starvation, assuming total ordering on msgs

4 2(N-1) msgs: (N-1) request and (N-1) reply msgs

5 N points of failure (i.e., each process becomes a point of failure) can
use explicit ack and timeout to detect failed processes

6 each process needs to maintain group membership; (i.e., IDs of all
active processes) non-trivial for large and/or dynamically changing
memberships

7 N bottlenecks since all processes involved in all decisions

8 Could use majority votes to improve the performance

CIS 505, Spring 2007 Synchronization 11

A Token Passing Algorithm

A token is circulated in a logical ring.

A process enters its CS if it has the token.

Issues:

– If the token is lost, it needs to be regenerated.

– Detection of the lost token is difficult since there is no bound on

how long a process should wait for the token.

– If a process can fail, it needs to be detected and then by-

passed.

– When nobody wants to enter, processes keep on exchanging

messages to circulate the token

CIS 505, Spring 2007 Synchronization 12

Comparison

A comparison of three mutual exclusion algorithms

4

CIS 505, Spring 2007 Synchronization 13

Leader Election

In many distributed applications, particularly

the centralized solutions, some process

needs to be declared the central coordinator

Electing the leader also may be necessary

when the central coordinator crashes

Election algorithms allow processes to elect a

unique leader in a decentralized manner

CIS 505, Spring 2007 Synchronization 14

Bully Algorithm

Goal: Determine who is the active process with max ID

Suppose a process P detects a failure of the current leader

o P sends an “election” message to all processes with higher ID

o If nobody responds within interval T, sends “coordinator” message to

all processes with lower IDs

o If someone responds with “OK” message, P waits for a “coordinator”

message (if not received, restart the algorithm)

If P receives a message “election” from a process with lower

ID, responds with “OK” message, and starts its own leader
election algorithm (as in step 1)

If P receives “coordinator” message, record the ID of the
leader

CIS 505, Spring 2007 Synchronization 15

Bully Algorithm

(a) Process 4 holds an election. (b) Processes 5

and 6 respond, telling 4 to stop. (c) Now 5 and 6

each hold an election. (d) Process 6 tells 5 to

stop. (e) Process 6 wins and tells everyone.

CIS 505, Spring 2007 Synchronization 16

Leader Election in a Ring

ID1

ID2

ID3ID4

ID5

Each process has unique ID; can

receive messages from left, and

send messages to the right

Goal: agree on who is the leader

(initially everyone knows only its

own ID)

Idea:

o initially send your own ID to the right.

When you receive an ID from left, if it

is higher than what you have seen

so far, send it to right.

o If your own ID is received from left,

you have the highest ID and are the

leader

5

CIS 505, Spring 2007 Synchronization 17

Global State

a) A consistent cut

b) An inconsistent cut

CIS 505, Spring 2007 Synchronization 18

Distributed Deadlock

A deadlock occurs when a set of processes in a
system is blocked waiting for requests that can never
be satisfied.

Approaches:

o Detection (& Recovery)

o Prevention

o Avoidance - not practical in distributed setting

Difficulties:

o resource allocation information is distributed

o gathering information requires messages. Since messages

have non-zero delays, it is difficult to have an accurate and

current view of resource allocation.

CIS 505, Spring 2007 Synchronization 19

Deadlock Detection Recall

Suppose the following information is available, for
each process:

o the resources it currently holds, and

o the request that it is waiting for.

Then, one can check if the current system state is

deadlocked, or not.

In single-processor systems, OS can maintain this

information, and periodically execute deadlock

detection algorithm

What to do if a deadlock is detected?

o Kill a process involved in the deadlocked set

o Inform the users, etc.

CIS 505, Spring 2007 Synchronization 20

Wait For Graph (WFG)

Definition. A resource graph is a bipartite directed graph (N,E),

where

– N = P U R,

– P = {p1, ... pn} , R = {r1 , ... rn}

– (r1 , ... rn) available unit vector,

– An edge (pi , rj) a request edge, and

– An edge (ri , pj) an allocation edge.

Definition: Wait For Graph (WFG) is a directed graph, where

nodes are processes and a directed edge from P Q

represents that P is blocked waiting for Q to release a resource.

So, there is an edge from process P to process Q if P needs a

resource currently held by Q.

6

CIS 505, Spring 2007 Synchronization 21

Definitions

Def: A node Y is reachable from a node X, X Y, if

there is a path (i.e., a sequence of directed edges)

from node X to node Y.

