
1

1

Introduction to Programming
Embedded Systems

Sebastian Fischmeister
sfischme@seas.upenn.edu

Department of Computer and Information Science
University of Pennsylvania

CSE480/CIS700 S. Fischmeister 2

Goals

 Rough understanding of the underlying hardware.

 Understand how to develop software for the lab platform.

2

CSE480/CIS700 S. Fischmeister 3

What is An Embedded System?

A general-purpose definition of embedded systems is that they are
devices used to control, monitor or assist the operation of
equipment, machinery or plant. “Embedded” reflects the fact that
they are an integral part of the system. In many cases, their
“embeddedness” may be such that their presence is far from
obvious to the casual observer.

Institute of Electrical Engineers (IEE)

CSE480/CIS700 S. Fischmeister 4

For Us

 PIC18F2680
o 3,328 B RAM
o 64kB ROM
o 1.024 B EEPROM
o 5 MIPS @ 20MHz

o A/D converters
o 1x UART
o 1x 8bit Timer
o 3x 16bit Timer

3

CSE480/CIS700 S. Fischmeister 5

Will use in the PICDEM2 board to

 Blink LEDs
 Control an LCD display
 Communicate via the serial line

with a PC
 Communicate via the CAN

protocol with other microchips
 Drive a stepper motor

CSE480/CIS700 S. Fischmeister 6

Use it further to

 Control a modular robot:

4

7

The Hardware

CSE480/CIS700 S. Fischmeister 8

A Microprocessor

 Introduced as a programmable replacement for logic-based circuits
in the 1970s.

 Advantages compared to logic-based circuits:
o Provide functional upgrades (e.g., add new feature to machine tool

after deployment)
o Provide easy maintenance upgrades (e.g., fix a bug in the cell phone

via an SMS firmware upgrade)
o Less fragile (e.g., instead of hundreds discrete logic chips and wiring

only one microprocessor)
o Protection of intellectual property (it is more difficult to copy software

burnt in the on-chip memory than to check the part numbers and the
wiring)

5

CSE480/CIS700 S. Fischmeister 9

What makes a Microprocessor?

 Processor
o An arithmetic logic unit (ALU) for processing.

 Memory
o Permanent memory for keeping the program (= ROM)
o Volatile memory for computation (= RAM)
o Rewritable permanent memory for logging, tuning, storing intermediate

data (= EEPROM)

 Connectivity to peripherals
o Binary outputs via single chip pins
o Integrated asynchronous and synchronous serial interfaces such as

UART, I2C, RS232, CAN

CSE480/CIS700 S. Fischmeister 10

What makes a Microprocessor?

 Timers
o Event counting, input capture, real-time interrupt, watchdog timer
o Pulse-width modulation (PWM)

 Support for the analogue world
o Analog-to-digital converter (ADC)
o Digital-to-analog converter (DAC)

 Software debug support hardware
o JTAG

6

CSE480/CIS700 S. Fischmeister 11

Meet the PIC18F2680

CSE480/CIS700 S. Fischmeister 12

Inside

7

CSE480/CIS700 S. Fischmeister 13

Harvard Architecture

 Assign data and program instructions to different memory spaces.
 Each memory space has a separate bus.

 This allows:
o Different timing, size, and structure for program instructions and data.
o Concurrent access to data and instructions.
o Clear partitioning of data and instructions (=> security)

 This makes it harder to program, because static data can be in the
program space or in the data space.

 If the program space and the data space are incompatible, copying
data is no longer a (<start>,len) dump.

CSE480/CIS700 S. Fischmeister 14

Data Memory

 Memory layout
o Instructions in the PIC18

are limited to 16 bits.
o To address the whole

area you would need 12
bit => too many.

o Memory is split into 256B
banks. Only one is active.

 Register types
o General-purpose

registers (GPR)
o Special function registers

(SFR)

 SFR control the MCU and
the peripherals.

8

CSE480/CIS700 S. Fischmeister 15

Program Memory

 Return address stack (31-entries) for
subroutine calls and interrupt
processing.

 Reset vector (0000h) is the program-
starting address after power-on or
manual reset.

 High priority int. vec (0008h) is the
starting address of this ISR with at
most 16B.

 Low priority int. vec (0018h) ditto but
without a restriction.

