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Abstract

Stateful Communication Schedules have been proposed with a view to provide flexible and predictable com-
munication in real-time networks. Previous work in this area has largely focused on the verifiability of schedules
and providing metrics such as schedulability, waiting time and overhead for the stateful schedules. In this re-
port, we look at the problem of generation and representation of stateful communication schedules from an input
requirement specification. Starting from configurations of possible messages and their release frequencies, we
analyze schedulability under the Earliest Deadline (ED) and Deadline Monotonic (DM) scheduling strategies. If
the messages are schedulable, then a stateful communication schedule for all the messages is generated. However,
the generated schedule often results in a large labeled graph with overlapping nodes, providing an opportunity
for compaction. We therefore discuss a few compaction strategies, touching briefly on the tradeoffs involved, and
present an efficient algorithm for generating the most compact schedule. Finally, we conclude by describing the
tool chain we have developed that produces a visual representation of the compact stateful schedules.

1 Introduction

Current real-time communication protocols such as the Communication Area Network (CAN) [4] and the Time-
Triggered Protocol(TTP) [9] are typically independent of the application. Although these protocols provide a
means for predictable communication, not all of them always meet the needs of a particular application satis-
factorily. These protocols have intrinsic limitations that impede customizing or optimizing for the application.
Therefore, either the application developer has to adapt her application to work around these subtleties or she has
to limit the capabilities of the application being developed.

To overcome these limitations, stateful communication schedules implemented as network code [6, 3] have
been proposed. The network code framework permits creating application-specific protocols by providing a pro-
grammable media access layer. Network code is an executable communication abstraction to specify predictable
and verifiable communication for distributed real-time applications. A simple example of a stateful communi-
cation schedule is given in the Figure 1 below. In this schedule,x1, x2 andx3 represent guard data andn1, n2

andn3 represent the slots for nodes1, 2 and3 respectively. The communication slot is alloted to eithern1, n2 or
n3 based on the guard conditions. This strategy can be used to emulate the earliest deadline first scheduling by
communicating the deadlines as guard data.

Prior work on these stateful communication schedules has largely focused on their verifiability and implemen-
tation via network code [6] or providing analysis metrics for them such as schedulability, service waiting time
and computational overhead. In this report, we look at the problem of generation and representation of stateful
communication schedules from an input requirement specification. The input specification in many real-time ap-
plications is often a simple model that describes the periodic release of messages along with their deadlines. More
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Figure 1. A schedule with one choice g0.

complex models are starting to be popular in literature (c.f.,[10],[7]) but we will restrict ourselves to the periodic
model here.

The focus of this project is to generate stateful communication schedules given a input requirement specifi-
cation. To generate the schedule, we consider two scheduling strategies - Earliest Deadline (ED) and Deadline
Monotonic (DM). These are essentially non-preemptive versions of EDF and RM scheduling respectively. Since
the network communication is indivisible, we cannot preempt messages even if higher priority messages arrive
while the message is being transmitted. If the messages are schedulable, then we generate the schedule for all the
messages. This schedule is stateful because it executes a particular configuration of messages depending on the
state of the network.

The schedule generated using either strategy often results in a large labeled graph with significant overlap
between different configurations. It is therefore possible to compact the schedule so that the storage space is
minimized. In general, a more compact representation can be achieved at the cost of more processing at runtime
(resulting from including extra guard conditions). In this work, we discuss some tradeoffs involved and present an
efficient algorithm for generating the most compact schedule.

In addition to generating the stateful communication schedule, we look at the problem of producing a represen-
tation of the schedule. A visual representation is more intuitive for the users and can be used to catch omissions
and inconsistencies in the schedule. To this end, we have developed a tool chain that takes the input specification,
checks schedulability, and generates a compact schedule that is presented to the user.

The rest of this report is organized as follows. In Section 2 we formally describe the input model, discuss the
schedulability, schedule generation algorithms, and delve into compaction of schedules and the tradeoffs involved.
In Section 3, we discuss the implementation of the tool chain and conclude with directions for future work.

