
1

1

CIS 505: Software Systems

Lecture Note on Logical Clocks

Insup Lee

Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 Logical Clock 2

Clocks

1. physical clocks

o Protocols to control drift exist, but physical clock timestamps cannot

assign an ordering to “nearly concurrent” events.

2. logical clocks

o Simple timestamps guaranteed to respect causality: “A’s current

time is later than the timestamp of any event A knows about, no

matter where it happened or who told A about it.”

3. vector clocks

o Order(N) timestamps that say exactly what A knows about events

on B, even if A heard it from C.

4. matrix clocks

o Order(N2) timestamps that say what A knows about what B knows

about events on C.

o Acknowledgement vectors: an O(N) approximation to matrix clocks.

CIS 505, Spring 2007 Logical Clock 3

Event Ordering

When there is no common memory or clock, it is
sometimes impossible to say which of two events occurred
first.

The happened-before relation is a partial ordering of events
in distributed systems such that
1 If A and B are events in the same process, and A was executed

before B, then A B.

2 If A is the event of sending a message by one process and B is the
event of receiving that by another process, then A B.

3 If A B and B C, then A C.

If two events A and B are not related by the relation,
then they are executed concurrently (no causal
relationship)

CIS 505, Spring 2007 Logical Clock 4

Causality Example: Event Ordering

A

B

C

A1 A2

A3 A4

B1 B2 B3 B4

C1 C2 C3

A1 < B2 < C2

B3 < A3

C2 < A4

2

CIS 505, Spring 2007 Logical Clock 5

Causality and Logical Time

Constraint: The update ordering must respect
potential causality.

o Communication patterns establish a happened-before
order on events, which tells us when ordering might
matter.

o Event e1 happened-before e2

 iff e1 could possibly have affected the generation of e2:
we say that e1 < e2.

e1 < e2 iff e1 was “known” when e2 occurred.

Events e1 and e2 are potentially causally related.

CIS 505, Spring 2007 Logical Clock 6

Logical Clocks [Lamport]

Solution: timestamp updates with logical clocks Timestamping
updates with the originating node’s logical clock LC induces a
partial order that respects potential causality.

Clock condition: e1 < e2 implies that LC(e1) < LC(e2)

1. Each site maintains a monotonically increasing clock value LC.

2. Globally visible events (e.g., updates) are timestamped with the current
LC value at the generating site.

Increment local LC on each new event: LC = LC + 1

3. Piggyback current clock value on all messages.
Receiver resets local LC: if LCs > LCr then LCr = LCs + 1

Use processor ids to break ties to create a total ordering.

CIS 505, Spring 2007 Logical Clock 7

Logical Clocks: Example

0

0

0

1 2 3 9

61 5 8

2 3 4 6 7

4 5 6 7 8 10

7

5

A

B

C

C5: LC update advances receiver’s clock

if it is “running slow” relative to sender.

A6-A10: receiver’s clock is unaffected

because it is “running fast” relative to sender.

CIS 505, Spring 2007 Logical Clock 8

Causality and Updates: Example

A

B

C

A1 A2

A4 A5

B1 B2 B3 B4

C1 C3 C4

A1 < B2 < C3

B3 < A4

C3 < A5

3

CIS 505, Spring 2007 Logical Clock 9

Update Ordering

Problem: how to ensure that all sites recognize a fixed
order on updates, even if updates are delivered out of
order?

Solution: Assign timestamps to updates at their
accepting site, and order them by source timestamp at
the receiver.
o Assign nodes unique IDs: break ties with the origin node ID.

o Problem: What (if different) ordering exists between
updates accepted by different sites?

Comparing physical timestamps is arbitrary: physical clocks drift.

Even a protocol to maintain loosely synchronized physical clocks
cannot assign a meaningful ordering to events that occurred at
“almost exactly the same time”.

CIS 505, Spring 2007 Logical Clock 10

Example: Lamport’s Algorithm

Three processes, each with its own clock.

The clocks run at different rates.

Lamport’s Algorithm corrects the clock.

