
1

MAC
A Run Time monitoring
     and checking tool

Gursharan Singh

Mohd. Salman Mehmood

Agenda

 Motivation
 Software Development

 Steps
 Methods

 New Paradigm (Runtime Verification)
 Materializing Runtime Verification (MAC)
 Real Time  Java
 Extending MAC
 The road ahead



2

 Motivation

  How is software correctness assured??
 Verification and Testing !!!!

  How do we go about it ??
 Understanding development of s/w- flashback

Developing software

Requirements

Specification

Design
Specification
and Analysis

Implementation

Testing



3

Requirements Specification

 What should our software  do ?
  Control Train Gate

 Requirements specified informally-SRS
 Capture requirements formally (Formal

specification)

Design Specification and Analysis

 How will the software fulfill the requirements
 Formal Modeling (UML )

 Analysis
 Formal Verification (Model Checking)



4

Implementation

 Implement software in target language
 Java , C++ , C#

 Test software
  Black Box Testing
  Glass Box Testing
  Unit Testing
  Stress Test

Software Verification

 Two Phase Verification
  Design Phase (Formal Verification )
  Implementation Phase (Testing)



5

Formal Verification

 Performed at design time
 Great for proving the correctness of the

system based on the formal specification
 Explores all execution paths
 Rigorous

What is  not good about Formal
Verification?
 Checks the model
 Does not verify the implementation
 Not scalable (not feasible for large systems)

 Solution: Verify implementation
   Software Testing



6

Software Testing

 Test software based on system use cases
 Test software with different inputs

 Actual Output==Desired Output (Good)
 Automated testing tools at your dispense
 Testing assures that system

implementation conforms to the design
specification

           !!! Fallacy ( Cannot test all inputs )

Problems with Testing

 Bugs might not show up during Testing
 Environment specific bug
 Not rigorous
 Not formal



7

Bridging the Gap

 Runtime Verification
  Execute  implementation
  Monitor software’s runtime behavior
  Compare with Formal Specification
  Provide feedback in case of violation

Enter the MAC

 Monitoring and Checking
 MAC Vision

  Verify  computational correctness
  Verify  timeliness correctness



8

Architecture

Courtesy: Kim, Lee et al

Static Phase

 Low level formal specs – Implementation
dependent

 High level formal specs – Abstracted from
implementation, flexibility !

 Code Instrumentation -> Program Filter
 Compiling PEDL (low level)-> Event recognizer
 Compiling MEDL(high level)-> Run time checker



9

MAC

User

Train Gate -Target
Program

Filter

MAC Verifier

Low level
event occurs

Event
Recognizer

Checker

Step:1

Step:2

Step:3 Step:4

Step:5

Injector

Step:7

Step:6

Instrumentation

 Extending the base software with auxiliary
functionality  to

  Monitor program behavior
  Log significant program events
  Debugging purposes
  Performance monitoring
  Profiling

                               !!! HOW



10

Instrumentation (contd..)

 (Static Instrumentation) Inject auxiliary code at compile time
  Source code
 Target Byte Code

- Complicated (Necessary to keep executable consistent)
+Finer Granularity of observations

 (Dynamic Instrumentation) Inject auxiliary code at runtime
 On-demand instrumentation ( when class loads)
           Example Sun One Application Server for profiling purposes

Instrumentation (contd..)

 Manual Instrumentation
 Hand assembled by user

+ Easy to pin point monitoring locations
- Result in incomplete instrumentation

 Automatic Instrumentation
  Instrumentation Bot e.g JTrek

+ Complete ( Captures all significant events), Why?
  Mechanical

-  Difficult to define HL events based on LL state information



11

Train Crossing Demo

Example – train crossing

 Gate to be closed when train reaches
crossing

 Can only open when train has crossed
 If ( !GateClosed && trainAtCrossing) then

raise alarm
Else

continue
 What is GateClosed? trainAtCrossing?