 The user program follows the low
priority int. vector program.

CSE480/CIS700 S. Fischmeister 16

Further Processor Information

 It has a long list of CPU registers (see specification).
o Not important when programming C, not irrelevant either.
o For example STKPTR, INTCON*, STATUS

 PIC18 supports instruction pipelining with a depth of two steps
o Instruction fetch
o Instruction execute

9

17

The Programming Process

CSE480/CIS700 S. Fischmeister 18

Overview of the Programming Process

10

CSE480/CIS700 S. Fischmeister 19

Source file

#include <p18cxxx.h>
#define SHIFT_ME 3
#define LOOP_FOREVER() while(1);

void delay(unsigned int x) {
 while(x--);
}

void main (void) {
 unsigned int xx = 100%2 << SHIFT_ME;
 delay(xx);
 LOOP_FOREVER();
}

CSE480/CIS700 S. Fischmeister 20

Pre-processor

 The pre-processor processes the source code before it continues
with the compilation stage.

 The pre-processor
o Resolves #define statements (constants, variable types, macros)
o Concatenates #include files and source file into one large file
o Processes #ifdef - #endif statements
o Processes #if - #endif statements

 Specifically for embedded systems the pre-processor also
processes vendor-specific directives (non-ANSI)
o #pragma

11

CSE480/CIS700 S. Fischmeister 21

Source File After Pre-Processing

… the p18cxx.h file …

void delay(unsigned int x) {
 while(x--);
}

void main (void) {
 unsigned int xx = 100%2 << 3;
 delay(xx);
 while(1);
}

CSE480/CIS700 S. Fischmeister 22

Compiler

 The compiler turns source code into machine code packaged in object files.

 Common file format are object file format (COFF) or the extended linker
format (ELF).

 A cross-compiler produces object files that will then be linked for the target
instead of the computer running the compiler (compare Linux, embedded
Linux, PIC18)

 Details about the compilation process and how the compiler works look at
Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools, Addison-
Wesley, 2006.

 Practical approach in embedded systems:
o TURN OFF ALL OPTIMIZATION !!
o In MPLAB: -Ou- -Ot- -Ob- -Op- -Or- -Od- -Opa- -On-

12

CSE480/CIS700 S. Fischmeister 23

Linker

 The linker performs the following
o It combines object files by merging object file sections.

 .text section for code
 .data section for initialized global variables
 .bss section for uninitialized global variables

o It resolves all unresolved symbols.
 External variables
 Function calls

o Reports errors about unresolved symbols.
o Appends the start-up code (see next slide)
o Provide symbolic debug information

 The linker produces a relocatable file. For standard operating
systems with a dynamic loader, the processes is now finished - not
so for embedded systems which need absolutely located binaries.

CSE480/CIS700 S. Fischmeister 24

Startup Code

 Startup is a small fragment of assembly code that prepares the
machine for executing a program written in a high-level language.
o For C in Unix it is called crt1.o or crt0.S (assembly)
o For PIC it is typically also an object file specified in the linker script.

 Tasks of the startup code
o Disable all interrupts
o Initialize stack pointers for software stack
o Initialize idata sections
o Zero all uninitialized data areas in data memory (ANSI standard)
o Call loop: main(); goto loop;

13

CSE480/CIS700 S. Fischmeister 25

Relocator

 The relocator converts a relocatable binary into an absolutely
located binary.

 The relocator is guided by a linker script that specifies:
o Program and data memory for the target part
o Stack size and location
o Logical sections used in the source code to place code and ata

 The relocator then produces an ‘executable’, that is ready for
deployment on the target or for the simulator.

CSE480/CIS700 S. Fischmeister 26

Linker File for MPLINK

 The linker directives fall into four basic categories. Since MPLINK
combines the linker and relocator in one, there is no clean
separation.

 Command line directives
o LIBPATH: Search path for library and object files.
o LKRPATH: Search path for linker command files.
o FILES: Additional files to be linked.
o INCLUDE: Additional linker command files to be included.

 Stack definition directive.
o STACK SIZE=allocSize [RAM=memName]

 Specifies the size and location of the software stack.

