
1

 Wiener Neustadt University of Applied Sciences, Austria

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Introduction to
Field

Programmable
Gate

Arrays

Robert Trausmuth
Wiener Neustadt University of Applied Sciences

Summer 2006

 Wiener Neustadt University of Applied Sciences, Austria 2

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Robert Trausmuth

• email: robert.trausmuth@fhwn.ac.at
• phone: +43.2622.89084.240
• fax: +43.2622.89084.99

• http://www.fhwn.ac.at/

2

 Wiener Neustadt University of Applied Sciences, Austria 3

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Outline

• Introduction to FPGA
• FPGA history
• basic FPGA structure
• how to program FPGAs (VHDL)
• platform FPGAs
• on-chip bus system
• hardware/software codesign
• techniques for parallel processing

 Wiener Neustadt University of Applied Sciences, Austria 4

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

(traditional) design flow of logic circuits

• Determine the logic behavior (truth table)
• Simplify (Karnaugh maps)
• Select proper Integrated Circuits
• Develop Printed Ciruit Board
• Build prototype and test it

Technical limits through Large Scale
Integration (LSI) and VLSI technique

3

 Wiener Neustadt University of Applied Sciences, Austria 5

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Why are they called logic circuits?

• Logic: The study of the principles of reasoning.
• The 19th Century Mathematician, George Boole,

developed a mathematical system (algebra)
involving logic, Boolean Algebra.

• His variables took on TRUE, FALSE
• Later Claude Shannon

(father of information
theory) showed how to
map Boolean Algebra
to digital circuits:

 Wiener Neustadt University of Applied Sciences, Austria 6

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FPGA

• Field Programmable Gate Array

– Control Logic Blocks (CLBs)
– Can be combined as needed
– Logic circuits are implemented as „program“

„Programmable Hardware“

4

 Wiener Neustadt University of Applied Sciences, Austria 7

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

A brief history in time

• Logic circuits have been implemented in
discrete elements (gates)

• Around 1960 a new idea was born:
– Set up the gates and build controllable

interconnections in between

• 1985 first FPGA-chip (XILINX)
• alternative: ASIC

(Application Specific Integrated Circuit)

 Wiener Neustadt University of Applied Sciences, Austria 8

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Why programmable logic?

• By the early 1980’s most of the logic circuits in
typical systems where absorbed by a handful of
standard large scale integrated circuits (LSI).
– Microprocessors, bus/IO controllers, system timers, ...

• Every system still had the need for random “glue
logic” to help connect the large ICs:
– generating global control signals (for resets etc.)
– data formatting (serial to parallel, multiplexing, etc.)

• Systems had a few LSI
components and lots of
small low density SSI
(small scale IC) and MSI
(medium scale IC) components.

5

 Wiener Neustadt University of Applied Sciences, Austria 9

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Why programmable logic?

• Custom ICs (ASICs) sometimes designed to
replace the large amount of glue logic:
– reduced system complexity and manufacturing cost,

improved performance.
– However, custom ICs are relatively very expensive to

develop, and delay introduction of product to market
(time to market) because of increased design time.

• Note: need to worry about two kinds of costs:
1. cost of development, sometimes called non-recurring

engineering (NRE)
2. cost of manufacturing
– A tradeoff usually exists between NRE cost and

manufacturing costs

 Wiener Neustadt University of Applied Sciences, Austria 10

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Why programmable logic?

• Custom IC approach only viable for products
– very high volume (where NRE could be amortized),
– not time to market sensitive.

total
costs

number of units manufactured (volume)

NRE

A

B

A FPGA
B ASIC

6

 Wiener Neustadt University of Applied Sciences, Austria 11

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Why programmable logic?

• FPGAs introduced as an alternative to custom ICs
for implementing glue logic:
– improved density relative to discrete SSI/MSI

components (within around 10x of custom ICs)
– with the aid of computer aided design (CAD) tools

circuits could be implemented in a short amount of time
(no physical layout process, no mask making, no IC
manufacturing), relative to ASICs.
• lowers NREs
• shortens TTM

• Because of Moore’s law the density (gates/area)
of FPGAs continued to grow through the 80’s and
90’s to the point where major data processing
functions can be implemented on a single FPGA.