12

System Specifications

Formal SpecificationsFormal Specifications

Low Level High Level

GateClosed
trainAtCrossing

gateAngle = 30º
trainPos = 400 m

Conditions

 Instantaneous happenings in the system
 E.g. : Entry/Exit into a method, update of a

variable

 Information that holds for some time
 E.g. : trainPos < 200

Events

trainPos:
100            200        300          400               500



13

Syntax

 Events : <E>
 <E> = e | start (C) | end (C) | (E && E) | (E||E) | E

when C

 Conditions : <C>
 <C> = c | defined (C) | (E , E) | ! C | (C && C)|
    (C||C) | (C => C)

PEDL – Primitive Event Definition Language

 Used to define low level specs
 Dependent on target program language
 Instrumentation should not inflict resource

overheads – CPU
 Functional behavior of the program should

not be affected
 Fast recognition of events



14

Java PEDL – train crossing example

 MonScr  GateCrossing
/* Export section */
export event startTrain, gateHeight;

Monobj int Train.run; //monitored objects
Monobj int Gate.Roll().gateHeight;

 event startTrain = startM (Train.run()); // event def
 event gateHeight = update (Gate.Roll().gateHeight);

end

MEDL

 ReqSpec GateCrossing
import event startTrain,  gateHeight ;

var int angle;
Var bool trainRunning;
Condition gateClosed = (trainRunning && angle >= 0 &&

angle <= PermissibleError )
Alarm possibleAccident = start ( !gateClosed);
startTain -> { trainRunning = 1; angle = 90;}



15

Java Implementation Specifics

 Objects not monitored directly, why?
 References inside objects difficult to monitor, why?

 Any update requires passing the whole object graph to run
time checker

 Recursive tracking

 Monitoring only fields serves the purpose –
change in object -> change in a field

The Java prototype

Instrumented 
JAVA Code

PEDL MEDL SADL

MAC

JAVA Code

JVM

Filter Event Rec. Run time
 checker

Injector



16

Faults and Failures

 According to theory of fault tolerance -
 Fault : an unwanted change in a system
 Failure : result of a propagating fault

 So what did we just do ?
 We detected the fault
 Now we need to stop this from developing into a

failure –> STEERING!

Steering

 Detect a violation, inject correcting code
 E.g. Train.speed = 100 at crossing

Inject code : Train.speed = 40 before call gate.close()

 Run time checker invokes “steering actions”
 Steering actions specified by the user –

static, done during instrumentation



17

SADL – Steering Action Definition Language

 Since steering is done in the executing code, SADL tied to
source language

 Static Code injection – putting in the correcting code
 Works by setting flag – concept can be understood as:

 if(flag) then
action

else
normal execution

Contd..

SADL Script

 Steering script gateCrossing
// steering entities
steered objects boolean Gate: gateUp;
void Gate: rollUp( );

//steering actions
Steering action holdGate =

{ Gate: gateUp = false;} before call Gate:
RollUp( )



18

SADL

 Action Invocation in MEDL
 possibleAccident -> { holdGate };

 You need to know what to monitor
 Only Real Code monitorable – what about

virtual machine specific code
 What about side effects? Heap, GC?

Shortfalls

1. Long code, more to-be-monitored vars, more
SADL, overhead on program memory-
embedded devices?

2. Side effects like heap, GC and other run time
system dependent features

3. If fault and failure time difference not much
4. What if all fields are references to objects?



19

But, they don’t really hurt 

  1 & 4 can be handled

Long code, moreLong code, more
to-be-monitoredto-be-monitored
varsvars, more SADL,, more SADL,
overhead onoverhead on
program memory-program memory-
embedded devices?embedded devices?

What if all fields areWhat if all fields are
references toreferences to
objects?objects?

Smart Programming and designing

A= a+1;

B= a+1;

Why monitor A
and B both?

Extending MAC

 Existing system is based on  “Event Driven”
   evaluation
 Verifies only computation correctness

  Example . The gate opens when the train has
crossed

 For verifying timeliness correctness we
introduce notion of  “Time Driven” evaluation



20

Choose RT-Java

  RT Java extends standard java with real
time aspects
+ Reuse existing code base
- Architectural changes to MAC compiler
+No need to learn new language

!!!  Lets have a look at Real Time Java !!!

A Brief Primer on RT Java



21

Why do we need RT Java?