14

CSE480/CIS700 S. Fischmeister 27

Linker File for MPLINK

 Memory region definition directives.
o CODEPAGE NAME=memName START=addr END=addr [PROTECTED]

[FILL=fillvalue]
 Specifies a ROM directive that is used for program code, initialized data values,

constant data values, and external memory
 PROTECTED specifies that it can only by explicit request
 Useful for reflashing on the fly.

o DATABANK NAME=memName START=addr END=addr [PROTECTED]
 Specifies a RAM directive that is used for volatile memory.
 Useful for correlated data tables.

 Logical sections definition directives.
o SECTION NAME=secName [ROM=memName | RAM=memName]

 The code or data specified using the #pragma directive will then be located in the
specified memory area.

CSE480/CIS700 S. Fischmeister 28

Sample Linker File
LIBPATH .
FILES c018i.o
FILES clib.lib
FILES p18f8720.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x1FFFF
CODEPAGE NAME=eeprom START=0x20000 END=0x1FFFFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
…
DATABANK NAME=gpr13 START=0xD00 END=0xDFF
DATABANK NAME=gpr14 START=0xE00 END=0xEFF
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config
SECTION NAME=STARTUP ROM=vectors // Reset and interrupt vectors
SECTION NAME=PROG ROM=page // main application code space
SECTION NAME=INTHAND ROM=eeprom // Interrupt handlers
SECTION NAME=DATTBL ROM=eeprom // Data tables

STACK SIZE=0x100 RAM=gpr14

15

CSE480/CIS700 S. Fischmeister 29

Map File after Linking and Relocating

 Open external file…

CSE480/CIS700 S. Fischmeister 30

Bin2Hex

 The executable still has to be transferred to the target via a serial
line (or even Ethernet with applicable boot loaders).

 For standard compliance, the binary is converted into an ASCII
representation useful to PROM programmers and emulators.

 A number of standards exists, Intel HEX is widespread.
o Each line in an Intel HEX file contains one HEX record.

16

CSE480/CIS700 S. Fischmeister 31

Example Program after Bin2Hex

:020000040000FA
:0600000094EF00F0120075
:02002A000000D4
:04002C002A0EF66E34
:10003000000EF76E000EF86E00010900F550656FB6
:100040000900F550666F03E1656701D03DD00900F6
:10005000F550606F0900F550616F0900F550626F4F
:1000600009000900F550E96E0900F550EA6E090033
:1000700009000900F550636F0900F550646F09002D
:100080000900F6CF67F0F7CF68F0F8CF69F060C0ED
:10009000F6FF61C0F7FF62C0F8FF0001635302E1A1
:1000A000645307E00900F550EE6E6307F8E2640759
:1000B000F9D767C0F6FF68C0F7FF69C0F8FF000115
:0A00C0006507000E665BBFD7120053
:0600CA00D9CFE6FFE1CFF3
:1000D000D9FFFD0EDBCF02F0DB06FE0EDBCF03F017
:1000E00001E2DB060250031001E0F3D7E552E7CF4F
:1000F000D9FF1200D9CFE6FFE1CFD9FF020EE126EA
:10010000DE6ADD6ADECFE6FFDDCFE6FFDEDFE55249
:10011000E552FFD7020EE15C02E2E16AE552E16ED0
:08012000E552E7CFD9FF120000
:080128001BEE00F02BEE00F0CD
:10013000F86A019C16EC00F07AEC00F0FDD7120092
:00000001FF

32

MCC18 Compiler Extensions

17

CSE480/CIS700 S. Fischmeister 33

Embedded Systems C Compilers

 Embedded systems developers need more control over the
generated file than traditional C developers.
o Access to assembly instructions for high-performance functions
o Specify memory area for code and data
o Extra functionality for saving memory
o Define ISRs
o Define chip configuration

 Every compiler provides different extensions.
 GCC is available for a small set of targets, but not for too many.

CSE480/CIS700 S. Fischmeister 34

Data Types and Limits

18

CSE480/CIS700 S. Fischmeister 35

Storage Classes

 Auto
o An auto variable is stored in the software stack.
o Enables basic reentrancy for functions.
o The default for variables and parameters.
o But, can be changed in the MPLAB settings to a different setting.

 Static
o A static variable is allocated globally.
o Slowly but surely eat up your memory.

 Register
o Can be ignored, because PIC18 only has WREG.