 Wiener Neustadt University of Applied Sciences, Austria 12

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Programmable Logic Devices

• PLDs
– AND/OR matrix
– Additional inverters and registers (flip flops)

– PLA (AND free, OR free)
– PAL (AND free, OR fixed)
– PROM (AND fixed, OR free)

7

 Wiener Neustadt University of Applied Sciences, Austria 13

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Programmable logic arrays (PLAs)

• Pre-fabricated building block of many
AND/OR gates
– Actually NOR or NAND
– ”Personalized" by making or breaking

connections among gates
– Programmable array block diagram for sum of

products form

 Wiener Neustadt University of Applied Sciences, Austria 14

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Programmable logic arrays (PLAs)

a b c

&

&

&

a !a b !b c !c

N/A

Predefined AND array

P
ro

g
ra

m
m

a
b

le

O
R

 a
rr

a
y

Predefined link

Programmable link

l l l

w x y

N/A

N/A

8

 Wiener Neustadt University of Applied Sciences, Austria 15

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Programmable Logic

• Program (permanent) connections by
– Breaking connections (blowing fuses)
– Making connections (antifuses) radiation hard!

– Writing EEPROM cells (rewritable)

– Using RAM cells (volatile)
• “booting” the chip
• easy reconfigurable (even during operation!)

 Wiener Neustadt University of Applied Sciences, Austria 16

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Programmable logic

Technology Symbol
Predominantly

 associated with ...

Fusible-link SPLDs

Antifuse FPGAs

EPROM SPLDs and CPLDs

E2PROM/

FLASH

SPLDs and CPLDs

(some FPGAs)

SRAM FPGAs (some CPLDs)SRAM

(a) Before programming

Substrate

Metal

Oxide

Metal

Amorphous silicon column

(b) After programming

Polysilicon via

9

 Wiener Neustadt University of Applied Sciences, Austria 17

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Complex Programmable Logic Devices

• CPLDs
– Combination of a few PLAs and programmable

interconnection lines
– Good for fast logic implementation
– Only few registers

 Wiener Neustadt University of Applied Sciences, Austria 18

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Field Programmable Gate Arrays

• FPGAs
– Fine grained logic blocks
– Special I/O blocks
– Programmable switching matrix and lots of

connection lines

Programmable

interconnect

Programmable

logic blocks

10

 Wiener Neustadt University of Applied Sciences, Austria 19

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Example: Spartan II architecture

 Wiener Neustadt University of Applied Sciences, Austria 20

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Switch matrix detail

11

 Wiener Neustadt University of Applied Sciences, Austria 21

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Switch matrix detail

 Wiener Neustadt University of Applied Sciences, Austria 22

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Basic logic cell

• 16 bit shift register or
• 16 bit RAM or
• 4 to 1 lookup table

• multiplexer
• 1 bit register

16-bit SR

flip-flop

clock

mux

y

q
e

a

b

c

d

16x1 RAM

4-input

LUT

clock enable

set/reset

12

 Wiener Neustadt University of Applied Sciences, Austria 23

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Control Logic Block

• Consists of several logic cells

CLB CLB

CLB CLB

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Configurable logic block (CLB)

 Wiener Neustadt University of Applied Sciences, Austria 24

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

CLB detail

13

 Wiener Neustadt University of Applied Sciences, Austria 25

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

IOB detail

 Wiener Neustadt University of Applied Sciences, Austria 26

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

How to program FPGAs

14

 Wiener Neustadt University of Applied Sciences, Austria 27

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FPGA design flow

• Design Entry:
– Create your design files using:

• schematic editor or
• hardware description language (Verilog, VHDL)

• Design “implementation” on FPGA:
– Partition, place, and route to create bit-stream file

• Design verification:
– Use high language executable functional model (C/C++)
– Use Simulator to check VHDL function
– other software determines max clock frequency
– Load onto FPGA device (cable connects PC to

development board)
• check operation at full speed in real environment.

 Wiener Neustadt University of Applied Sciences, Austria 28

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

The VHDL language

• Hardware Description Language (HDL)
– High-level language for to model, simulate, and

synthesize digital circuits and systems.
– Not all VHDL statements are synthesizable!

