An overview of soft real-time wireless communication for Sensor Networks

Marco Caccamo

1

Outline

- Wireless LANs background
- Enforce priorities with CSMA/CA access
- Speed routing protocol
- Real-time chains

Motivations

- New generations of wireless technologies should support universal wide-bandwidth access to a variety of services
 - Multimedia conference, remote audio, data access....
- QoS requirements are needed
 - Widely varying QoS requirements
 - Delay QoS, bandwidth QoS ...
 - Specifically for real time traffic
- IEEE 802.11 is wireless LAN standard widely used
 - No priorities in DCF
 - No mechanisms to guarantee access delay bound
- This paper proposed a prioritized scheme modifying IEEE 802.11 protocol's CSMA/CA (DCF) access method to support station priority.

Wireless LAN preliminaries

- Two kind of wireless network topologies
 - Both supported by IEEE 802.11 MAC protocols
 - Ad hoc network
 - Mobile terminals communicate with each other in an independent basic service set (BSS)
 - BSS: single hop ad hoc network
 - A packet may need to traverse multiple links to reach a destination

Two kind of network topologies

- Infrastructure network
 - Mobile terminals communicate with the backbone network
 through an access point (AP)
 - APs can be bridged supporting range extension between multiple BSSs, forming an extended service set (ESS)

MAC

- Media Access Control protocol: coordination and scheduling of transmissions among competing neighbors
- Goals for a real-time MAC: low latency; good channel utilization; best effort + real time support

(1) Hidden Terminal Problem [Tobagi75]

- Node B can communicate with A and C both
- A and C can not hear each other
- When A transmits to B, C cannot detect the transmission using the *carrier sense* mechanism
- If C transmits, collision will occur at node B

The wireless LAN background is based on Nitin Vaidya's wireless MAC tutorial

A solution for Hidden Terminal Problem [MACA, Karn90]

- When node A wants to send a packet to node B, node A first sends a *Request-to-Send (RTS)* to B
- On receiving **RTS**, node B responds by sending *Clear-to-Send (CTS)*, provided node B is able to receive the packet
- When a node (such as C) overhears a CTS, it keeps quiet for the duration of the transfer
 - Transfer duration is included in both RTS and CTS

A simple solution to improve reliability

- Wireless links are prone to errors.
 - Much higher Bit Error Rate (BER) than wired networks due to noise, channel fading etc
- When node B receives a data packet from node A, node B sends an Acknowledgement (Ack). This approach adopted in many protocols such as IEEE 802.11
- If node A fails to receive an Ack, it will retransmit the packet

IEEE 802.11

MACs to transmit time-sensitive data

- Reservation based schemes
 - Allow time-bounded traffic to reserve a periodic slot on the channel that they can access alone
 - Need a central agent to decide slot schedule.
 - Waste unused but reserved resource
 - E.g. IEEE 802.11 PCF (Point Coordination Function)
- Priority based schemes
 - Enforce priorities to let some stations to have precedence over others when accessing the wireless channel.

IEEE 802.11 wireless MAC

- MAC options:
 - Distributed and centralized MAC components
 - DCF (Distributed Coordination Function):
 - DCF is suitable for multi-hop ad hoc networking
 - DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol
 - short IFS -> high priority (ACKs, CTS)
 - PCF (Point Coordination Function):
 - Uses polling to grant stations their turn to transmit.
 - Polling performed by Access Point (AP)
 - PCF and DCF intervals are combined building a periodic frame

IEEE 802.11 MAC Architecture

- Why not CSMA/CD as in Ethernet?
 - Hard for transmitter to distinguish its own transmission from incoming weak signals
 - So, wireless LAN can not use collision detection, should use collision avoidance.

CSMA/CA in details

- Carrier sense in IEEE 802.11
 - Physical carrier sense
 - Virtual carrier sense using Network Allocation Vector (NAV)
 - NAV is updated based on overheard RTS/CTS/DATA/ACK packets, each of which specified duration of a pending transmission
- Collision avoidance
 - Nodes stay silent when channel is sensed busy (physical/virtual)
 - Backoff intervals used to reduce collision probability

Backoff interval (Collision Avoidance)

- When transmitting a packet, choose a random backoff value in the range [0,cw-1]
 - cw is called contention window
 - cw begins with 8
- Count down the backoff interval when medium is idle
 - ➔ Count-down is suspended (frozen) if medium becomes busy
- When backoff interval reaches 0, transmit RTS

DCF backoff example (Collision Avoidance)

cw = 31B1 and B2 are backoff intervals
at nodes 1 and 2

Binary exponential backoff in DCF

- When a packet transmission fails, the transmitter increases the contention window
 - *cw* is doubled (up to an upper bound, *CWmax*)

 $\lfloor ranf() \cdot 2^{2+i} \rfloor \cdot \text{Slot}_\text{Time}$

- Random backoff value into $(0 \sim 2^{2+i} 1)^*$ Slot_Time
- Random backoff use number of slots
- i is the number of consecutive attempts to send a frame
- ranf() is a uniform random number generator
- If a node transmits successfully, it restores *cw* to *CWmin*
- *cw* follows a saw-tooth curve

Priority scheduling in IEEE 802.11

- Priority scheduling problem: packets from different stations might belong to different priority classes
- \rightarrow packets with higher priority should be transmitted first

• Since the packets may be at different nodes sharing the wireless channel, how to coordinate access?