CSE480/CIS700 S. Fischmeister 36

Storage Classes

 Extern
o Declares a variable that is defined somewhere else.
o Useful when splitting software in multiple files.
o Watch out for the type and storage qualifiers!

 Overlay
o Allows more than one variable to occupy the same physical memory

location.
o Used to reduce stack and global memory requirements.
o Only available for variables.
o The compiler decides which variables share the same memory location

by analyzing the code.

19

CSE480/CIS700 S. Fischmeister 37

Overlay Example

Two simple functions:

int f (void) {
 overlay int x = 1;
 return x;
}

int g (void) {
 overlay int y = 2;
 return y;
}

Overlay works, x and y will share the
same memory region.

Again the two functions:

int f (void) {
 overlay int x = 1;
 return x;
}

int g (void) {
 overlay int y = 2;
 y = f ();
 return y;
}

Overlay will not work, because of the
dependency between f() and g().

CSE480/CIS700 S. Fischmeister 38

Storage Qualifiers

 Const
o Defines a constant value, i.e., the value cannot be changed at runtime.
o The value is stored in the program memory.

 [Default]
o Defines a variable whose value can change at runtime.
o The value is stored in the data memory.

 Volatile
o Defines a variable whose value can change at runtime - anytime.
o The value is stored in the data memory.
o Turns off certain compiler optimizations.

20

CSE480/CIS700 S. Fischmeister 39

Volatile Example

void do_i_exit (void) {
 volatile int dummy;

 do {
 dummy = -1;
 } while (dummy == -1);

}

CSE480/CIS700 S. Fischmeister 40

Near/Far Qualifiers

 Near/far data memory objects
o Far specifies that the object is anywhere in the data memory =>

requires a bank switching instruction.
o Near specifies that it is in the access bank.

 Near/far program memory objects
o Far specifies that the object is anywhere in the program memory.
o Near specifies that it is within 64KB.

 The default storage qualifier for program and data memory objects
is far.

21

CSE480/CIS700 S. Fischmeister 41

Ram/Rom Qualifiers

 In the Harvard architecture, program and memory space are
separated => require means to specify where to find look.

 Ram qualifier
o Ram specifies that the object is located in the data memory.
o It is the default for variables.

 Rom qualifier
o Rom specifies that the object is located in the program memory.
o Useful for constant data such as lookup tables.

CSE480/CIS700 S. Fischmeister 42

MCC18 ANSI/ISO Divergences

 MPLAB C18 implements some optimizations that are not specified
or differ from the ANSI/ISO C standard.

 Integer promotions
o C18 will perform arithmetic at the size of the largest operand, even if

both operands are smaller than an integer.

unsigned char j, k;
unsigned i;
j = 0x79;
k = 0x87;
i = j+k;

i will be 0x0 instead of 0x100.

#define X 0x20
#define Y 0x5
#define Z (X)*(Y)

unsgined i;
i = Z;

22

CSE480/CIS700 S. Fischmeister 43

MCC18 ANSI/ISO Divergences

 Numeric constants
o C18 allows specifying binary values using the 0b prefix.
o 0b0111001 = 0x39 = 57

 String constants
o Strings are typically stored in the program memory.
o Usual qualifiers are: const rom char []
o Two ways to declare string arrays

rom const char table[][20] = { "string 1", "string 2",
"string 3", "string 4" };

rom const char *rom table2[] = { "string 1", "string 2",
"string 3", "string 4" };

80B

44B

CSE480/CIS700 S. Fischmeister 44

Copying Data between ROM & RAM

 Pointers to data memory and program memory are incompatible!
 A data memory pointer cannot be passed as a program memory

pointer and vice versa.

 Copying between data and program memory looks like this:

void str2ram(static char *dest, static char rom *src)
{
 while ((*dest++ = *src++) != '\0');
}

23

CSE480/CIS700 S. Fischmeister 45

Inline Assembly

 An assembly section starts with _asm and ends with _endasm.

 Useful for optimization and implanting explicit code in the program
(e.g., for traces or benchmarks).

 Should be kept to a minimum, because it turns off compiler
optimization.