• History
– 1980: US Department of Defense starts Very High

Speed Integrated Circuit program (VHSIC)
– 1987: Institute of Electrical and Electronics Engineers

ratifies IEEE Standard 1076 (VHDL’87)
– 1993: VHDL language was revised and updated

15

 Wiener Neustadt University of Applied Sciences, Austria 29

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Terminology

• Behavioral modeling
– Describes the functionality of a

component/system
– For the purpose of simulation and synthesis

• Structural modeling
– A component is described by the

interconnection of lower level
components/primitives

– For the purpose of synthesis and simulation

 Wiener Neustadt University of Applied Sciences, Austria 30

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

VHDL concepts

• Hierarchy
– Self-contained components

• Abstraction
– Behavioral description
– Structural description
– Data flow description

• Code Reuse
– libraries

16

 Wiener Neustadt University of Applied Sciences, Austria 31

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

VHDL entity

• Black box from outside
• Only the interface is described

entity COMPARE is
 port (
 A, B: in std_logic;
 C: out std_logic
);
end COMPARE;

=

A B

C

 Wiener Neustadt University of Applied Sciences, Austria 32

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

VHDL architecture

• Description of the implementation
• Local variables (signals) are allowed

• Structural
• Dataflow
• Behavioral

A

B

C
XOR2 INV

X

Y
Z X Z

I

17

 Wiener Neustadt University of Applied Sciences, Austria 33

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

VHDL architecture – structural description

architecture ARCH_STRUCT of COMPARE is
 signal I: std_logic;

 component -- previously defined somwhere else
 XOR2 port (X,Y: in std_logic; Z: out std_logic);
 end component;

 component -- previously defined somwhere else
 INV port (X: in std_logic; Z: out std_logic);
 end component;

begin
 U0: XOR2 port map (X => A, Y => B, Z => I);
 U1: INV port map (X => I, Z => C);
end ARCH_STRUCT;

 Wiener Neustadt University of Applied Sciences, Austria 34

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

VHDL architecture – structural description

• Assemble your architecture out of already
existing blocks

• You can use your own blocks for building
large designs

• Many blocks are available
– IP cores (intellectual property)

18

 Wiener Neustadt University of Applied Sciences, Austria 35

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

VHDL architecture – dataflow description

architecture ARCH_DFL of COMPARE is
begin
 C <= not (A xor B);
end ARCH_DFL;

• Description of the flow of data
– Logic functions
– assignments

 Wiener Neustadt University of Applied Sciences, Austria 36

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

VHDL architecture – behavioral description

• Implementation is done with processes
– Sequential execution of statements
– All processes are run in parallel
– Process is triggered by signal change

architecture ARCH_BHV of COMPARE is
begin
 mp: process(A, B)
 begin
 if (A = B) then
 C <= ‘1‘;
 else
 C <= ‘0‘;
 end if;
 end process;
end ARCH_BHV;

19

 Wiener Neustadt University of Applied Sciences, Austria 37

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FPGA design flow

• Design entry
– VHDL text
– Schematic tool
– State machine editor
– Block diagram

• Simulation
– Behavioral model

(no timings,
but basic functionality)

Design Entry

Simulation

Synthesis

Place & Route

Simulation

Program device & test

 Wiener Neustadt University of Applied Sciences, Austria 38

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FPGA design flow

• Compilation & translation
– Generates technology independent netlist
– RTL schematic (HDL code analysis)

• Technology mapping
– Mapping to technology specific

structures:
• Look-up tables (LUT)
• Registers
• RAM/ROM
• DSP blocks
• Other device specific

components/features

• Logic optimization
– Implementation analysis

(technology view)

Design Entry

Simulation

Synthesis

Place & Route

Simulation

Program device & test

20

 Wiener Neustadt University of Applied Sciences, Austria 39

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FPGA design flow

• FPGA fitter
– Tools supplied by the FPGA vendor
– Specific for each FPGA device

architecture

• Functions
– Place-and-route
– Constraints editor
– Backannotated netlist for timing

simulation
– Configuration bitstream

Design Entry

Simulation

Synthesis

Place & Route

Simulation

Program device & test

 Wiener Neustadt University of Applied Sciences, Austria 40

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology – clock network

• Signal is distributed via special lines and
arrives at all CLBs at the same time