2 Generation of Stateful Communication Schedules

Input Model We assume that the messages to be scheduled are given by the tuplem = 〈m, p, pr, l〉 wherem
represents the message identifier,p is the periodicity of the message,pr represents the priority andl the length of
the message. Different messages that are scheduled together are specified as a configurationC = 〈c, m1, . . . mn〉
wherec is the configuration identifier andmi are messages. Finally, the communication schedule is a set of
configurations. Table 2 below shows an example input specification with different possible configurations.

Configuration↓ Messages→
c1 〈m1, 3, 1, 1〉 〈m2, 3, 2, 1〉 〈m3, 6, 1, 1〉
c2 〈m1, 6, 1, 1〉 〈m2, 6, 2, 1〉 〈m3, 3, 1, 1〉
c3 〈m3, 7, 1, 1〉 〈m4, 2, 1, 1〉 〈m5, 14, 2, 1〉

Table 1. Table showing a input specification with different possible configurations

The task here is to take the input model and use an appropriate scheduling algorithm to generate the sched-
ule. We consider the non-preemptive versions of popular scheduling algorithms EDF and RM - the Earliest
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Deadline and Deadline Monotonic scheduling. The algorithm for generating stateful schedule is given below
as Pseudocode 1. We assume that there is a priority queuePrQ with methodsPush andPop for pushing and
popping from the queue. The methodAllocateSlots do the actual allocation and link the node with its parent, and
getLength method returns the length of a message.isSchedulable returns true if the configuration is schedulable
and false otherwise.

The algorithm is fairly straightforward. For every configuration, if it is schedulable, the algorithm initially
enqueues all the messages. It starts allocating by popping the messages from the priority queue. The priority
queue is implemented according to the scheduling algorithm used. For instance, with ED, a higher priority is
assigned to a message with the earlier deadline. Similarly, with DM, a higher priority is assigned to the message
with a shorter deadline. If there is no unique message, then the message with higher message priority is popped.
After each message is schedule, the algorithm checks to see if any more messages are released in this duration and
enqueues them also. The algorithm terminates at the LCM of the periods of all messages.

scheduleGen()
1: AllocateSlots(root,⊥)
2: currNode← root
3: for Everyci ∈ C do
4: if isSchedulable(ci, RM/ED) then
5: schLength← 0
6: for Everymi ∈ ci do
7: Push(PrQ, mi)
8: end for
9: while schLength < LCM(pj), 〈m, p, pr, l〉j ∈ ci do

10: m← Pop(PrQ)
11: currNode← m
12: AllocateSlots(m, currNode)
13: for Every〈m, p, pr, l〉j ∈ ci do
14: if ∃t, t ∈ (schLength, schLength + getLength(m)], t ≡ 0 (mod pj) then
15: Push(PrQ, mj)
16: end if
17: end for
18: schLength← schLength + getLength(m)
19: end while
20: end if
21: end for

Pseudocode 1:Stateful Schedule Generation

2.1 Schedulability

The main criteria for generating the schedule above is that the messages in a particular configuration be sched-
ule. We revisit the schedulability criteria for ED and DM scheduling.

2.1.1 Earliest Deadline Scheduling

Schedulability conditions for non-preemptive ED are described by Zheng and Shin [11]. If all the messages are
released att = 0, they will be schedulable if the following conditions are met.

1.
∑n

j=1
Cj

Tj
≤ 1

2. ∀t ∈ S,
∑n

i=1d(t − di)/Tie+Ci + Cp ≤ t, whereS = ∪n
i=1Si, Si = {di + nTi : n = 0, 1, . . . , b(tmax −

di)/Tic} andtmax = max{d1, . . . , dn, (Cp +
∑n

i=1(1−di/Ti)Ci)/(1−
∑n

i=1 Ci/Ti)} whereTi, Ci, di are
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Figure 2. Compaction of generated schedule

the period, length, and deadline of messagei, Cp is the length of the longest possible packet, anddxe+ = n
if n− 1 < x < n, n ∈ Z+ and0 otherwise.