_asm
 nop
_endasm

CSE480/CIS700 S. Fischmeister 46

Access to Assembly Instructions

 Assembly provides instructions that are not typically accessible from
the high-level language (e.g., swap upper and lower nibble, nop)

24

CSE480/CIS700 S. Fischmeister 47

#pragma

 The #pragma statement is used to manage
o Program memory with #pragma code, #pragma romdata
o Data memory with #pragma udata, #pragma idata
o Interrupt functions with #pragma interrupt
o Configuration settings with #pragma config

 Program memory
o #pragma code [overlay] [section-name [=address]]

 Allows placing code at a specific location in the program memory.
 #pragma code uart_int_service = 0x08
 Overlay tells the compiler to try and overlay as many sections of the

specified functions as possible.

CSE480/CIS700 S. Fischmeister 48

#pragma

 Program memory
o #pragma romdata [sectionname [=address]]

 Allows to place the data following the #pragma in the program memory.
 Useful for correlated lookup tables that can then be absolutely address from the

program code (table2_data=table1_data[i]+offset).

 Data memory
o #pragma udata [attribute-list] [sectionname [=address]]

 Specifies a location for the following statically allocated uninitialized data (udata).
 Per default, all global variables without initial value are placed in udata.

o #pragma idata [attribute-list] [sectionname [=address]]
 Similar to udata, but for statically allocated initialized data, only.
 Useful for 256B bank restriction.

o Attribute access and overlay
 Allows placing a specific section into the access region of the data memory

(=>ACCESSBANK)
 Must be declared with a near keyword.

25

CSE480/CIS700 S. Fischmeister 49

#pragma

 Interrupt service routines
o Interrupt service routines preempt the current execution. After finishing

the ISR complete, the execution resumes. (=> context switch)
o The ISR saves a minimal context of WREG, BSR, STATUS, etc.
o Interrupt functions have a separate temporary sections in memory that

are not overlaid with other sections (see the .map file).

o #pragma interrupt <fname> [tmpname] [save=<savelist>]
[nosave=<nosavelist]

o #pragma interruptlow <fname> [tmpname] [save=<savelist>]
[nosave=<nosavelist]

CSE480/CIS700 S. Fischmeister 50

#pragma

 Define variable locations
o #pragma varlocate bank <variable-name>
o #pragma varlocate "section-name" <variable-name>
o Useful to location variables in specific banks for performance reasons.

// ** place c1 into bank 1
#pragma varlocate 1 c1
extern signed char c1;

// ** place c2 into bank 1
#pragma varlocate 1 c2
extern signed char c2;

void main (void) {
 c1 += 5;
 /* No MOVLB instruction needs to be generated here. */
 c2 += 5;
}

26

CSE480/CIS700 S. Fischmeister 51

#pragma

 Chip configuration
o #pragma config <settings-list>
o Allows specifying processor-specific configuration settings.
o E.g.,

 #pragma config WDT = ON, WDTPS = 128
 #pragma config OSC = HS

52

Debugging and Emulation

27

CSE480/CIS700 S. Fischmeister 53

Introduction Debugging

 Restrict the introduction of untested and flawed software
(real programmer use gcc -x c - << EOF).

 Identify and isolate bugs.

 The standard mechanism for debugging are:
o printf

 Board must be connected via the serial line.
 Output must be redirected to the UART.

o LED blinking
 It shows that a certain code line has been executed.
 It shows an specific error status (have fun with Morse).
 In case of critical errors, flash all LEDs.

o Breakpoints
 Somewhat like LEDs but allow inspecting the chip state.

CSE480/CIS700 S. Fischmeister 54

Simulation

 High-level language simulation
o Test parts of the software without I/O or with simulated I/O.
o Compile the binary not for the target but for the workstation.
o Bind the target with specific libraries to allow scripted I/O.
o Problem: what if the libraries do not behave as the real world?

 Low-level simulation
o Compile the binary for the target.
o Load the executable in a CPU simulator and run.
o CPU simulators are widespread, some with I/O support.

 MPLAB supports virtually all PIC chips.
 Check GCC and it’s supported targets via GDB.

o Level of complexity differs:
 Solely CPU and memory simulation or also
 Cache performance, memory usage, cycle count.

28

CSE480/CIS700 S. Fischmeister 55

Onboard Debugging

 Instead of simulating on the workstation, run the software on the
target.

 Special software support for debugging linked with the compiled
object files.