Enforcing priorities with IEEE 802.11

- Inter frame space (IFS)
 - Short IFS (SIFS), DCF IFS (DIFS), PCF IFS (PIFS)
 - SIFS<PIFS<DIFS
 - The shorter IFS a station uses, the higher priority it will get
- CTS and ACK have priority over RTS
 - If a node wants to send CTS/ACK, it waits SIFS duration after channel goes idle
- If a node wants to send RTS, it waits for DIFS > SIFS

Transmitting data using SIFS and DIFS in DCF

Enforce priorities for DCF access

- Two parts
 - Shorter IFS for higher priority stations
 - Shorter random backoff time for higher priority stations
 - Totally, 4 classes of priorities (see table)

Shorter Random Backoff Time

- To support priority
 - Set backoff time window to $\lfloor ranf() \bullet 2^{2+i}/2 \rfloor$ for high priority stations
 - Random backoff into $0 \sim 2^{1+i}$ -1
 - Set backoff time window to $\left[ranf() \bullet 2^{2+i} \right] + 2^{2+i} / 2$ for low priority stations.
 - Random backoff into $2^{1+i} \sim 2^{2+i} 1$
- Dividing the backoff time in more detail can support more levels of priorities

 \rightarrow collisions in the same priority level may increase

Combination of shorter IFS and shorter random backoff

back

 \rightarrow 3 is the highest priority

SPEED: A Stateless Protocol for Real-Time Communication in Sensor Networks

Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher ICDCS 2003

What is Speed Protocol?

 Provide soft real-time routing service
 Maintain a desired delivery speed across the sensor network

- Speed = distance/delay
 - i.e. end-to-end delay is proportional to the distance between source and destination

Main Approaches in Speed

Non-deterministic geographic routing
 Geographic routing + back-pressure rerouting

Relay ratio feedback control

Structure of Speed Protocol

|--|

API

AreaMulticastSend (position, radius, packet) BS asks sensors in a region to report AreaAnyCastSend (position, radius, packet) BS asks any one sensor in a region to report UnicastSend(Global_ID, packet) Sensors report to a remote base station (BS) SpeedReceive() Set a targeted speed

Neighbor Beacon Exchange

Periodic beaconing

- Every node periodically send a beacon to its neighbors
- The sending rate can be low in the case of low mobility of sensors
- Piggyback method can reduce the beacon overhead
- Delay estimation beacon
- Backpressure beacon
- Neighbor table
 - Entry: (NeighborID, Position, SendToDelay, ExpireTime).

Delay Estimation

- Use single hop delay as the metric of traffic load
- Delay is the period from the time entering the output queue to reception of ACK
 - Including queueing delay, backoff time, retransmission, propagation delay etc.
 - Excluding ACK processing time in the receiver
 - Use exponential weighted moving average to calculate the average delay
 - Only use data packets but not broadcast packets as estimation of delay

Stateless Non-deterministic Geographic Forwarding (SNGF)

Neighbor set NSi Forwarding candidate set FS_i(D) L_Next Neighbors closer to D than I NS Relay Speed $Speed_{i}^{j}(Destination) = \frac{L - L next}{HopDelay_{i}^{j}}$

Forwarding Rules in SNGF

Only forward pkt to a node in FSi If such a node does not exist, drop the pkt and send a backpressure beacon Divide the FS_i into two groups based on if their speed \geq S_{setpoint} (a predefined value) • If the nodes in the first group (\geq) are available, pick one with highest speed If not, a relay ratio is calculated based on the Neighborhood Feedback Loop(NFL) and a random number is picked in [0,1]; compare two numbers to determine whether to relay or drop it 37

Properties of SNGF

• Achieve e2e delay bound = L_{e2e} / $S_{setpoint}$ if a node in the first group is always avail.

Load balancing

- Avoid congestions
- Disperse energy consumption

Neighborhood Feedback Loop (NFL)

- To control the relay ratio used in SNGF
- To maintain a single hop relay speed above S_{setpoint}
- Definition of a miss:
 - If a pkt's relay speed < S_{setpoint}
 - If there is a loss due to collision
- Objective fn of controller: miss ratio ≈ 0

 A simple multiple inputs and single output (MISO) proportional controller

$$\begin{split} u &= 1 - K \frac{\sum e_i}{N} \quad if \ \forall e_i > 0 \\ u &= 1 \quad if \ \exists e_i = 0 \end{split}$$

e_i is the miss ratio of the neighbor i
N is size of the FS set
u is the output (relay ratio)

NFL controller

u = 1 if $\exists e_i = 0$

u is the output (relay ratio)

Back-Pressure Rerouting – Case I

Back-Pressure Rerouting – Case II

Void Avoidance

A problem for all geographic routing
 Greedy algorithm does not work for void
 When encountering a void, a node sends a back-pressure beacon

 $(ID, dest, \infty)$

Last Mile Process

Is activated only when pkts arrive at the dest Region

- For anycast pkt, a node within the dest region, forward it to transport layer
- For multicast pkt,
 - the first node in the dest region receive it
 - Broadcast it with TTL
 - Other nodes within dest region rebroadcast pkts and ignore duplicated pkts

Simulation Comparison

- SPEED: full-fledge SPEED
- SPEED-S: choose the next hop with the max relay speed
- SPEED-T: with the shortest relay delay
- GF: geographic forwarding
- DSR

Results Less routing overhead in GF routing Effective pkt dropping + reputing b

Effective pkt dropping + rerouting help in heavy traffic condition