• Origin of clock signal is a BUFG
– Driven by input pin
– Driven by DCM

• 8 to 24 clocks

21

 Wiener Neustadt University of Applied Sciences, Austria 41

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology

1985

XC2000-XC3000 XC4000, Virtex® Virtex-II Pro™

1992 2000 2002

 D
ev

ic
e

C
om

pl
ex

ity

Virtex-II

2004

•• FPGA FabricFPGA Fabric
•• Block RAMBlock RAM
•• SelectIOSelectIO
•• XCITEXCITE

TechnologyTechnology
•• DCMDCM
•• EmbeddedEmbedded

MultipliersMultipliers
•• PowerPCPowerPC
•• RocketIORocketIO

•• FPGA FabricFPGA Fabric
•• Block RAMBlock RAM
•• SelectIOSelectIO
•• XCITEXCITE

TechnologyTechnology
•• DCMDCM
•• EmbeddedEmbedded

MultipliersMultipliers•• FPGA FabricFPGA Fabric
•• Block RAMBlock RAM•• FPGA FabricFPGA Fabric

Glue Logic

 Block Logic

System Platform

Platform

 Wiener Neustadt University of Applied Sciences, Austria 42

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Platform FPGAs

• additional building blocks in silicon
– embedded multipliers
– MAC-blocks for DSP functionality
– digital clock managers (DCM)
– embedded processor cores
– high speed serial communication channels
– co-processor access to hard core
– Ethernet MAC network support

22

 Wiener Neustadt University of Applied Sciences, Austria 43

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology

• Spartan II e

. . .

. . .

. .
 .

. .
 .

I
O
B

I
O
B

I
O
B

I
O
B

CLB CLB R
A
M

R
A
M

R
A
M

R
A
M

IOBIOB DLLDLL

CLB CLB

DLL IOB IOB DLL

Memory Resources
SRL16 registers
Distributed Memory
Block Memory
External Memory

System Clock
Management
Digital Delay Lock
Loops (DLLs)

I/O Connectivity
SelectIOTM Technology
Support major
 I/O standards

Logic & Routing
Flexible logic implementation
Vector Based Routing
Internal 3-State bussing

 Wiener Neustadt University of Applied Sciences, Austria 44

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology – Virtex 2 Pro

CLBs

hardware
multipliers

block RAM

digital
clock
managers

fast
serial
links

PPC 405
cores

configurable
IO pins

23

 Wiener Neustadt University of Applied Sciences, Austria 45

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology – Virtex 4

 Wiener Neustadt University of Applied Sciences, Austria 46

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology - Virtex 4

• Auxiliary Processor Unit
– extends PPC instruction set
– Fabric co-processor bus

(FCB)

– Can connect to
multiple cores

– Each decodes
other instructions

– Fast simplex link
(FSL) connections
are easy to do

– But slower than
direct FCB conn

24

 Wiener Neustadt University of Applied Sciences, Austria 47

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology - Virtex 4

 Wiener Neustadt University of Applied Sciences, Austria 48

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology - Virtex 4

• Ethernet MAC
• Supports 10 Mb, 100 Mb

and 1 Gb data per sec

• Phy interface off chip
– electrical
– optical

25

 Wiener Neustadt University of Applied Sciences, Austria 49

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XILINX FPGA technology

• On-chip bus system
– IBM CoreConnect Bus

• PLB processor local bus
• OPB on-chip peripheral bus
• DCR device control register bus

– further busses
• OCM on-chip memory bus (instruction and data side)

 Wiener Neustadt University of Applied Sciences, Austria 50

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

typical on-chip bus setup

PPC405

ISOCM

DSOCM

DSPLB
ISPLB
INTC

BRAM

BRAM
DDR

PLB
ARB

BRAM

SDRAM

DCR

PLB2OPB

IIC

OPB
ARB

GPIO

UART

Ethernet

LCD

BRAM

INTC

OPB2PLB

ISOCM Bus
Data- 64 bits

Address- 32 bits

PLB Bus
Data- 64 bits

Address- 32 bits

OPB Bus
Data- 32 bits

Address- 32 bits

DCR Bus
Data- 32 bits

Address- 10 bits

DSOCM Bus
Data- 32 bits

Address- 32 bits

26

 Wiener Neustadt University of Applied Sciences, Austria 51

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

going parallel

 Wiener Neustadt University of Applied Sciences, Austria 52

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

parallel vs. serial

• 8x8 multiplication, 1 cycle =>
200.000.000/sec with 64 full adders

27

 Wiener Neustadt University of Applied Sciences, Austria 53

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

parallel vs serial

• 8x8 multiplier, 8 cycles =>
• 25.000.000/sec with 8 full adders

area x speed = const

 Wiener Neustadt University of Applied Sciences, Austria 54

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

parallel vs. serial

• If we consider 5x8 sufficient (instead of
8x8 multiplication), we can save space