 One way to do it (depends on the chip and the programmer):
o Tweak the interrupt handler to provide your debugging features.
o For a breakpoint flash the program memory and either insert a specific

breakpoint instruction or an illegal instructions (traps).
o Run the program and wait for the trap signals.

 JTAG is the standard, defined in 1985 as IEEE-Standard 1149.1.

CSE480/CIS700 S. Fischmeister 56

Emulation

 A hardware device simulates the chip and interfaces with the target board.
 A very costly solution, but the way to go for efficiency and effectiveness of

the developer (compare 2,500.- for the ICE vs. 160.- for the ICD).

 For example the PIC ICE allows:
o Debug your application on your own hardware in real time.
o Debug with both hardware and software breakpoints.
o Measure timing between events using the stopwatch or complex trigger.
o Set breakpoints based on internal and/or external signals.
o Monitor internal file registers.
o Select the oscillator source in software.
o Trace data bus activity and time stamp events.
o Set complex triggers based on program and data bus events, and external

inputs

29

57

Interrupt-based
Input/Output Programming

CSE480/CIS700 S. Fischmeister 58

Input/Output Programming

 I/O programming is the most important task in an embedded
system:

 Inputs can be
o Random: I.e., have an unpredictable timing
o Periodic: I.e., have a known timing
o Low rate
o High rate

30

CSE480/CIS700 S. Fischmeister 59

Polled I/O Programming

 Polled programming uses waiting loops:

 The time required to execute one invocation determines the
minimum time per transfer and thus the maximum data rate.

 Latency is unpredictable, because there’s no guarantee on the
function’s execution.

char serial_input(void) {
 while ((inportb(SERIAL_STATUS_PORT)
 & RX_READY) == 0) {
 // do nothing, just idle
 }
 return inportb(SERIAL_DATA_PORT);
}

CSE480/CIS700 S. Fischmeister 60

Estimating Data-Transfer Rate

 Assume that (1) I/O device is ready, (2) all opcodes use single byte,
(3) no page faults, banking, etc, and (4) perfectly aligned.

 On an Intel 386 with 4byte memory bus, a 60ns memory cycle time,
and an I/O card connected via a 33MHz bus.

 Memory: ceil(18/4)*60ns = 0.3us
 Transfer rate: 0.3 + 2*0.03 = 0.36us/byte => 2.78MB/Sec

Stack I/O

Opcode Immediates Bytes Transfer

MOV DX,02FDh 1 2

SI1: IN AL,DX 1 1

TEST AL,00000001B 1 1

JZ SI1 1 1

MOV DX,02F8h 1 2

IN AL,DX 1 1

MOVZX EAX,AL 1

RET 1 4

8 6 4

Sum 18

Instruction Bytes

31

CSE480/CIS700 S. Fischmeister 61

Polled I/O Programming

 Several problems with polled I/O programming:
o System timing and synchronization is completely software dependent.

 Changes in the processor speed, frequency, power consumption
 Changes in the software

o Not well suited for bursty data transfer
 High overhead
 The old polling vs interrupt argument

o Difficult to debug
 Difficult to reproduce errors
 Difficult to set the right breakpoints

o Time-referenced system
 Cannot enter suspend modes => high energy consumption

CSE480/CIS700 S. Fischmeister 62

What is an Interrupt?

 Everyone experiences interrupts as a (e.g., cell phones, email pop-
ups, people asking questions)

 In an embedded systems, interrupts are service requests.

 The advantage of interrupts is that they allow splitting software into
a background part and a foreground part (=> more to come later).
o The background part performs tasks unrelated to interrupts.
o Interrupts are transparent, so no special precautions need to be done.
o The foreground part services interrupts.

32

CSE480/CIS700 S. Fischmeister 63

Interrupts

 Sources of interrupts are:
o Internal interrupts generated by the on-chip peripherals such as serial

or parallel ports, and timers.
o External interrupts generated by peripherals connected to the

processor.
o Exceptions thrown by the processor.
o Software interrupts

 Useful to steer control flow in your application.
 Are the source of a lot of evil, if not done right.

 Non-maskable interrupts (NMI)
o Most interrupts can be turned off and on (=ignored).
o Some cannot be turned off and on (=non-maskable interrupts):

 Reset, watchdog timer, memory parity failure (=> restart machine).