The first condition ensures that the maximum utilization does not exceed capacity of the channel (assumed to
be normalized to 1), and the second condition ensures that each message with deadline≤ t can finish byt. For a
more general condition involving phase offsets for messages, we refer the reader to Zuberi and Shin [12].

2.1.2 Deadline Monotonic Scheduling

For the non-preemptive case, a messagei is feasible if all higher priority messages are feasible andi finds an
opportunity to start transmission sometime during[0, di−Ci]. Therefore, to check for schedulability, we consider
messages with a priority higher than that of messagei and assume that they are the only messages in the system.
If the network becomes idle in the interval[0, di − Ci], then messagei will be schedulable. If the messages are
numbered according to their priority withj = 0 being the highest priority message, theni is schedulable if [8]:

• ∃t ∈ S,
∑i−1

j=1d(t − φj)/TjeCj + Cp ≤ t whereS = {set of all release times of messages0, 1, . . . , i − 1
through timedi − Ci} ∪ {di − Ci}, andφj are the relative phase offsets.

We repeat this check on all messages in the configuration to check for schedulability.

2.1.3 Largest Schedulable Subset

When we are generating the stateful schedule, it is possible that not every configuration is schedulable. In that
case, we either have the option of generating the schedule for a schedulable subset of messages or not consider that
configuration at all. If we decide on picking a schedulable subset, there are a number of criteria that we can use to
pick this subset. One possibility is to start with the message with highest priority and keep picking messages with
lower priority till no more messages can be included. This is easily implemented as a greedy algorithm and we
take this approach in our implementation. Another criteria could be that we pick the largest subset of messages
that are schedulable. This could possibly be implemented as a dynamic programming problem. We leave open the
possibility of including these alternatives in our implementation.

2.2 Compacting Schedules

If we run the generating algorithm on different configurations, it will result in a automaton with a large number
of states. As an example, consider the generated schedule in Figure 2 below. On the left is the schedule with
configurationsc1 andc2. Notice that the two configurations share the first node and also the two terminal nodes.
Therefore, it is possible to compact the schedule to generate the schedule on the right.

If we merge the common prefix and suffixes of different configurations, we would get a schedule that is compact
without introducing extra guards. It is possible to compact this further by compacting the nodes in between also.
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However, notice that compacting the middle nodes means that we need to distinguish between the subsequent
paths. Otherwise we would have introduced behaviors that are not consistent with the original schedule. Therefore,
to achieve maximum compaction, we would have to introduce additional guard conditions in the schedule that
would only permit the original behavior of the system. The compaction in schedule beyond the prefix and suffixes
therefore comes at the cost of evaluating guards at runtime. In general, the more compact a schedule, the higher is
the computational overhead of evaluating the guards at runtime. The two metrics that can be used to measure the
overhead of any compaction are therefore, guard computation time and schedule storage.

We present below an efficient algorithm for generating the most compact schedule - one that consists of storing
each message just once.

DFS(σ)
1: for eachu ∈ σ do
2: color[u]←WHITE
3: makeLink(u, NULL, NULL)
4: end for
5: for eachu ∈ σ do
6: if color[u] = WHITE then
7: DFS − V ISIT (u)
8: end if
9: end for

DFS-VISIT(u)
1: color[u]← GRAY
2: if isPresent(u, getInterval(u), hashTable) = FALSE then
3: insertInTable(u, getInterval(u), hashTable)
4: end if
5: for eachv ∈ getChildren(u) do
6: if color[v] = WHITE then
7: makeLink(u, v, generateTransitionCondition(u, v))
8: DFS − V ISIT (v)
9: end if

10: end for
11: color[u]← BLACK

Pseudocode 2:Stateful Schedule Compaction

The Pseudocode 2 is essentially a depth-first traversal of the stateful communication schedule. At each node,
we first check to see if we have seen the node instance before. This is accomplished by hashing the node on the
basis of the message identifier and the duration of the slot. The methodisPresent checks to see if the node is
present and the methodgetInterval returns the interval duration of the slot. We then traverse all the children
nodes while making links to the parent. The methodgenerateTransitionCondition generates the transition
condition between the parent and the child node. The guard condition essentially involves noting the configuration
and the time of arrival at the node.makeLink method is responsible for actually implementing the linking of the
nodes.