37.5 % reduction

28

 Wiener Neustadt University of Applied Sciences, Austria 55

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Example: digital filter processing

B

A

Y

D

C

F

E

x

H

G

x

x

x

+

+

+

Speed =

Area =

x

sel

+

clock

D Q Y

Register

4:1
muxes

A

G

C

E

B

H

D

F

Area =

Speed =

x

+

Speed =

Area =

A

E

B

F

C

G

D

H

sel

x

+

clock

D Q Y

Register

2:1
muxes

area x speed = const

4 mul, 3 add, 1 T
2 mul, 2 add, 2 T

1 mul, 1 add, 4 T

 Wiener Neustadt University of Applied Sciences, Austria 56

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Partially reconfigurability

• Newer devices support partially
reconfigurability
– “overlay technique” in hardware

W
aveform

 C

W
aveform

 B

W
aveform

 A

Reconfig
via ICAP

W
aveform

 D

29

 Wiener Neustadt University of Applied Sciences, Austria 57

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

System-on-chip design

• Fast functionality (ns to µs) is
implemented in hardware

• Slow functionality (ms and slower) is
usually done by software
– generic
– operating system

• System engineer has to decide which part
of the solution is to be put into the fabric

 Wiener Neustadt University of Applied Sciences, Austria 58

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

C to HDL tools

• Create C code
• Profile code
• Identify critical code segments
• Translate to VHDL
• Create stream interfaces to VHDL parts
• Create APU co-processor
• Replace critical code by using streams

• Co-processor uses CPU with own instruction sets

30

 Wiener Neustadt University of Applied Sciences, Austria 59

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

hardware/software codesign flow

Processor IP
MPD Files

system.ucf

Create FPGA Programming
(system.bit)

MHS File
system.mhs

PlatGen

FPGA Implementation
(ISE/Xflow)

Hardware

Data2MEM

download.bit

Compile

Link

Object Files

Executable

Libraries

Source Code
(C code)

LibGen

MSS File
system.mss

EDIF
IP Netlists

Source Code
(VHDL/Verilog)

Synthesis

Standard Embedded Software Flow Standard Embedded Hardware Flow

 Wiener Neustadt University of Applied Sciences, Austria 60

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

hardware/software co-design

• Recent projects
– Wavetable synthesizer
– VHDL code generator + framework

31

 Wiener Neustadt University of Applied Sciences, Austria 61

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Wavetable Synthesizer

• Whole synthesizer in one chip
– 16 voices with 4 generators each
– One filter per voice
– MIDI control

• Why SOC ?
– Inherent parallelism of multiple voices and filters can be

implemented in logic
– Filter coefficient calculations and modulation parameters

can be done by microcontroller
– Communication to logic will be done via memory

mapped registers and interrupts

 Wiener Neustadt University of Applied Sciences, Austria 62

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Wavetable Synthesizer

• The concept

!C

slow control

param calculation

pitch calculation

osc. setup

MIDI, RS232

M
e
m

o
ry

m
a
p
p
e
d

re
g
is

te
rs

FPGA

16 voices à

4 oscillators + 1 filter

stereo output

Register sync

interrupt

24 bit

stereo DAC

@ 96 kHz

Sync

serial

AMP

Wavetable
Synthesizer

32

 Wiener Neustadt University of Applied Sciences, Austria 63

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Wavetable oscillator

• Waveform data is 16 bit
• Determine two adjacent

miptables according to speed
(= frequency)

• Get two waveform values for
the actual position (= phase)
by interpolating between the
two nearest points (24 bit)

• Get final waveform value by
interpolating between two
speeds (24 bit)

pos

freq

val
fitted

value

mip1

mip2

speed

phase

 Wiener Neustadt University of Applied Sciences, Austria 64

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Wavetable Synthesizer Overview
IBM CoreConnect OnChip Peripheral Bus