 Note: ts(A) < ts(B) does not imply A happened before B.

 What if we use this to synchronize physical clocks?

CIS 505, Spring 2007 Logical Clock 11

Motivation for Vector Clocks

Logical clocks induce an order consistent with
causality, but

o the converse of the clock condition does not hold: it may be

that LC(e1) < LC(e2) even if e1 and e2 are concurrent.

If A could know anything B knows, then it must be LCA > LCB.

But if LCA > LCB then this doesn’t make it so; i.e., “false

positives”.

Concurrent updates may be ordered unnecessarily.

We need a clock mechanism that is necessary and
sufficient in capturing causality.

CIS 505, Spring 2007 Logical Clock 12

Vector Clocks

Vector clocks (AKA vector timestamps or version vectors) are a

more detailed representation of what a site might know.

1. In a system with N nodes, each site keeps a vector timestamp

TS[N] as well as a logical clock LC.

TSi[i] at site i is the most recent value of site j’s logical clock that site

i “heard about”.

TSi[i] = LCi: each site i keeps its own LC in TS[i].

2. When site i generates a new event, it increments its logical clock.

TSi[i] = TSi[i] + 1

3. A site r observing an event (e.g., receiving a message) from site s

sets its TSr to the pairwise maximum of TSs and TSr.

For each site i, TSr[i] = max (TSr[i], TSs[i])

4

CIS 505, Spring 2007 Logical Clock 13

Vector Clocks: Example

(1, 0, 0)

(1, 2, 4)

(1, 4, 0)

(2, 0, 0)
A

B

C

(0, 1, 0)

(0, 0, 1)

(5, 3, 3)

Question: what if I have two

updates to the same data item,

and neither timestamp dominates

the other?

(1, 2, 0)

(1, 2, 3)

(1, 3, 0)

(4, 3, 0)A1 A2

A4 A5

B1 B2 B3 B4

C1 C3 C4

(1, 2, 2)

C2

CIS 505, Spring 2007 Logical Clock 14

Vector Clocks and Causality

Vector clocks induce an order that exactly reflects
causality.
o Tag each event e with current TS vector at originating site.

vector timestamp TS(e)

o e1 happened-before e2 if and only if TS(e2) dominates TS(e1)

e1< e2 iff TS(e1)[i] <= TS(e2)[i] for each site i

“Every event or update visible when e1 occurred was also visible
when e2 occurred.”

Proof?

o Vector timestamps allow us to ask if two events are concurrent,
or if one happened-before the other.

If e1< e2 then LC(e1) < LC(e2) and TS(e2) dominates TS(e1).

“If TS(e2) does not dominate TS(e1) then it is not true that e1< e2.”

CIS 505, Spring 2007 Logical Clock 15

The Need for Propagating Acknowledgments

Vector clocks tell us what B knows about C,
but they do not reflect what A knows about
what B knows about C.

Nodes need this information to determine when it is safe
to discard/stabilize updates.

o A can always tell if B has seen an update u by
asking B for its vector clock and looking at it.

If u originated at site i, then B knows about u if and only if
TSB covers its accept stamp LCu: TSB[i] >= LCu.

o A can only know that every site has seen u by
looking at the vector clocks for every site.

Even if B recently received updates from C, A cannot tell
(from looking at B’s vector clock) if B got u from C or if B
was already aware of u when C contacted it.

CIS 505, Spring 2007 Logical Clock 16

Solution: Matrix Clocks

Matrix clocks extend vector clocks to capture
“what A knows about what B knows about C”.
o Each site i maintains a matrix MCi(N,N).

Row j of i’s matrix clock MCi is the most recent value of j’s
vector clock TSj that i has heard about.

MCi[i, i] = LCi and MCi[i, *] = TSi

MCi[j,k] = what i knows about what j knows about what
happened at k.

o If A sends a message to B, then MCB is set to the
pairwise maximum of MCA and MCB.

If A knows that B knows u, then after A talks to C, C knows
that B knows u too.