Def: A cycle in a graph is a path that starts and ends

on the same node. If a set C of nodes is a cycle, then
for all X in C : X X

Def: A knot K in a graph is a non-empty set of nodes

such that, for each X in K, all nodes in K and only the

nodes in K are reachable from X. That is,
– (for every X for every Y in K, X Y) and

– (for every X in K, there exists Z s.t. X Z implies Z is in K)

CIS 505, Spring 2007 Synchronization 22

Sufficient Conditions for Deadlock

Resource Model
1 reusable resource

2 exclusive access

Three Request Models
1 Single-unit request model:

a cycle in WFG

2 AND request model: simultaneous requests
blocked until all of them granted

a cycle in WFG

a process can be in more than one cycle

3 OR request model: any one, e.g., reading a replicated data
object

a cycle in WFG not a sufficient condition (but necessary)

a knot in WFG is a sufficient condition (but not necessary)

CIS 505, Spring 2007 Synchronization 23

Examples

P

Q

R

P

Q

R

P

Q

R

P

Q

R

P

Q

R

and

or
or

or

CIS 505, Spring 2007 Synchronization 24

Deadlock Detection Algorithms

• Centralized Deadlock Detection

o false deadlock

(a) Initial resource graph for machine 0.

(b) Initial resource graph for machine 1.

(c) The coordinator’s view of the world.

(d) The situation after the delayed message.

7

CIS 505, Spring 2007 Synchronization 25

Wait-for Graph for Detection

Assume only one instance of each resource

Nodes are processes

o Recall Resource Allocation Graph: it had nodes for resources as well as
processes (basically same idea)

Edges represent waiting: If P is waiting to acquire a resource that is
currently held by Q, then there is an edge from P to Q

A deadlock exists if and only if the global wait-for graph has a cycle

Each process maintains a local wait-for graph based on the
information it has

Global wait-for graph can be obtained by the union of the edges in all
the local copies

CIS 505, Spring 2007 Synchronization 26

Distributed Cycle Detection

Basic Idea:

Each site looks for potential cycles

Suppose site S1 has processes P1, P2, P3, P4.

S1 knows that P7 (on a different site) is waiting for P1, P1 is waiting for

P4, P4 is waiting for P2, and P2 is waiting for P9 (on a different site S3)

This can be a potential cycle

S1 sends a message to S3 giving the chain P7, P1, P4, P2, P9

Site S3 knows the local dependencies, and can extend the chain, and

pass it on to a different site

Eventually, some site will detect a deadlock, or will stop forwarding the

chain

CIS 505, Spring 2007 Synchronization 27

Deadlock Detection Algorithms

• Distributed Deadlock Detection: An Edge-

Chasing Algorithm

Chandy, Misra, and Haas distributed deadlock detection algorithm.

CIS 505, Spring 2007 Synchronization 28

Deadlock Prevention

Hierarchical ordering of resources avoids cycles

Time-stamp ordering approach:

Prevent the circular waiting condition by preempting resources if

necessary.

– The basic idea is to assign a unique priority to each process and use

these priorities to decide whether process P should wait for process Q.

– Let P wait for Q if P has a higher priority than Q; Otherwise, P is rolled

back.

– This prevents deadlocks since for every edge (P ,Q) in the wait-for

graph, P has a higher priority than Q.

Thus, a cycle cannot exist.

8

CIS 505, Spring 2007 Synchronization 29

Two commonly used schemes

Wait-Die (WD): Non-preemptive
o When P requests a resource currently held by Q , P is allowed to wait

only if it is older than Q.

o Otherwise, P is rolled back (i.e., dies).

Wound-Wait (WW): Preemptive
o When P requests a resource currently held by Q , P is allowed to wait

only if P is younger than Q.

o Otherwise, Q is rolled back (releasing its resource). That is, P wounds
Q.

Note:
o Both favor old jobs (1) to avoid starvation, and (2) since older jobs

might have done more work, expensive to roll back.

o Unnecessary rollbacks may occur.

CIS 505, Spring 2007 Synchronization 30

WD versus WW

CIS 505, Spring 2007 Synchronization 31

Sample Scenario

Processes P, Q, R are executing at 3 distributed sites

Suppose the time-stamps assigned to them (at the

time of their creation) are 5, 10, 20, respectively

Q acquires a shared resource

Later, R requests the same resource (held by Q)

o WD would roll back R

o WW would make R wait

Later, P requests the same resource (held by Q)

o WD would make P wait

o WW would roll back Q, and give the resource to P

CIS 505, Spring 2007 Synchronization 32

Example

Wait-Die (WD):

 (1) P requests the resource held by Q. P waits.

 (2) R requests the resource held by Q. R rolls back.

Wound-Wait (WW):

 (1) P requests the resource held by Q. P gets the

resource and Q is rolled back.

 (2) R requests the resource held by Q. R waits.

9

CIS 505, Spring 2007 Synchronization 33

Differences between WD and WW

o In WD, older waits for younger to release resources.

o In WW, older never waits for younger.

o WD has more roll back than WW.

In WD, R requests and dies because Q is older in the above

example. If R restarts and again asks for the same resource,

it rolls back again if Q is still using the resource.

However, in WW, Q is rolled back by P. If it requests the

resource again, it waits for P to release it.

o When there are more than one process waiting for a

resource held by P, which process should be given the

resource when P finishes?

In WD, the youngest among waiting ones. In WW, the

oldest.