CSE480/CIS700 S. Fischmeister 64

Exceptions

 Exceptions are broken down into traps, faults, and aborts.

 Traps are detected and serviced immediately after the execution of the
instruction that caused the error condition (=> return address points to the
next instruction)

 Faults are detected and serviced before execution of the instruction (=>
return address points to the instruction causing the fault).

 Aborts are similar to faults, however, the machine state cannot be restored
to the condition just prior to the exception.

 Exceptions detected by the Intel Processor are for example:
o Faults: divide error, invalid opcode, no math coprocessor, segment not present
o Traps: Debug, breakpoint, Overflow
o Aborts: double fault, failure of internal cache

33

CSE480/CIS700 S. Fischmeister 65

Recognizing an Interrupt

 Internal interrupts are specified by the manufacturer as they are already
hardwired.

 Interrupt detection
o Edge triggered: the rising edge marks an interrupt.

 Latch the interrupt line.
 Check for interrupt.
 If so, start ISR.

o Level triggered: A difference in the logic level marks in interrupt.
 E.g., check the level after every instruction or every clock edge.
 Some processors require the level to be held for a minimum number of clocks or pulse

width to ignore noisy lines.
 Maintaining the interrupt

o When should you reset the interrupt?
o Recommended practice is: after you serviced it.

 Internal queuing of interrupts
o Strategy one: have a counter that counts how often the interrupt has been

asserted until it is serviced.
o Strategy two: Ignore interrupt until it has been serviced.

CSE480/CIS700 S. Fischmeister 66

The Interrupt Mechanism

 What happens after an interrupt has been asserted?
o Nothing, if it the interrupt is not a fault or abort.
o Start the interrupt servicing process at the instruction boundary.

 Interrupt servicing process
o Save processor state information related to the current execution (remember the

#pragma?).
o Locate the ISR.
o Start executing the ISR until hitting a return.
o Restore state information and continue.

 Fast interrupts
o The detection procedure is similar to ‘slow’ interrupts.
o No context information is saved, the processor performs a jump to a specified

address (=> shadow registers).
o Special return instruction (retfie).

34

CSE480/CIS700 S. Fischmeister 67

Interrupt Latency

 Interrupt latency is the time it takes the processor from recognizing the
interrupt until the start of the ISR execution.

 Elements that add to the interrupt latency:
o Time taken to recognize the interrupt.

 Reconsider multi sampling to lower faulty interrupt detection.
o Time taken to complete the current instruction.

 Low in RISC systems, potentially long in CISC systems.
 With CISC some compilers restrict use to fast instructions to reduce interrupt latency

(=> replace hardware instructions with software routines)
o Time taken for the context switch.
o Time taken to fetch the interrupt vector.
o Time taken to start the ISR.

 For the microprocessor, computing the worst case interrupt latency is
doable, but consider systems with caches, flexible interrupt vectors, large
number of registers, deep pipelines, etc.

CSE480/CIS700 S. Fischmeister 68

Do’s and Don’ts with Interrupts

 Always expect the unexpected interrupt
o Write a generic interrupt handler that saves the processor state for latter

analysis (e.g., in the EEPROM).

 Interrupts are not negligible
o Switching to the ISR costs time.
o Too many interrupts will introduce a high switching overhead.
o Too long ISRs will cause starvation for other computation tasks.

 Clear your interrupts
o Leaving them set will have the processor ignore them.

 Beware false interrupts
o Although hardware engineers give their best, they can occur.
o Design the software accordingly.

35

CSE480/CIS700 S. Fischmeister 69

Do’s and Don’ts with Interrupts

 Use interrupt levels
o Processors allow multiple levels of interrupts (high, med, low).
o PIC18 allows two: high, low; high for fast interrupts, low for normal ones

 Control resource sharing

{
 read(a);
 a=2*a;
 printf("a=", a);
}

Interrupt!! {
 mask_int();
 read(a);
 a=2*a;
 printf("a=", a);
 unmask_int();
}

CSE480/CIS700 S. Fischmeister 70

Direct Memory Access

 Direct memory access (DMA) is a high-performance, low-latency
I/O data-transfer method with special hardware.

 A DMA controller is attached to the processor and handles copying
data from the peripherals into memory regions specifically reserved
for the peripherals.

 For further information on DMA see your computer architecture
lecture.