As an example, consider the schedule in Figure 2. In the schedule on the right, there are still repeated slots for
a in configurationc1 and for nodeb in configurationc2. The algorithm above will compact them and produce the
compact schedule shown in Figure 3.

Complexity Since the Algorithm 2 stores each unique message instance (messages with unique identifier and
slot duration), it is the most optimal in terms of the storage space required to store the schedule. However, there
are extra guard conditions that need to be evaluated. For instance, in Figure 3, the extra conditionst = 3 are
introduced on nodea/b that enables the transition if the current discrete time is3. Therefore, we need to store
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Figure 3. Example of generated compact schedule

these guard conditions as well. The generation algorithm 2 is essentially a depth-first traversal of the original
schedule followed by lookups in a hash-table. If we use the universal hashing function on a large prime, we
could get minimal collisions and get a constant expected time lookup [5]. Therefore, the whole algorithm runs in
expectedlinear time. Note that we use linear with respect to the input, which means the size of the input graph
of the schedule. So if the input schedule is of the order ofO(V + E), then the algorithm is expected to be of the
same order as well.

3 Representation of Stateful Communication Schedules

In this section, we describe our implementation of the generation and compacting techniques introduced above.
From the input specification, we generate the compact output schedules as a data structure (text) and as a labeled
graph with nodes representing a message being scheduled.

3.1 Implementation

For our implementation, we take the input as a CSV format of all the configurations and messages. We then
parse this file and generate the schedule by running it till the LCM of all messages in each configuration. We
then compact the generated schedule as discussed in the previous section. In the implementation, we have only
considered the earliest-deadline first scheduling strategy. However, we expect that extending it other schemes
should be fairly straightforward. All these methods are implemented in perl [2]. We use the graph rendering
software graphviz [1] to visualize the schedule. The entire tool chain is described in the Figure 4 below.

<system>
<progressive>

1 2 2 1

m P pr l

Generation Tool

Data Str. Output

Graphviz

Input Specification

Schedulability+Compaction
1 1 6 2

Figure 4. Toolchain for generation and representation of Stateful Communication Schedules.

To run the toolchain, we run the scripttreeGenSc provided in the implementation via the command line as:
sh treeGenSc.sh inputFile outputFile
In case the set of messages is not schedulable, an error message is generated. Figure 5 presents the compact

schedule generated for the example set of configurations in Table 2. In the figure, the nodes represent messages,
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and the guards (labeled edges in the visualization) are of the formci, j represents configurationci and iterationj.
It should be noted that this is just one of the several possible encodings of guard conditions.
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Figure 5. Compact schedule generated for the set of configurations in Table 2.

If we modify the example so that,c′1 = c2, c′2 = c3 andc′3 is same as the first configurationc1 except that the
messagem1 has a period of2 andm2 has a period of3, then the configurationc3 is no longer schedulable. In
this case, an error is thrown and the schedule corresponding to the remaining two configurations is generated. The
generated compact schedule is shown in Figure 6.

3.2 Conclusions and Future Work

In this project, we have delved on the problem of generating a stateful communication schedule given an input
specification. Starting with information about configurations which contain the frequency and duration of different
messages, we generate a stateful schedule in the form of a labeled directed graph that is compact. We have also
discussed the generation, schedulability, and compaction algorithms with the associated tradeoffs. We have also
described the tool chain that we have developed to generate both a data structure and visual representation of the
final schedule.

There are several possibilities for future work. Firstly, we hope to extend the schedulability checks to deadline
monotonic scheduling. We are also working on constructing the largest schedulable subset of messages, should the
original configuration be not schedulable. Other possible extensions include tackling the problem of composing
several stateful schedules using an appropriate composition technique, integrating the analysis framework into the
tool chain, and automatic generation of network-code from the stateful communication schedules.
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