 Standard Java is unpredictable in terms on
thread schedulability

 Weak concurrency model
 Lacks support for Real Time Systems
 Undeterministic Garbage Collection

Enhancements to RTSJ

 Memory Management
 Time Values and Clocks
 Schedulability Objects
 Real Time Threads
 Async Event Handling and Timers



22

Memory Management

 Memory partitioned into different areas
 Instruct jvm to place data types in different

areas
 Improve performance
 Improve predictability

     !!  Step Back and look at standard java
memory

Heaps and Stacks

STACK Heap

Obj objRef=new Obj();



23

Garbage Collection

STACK Heap

Reclaim memory when Heap becomes full ,other
memory reclaiming schemes

Memory Areas

 Heap Areas
  Same as standard java

 Immortal Memory
 Objects are not reclaimed

 Scoped Memory Area
  LTMemory Area
  VTMemory Area



24

Time Values and Clock

 High resolution Time
  NanoSecond granularity
 Absolute Time (relative to some epoch)
 Relative Time (relative to some local clock)
 Rational Time (relative + associated frequency)

 Timers
 Countdown clocks

Schedulable Objects

 Standard Java lacks scheduling predictability
 Cant guarantee if high priority thread is the one

that will be executing at any time
 Depends on host OS to support threads

 RTSJ introduces notion of schedulable
objects



25

Schedulable Objects

 Implement Schedulable interface
 Indicate specific release requirement

  Periodic (regular)
  Aperiodic (random)
  Sporadic (irregular with minimal inter-release times

• Indicate memory requirements
• Scheduling requirements

Meeting Deadlines

 Obligation of the scheduler
 Predict whether a set of application objects

will meet their deadlines
   RTSJ provides hooks to support on-line analysis

 Notification in case an application object
  misses deadline
  consumed more resources than specified
  released more often



26

Real Time Threads

 Is a schedulable object
 Extends the standard Java Thread
 Uses

   Release Parameters
   Memory Parameters
   Scheduling Parameters

• NoHeapRealTimeThread <extends>> RT Thread
 Does not create or reference objects on the heap
 Execution independent of garbage collector

Async Event Handlers

 Use extra thread for async event handling
(inefficient)

 Multiplex events onto a pool of threads
 Event Handlers need to respond within

deadlines
 Events Handlers are schedulable entities
 Bound Event Handlers (dedicated  RT

Thread)



27

Now  back to RT MAC

RT Java MAC

 MAC porting to Real Time Java to achieve
timeliness correctness verification

 A single Java program that includes
 Target Program+Filter
 Event Recognizer
 Checker

 Unlike MAC which had three separate java
programs



28

Time bounded property

 [e1,e2)<=d
 Semantics

   Event e1 occurs , and the condition is valid if e2 occurs
within deadline d ,else violation

 Extend MEDL and PEDL with Temporal operators

RT-MAC Components

 Target Program + Filter
 Implemented as Real Time Thread
 Schedulable object in RT Java

 Specify different parameters for the RT thread
   ReleaseParameters
   MemoryParameters
   Scheduling Parameter

  Event Recognizer & Checker
  Implemented as Async Event Handlers

 Communication across components via Async Event
and Shared Variables



29

 RT-MAC Mechanics

 Target Program+Filter
 Instrumentation code fires a lowLevelAsync Event
 Async Event handled by Event Recognizer

 Event Recognizer
 Transform low level information into events and conditions
 Fires abstractAsyncEvent  which is handled by Checker

(AsyncEventHandler)
 Checker

 Evaluates events and conditions to determine
computational and timeliness correctness

When do we perform an evaluation

 Periodically  (HEART BEAT)
 +Easy ( implemented using a periodic timer)

 Evaluate whenever timer expires
 - Redundant and Inefficient
 -Need to determine optimal time steps

  Time step too small (increased overhead)
  Time step too big (might miss deadline,evaluation not done as soon

as possible)

 Occurrence of Event ( Time Out ) [e1,e2)<=d
 Set timer when event e1 occurs
 Event e2 occurs before timer expires (Good)
 Else violation detected



30

RT MAC Architecture

PEDL MEDL

RT MAC Compiler

JAVA Code

RT JVM

Instrumented 
JAVA Code

Filter Event Rec. Run time
 checker

Future Work

 RT implementation
 Soft Real Time systems – add counters
 Heuristics to detect errors
 Playing with the VM – monitor some of the

VM threads
 Avoiding nested failures, one failure, another

upcoming? Yes-> recover.



31

References

 Java-MaC: A Run-time Assurance Approach for Java Programs
Moonjoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, Oleg V.
Sokolsky

 Monitoring, Checking, and Steering of Real-Time Systems
Moonjoo Kim, Insup Lee, Usa Sammapun, Jangwoo Shin, Oleg Sokolsky

 Checking Timeliness Correctness At Runtime using Real-Time Java
      Usa Sammapun, Insup Lee and Oleg Sokolsky
 The Real Time Specification for Java

 Greg Bollella, Ben Brosgol, Peter Dibble, Steve Furr, James Gosling