OPB IPIF

User Logic Adapter

Synthesizer

Voice 2 Filterframe

StereoAcc AC97 Control

OPB - PLB

PPC 405

@ 300 MHz

OnChip RAM

Program & Data

UART

Effect

RAM

512 MB
RS 232

MIDI
Parameters Parameters

WaveTable

Stereo Audio

48 kHz

OSC

OSC

OSC

OSC

MOOG

NOFILTER

Parametric EQ

33

 Wiener Neustadt University of Applied Sciences, Austria 65

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Wavetable synthesizer pipelined

• One oscillator needs 21 cycles
– 11 cycles for register access
– 13 cycles for wavetable memory access

• One voice needs 66 cycles
• The filter needs 35 cycles (26 for Moog)
• One total run is done in 1083 cycles

(2083 available @ 48 kHz)

 Wiener Neustadt University of Applied Sciences, Austria 66

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Wavetable Synthesizer µC interface

• 8 direct registers for audio data
send/return

• 2 memory regions for parameter data
– Oscillator control (16 registers * 64)
– Voice/filter control (32 registers * 16)

• Two interrupts
– each frame (48000/sec)
– each millisecond (1000/sec)

34

 Wiener Neustadt University of Applied Sciences, Austria 67

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

Wavetable Synthesizer sound demos

• LP-sweep (4 pole 24 dB/octave Moog)

• BP-sweep (4 pole, E3=-1,E4=2,E5=-1)

• Voice sample

• Strings sample

 Wiener Neustadt University of Applied Sciences, Austria 68

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FAUST2HDL compiler

• FAUST is a programming language for
real-time sound processing and synthesis.

• A process model is transferred into FAUST
code. The compiler optimizes the
calculations and produces C++ code.

• Instead of C++ code we produce VHDL
code and utilize the possible parallel
execution of calculations on the FPGA.

• We implement a full Harvard architecture
with up to 8 bus systems and 8 ALU
blocks.

35

 Wiener Neustadt University of Applied Sciences, Austria 69

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FAUST2HDL compiler

+

+ +

+

1/z

1/z

-a1

-a2

b0

b1

b2

I(z) O(z)

 import("music.lib");

 gain = vslider("gain", 0, 0, 1, 0.1) ;

 filter(b0,b1,b2,a1,a2) = + ~ conv2 : conv3

 with

 {

 conv2(x) = 0 - a1*x - a2*x';

 conv3(x) = b0*x + b1*x' + b2*x'';

 };

 process = filter(1.25,1.54,1,1.73,1.80) * gain;

 Wiener Neustadt University of Applied Sciences, Austria 70

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FAUST2HDL compiler

• During the last
stage, a pseudo
assembly code is
generated

• This code is
optimized for
parallel calculation
and minimum
resource requirements

• Then the VHDL file
is generated

file.dsp
parse &

evaluate

box

expression

propagate &

norm alize

signal

expression

code

generation
C ++ code

V H D L

code

file.svg

36

 Wiener Neustadt University of Applied Sciences, Austria 71

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FAUST2HDL compiler

 LOAD LREG0 MREG0

 LOAD LREG1 MREG1

 LOAD LREG2 MREG2

 LOADN LREG3 CONSTF_0

 LOAD LREG4 MREG3

 STORE XREGR0_0 MREG3

 ALU MUL LREG3 LREG4 LREG5

 LOADN LREG6 CONSTF_1

 ALU MUL LREG6 XREGR0_0 LREG7

 ALU ADD LREG5 LREG7 LREG8

 ALU SUB INPUT0 LREG8 LREG9

 MOVE LREG9 XREGR0_0

 STORE XREGR0_0 MREG2

 STORE LREG2 MREG1

 LOADN LREG10 CONSTF_2

 ALU MUL LREG10 LREG2 LREG11

 LOADN LREG12 CONSTF_3

 ALU MUL LREG12 XREGR0_0 LREG13

 ALU ADD LREG11 LREG13 LREG14

 ALU ADD LREG1 LREG14 LREG15

 ALU MUL LREG0 LREG15 LREG16

 STORE LREG16 OUTPUT0

 entity FAUST_process is

 port (

 …

-- input left / right

 INPUT0, INPUT1 : std_logic_vector(19 downto 0);

-- output left / right

 OUTPUT0, OUTPUT1: std_logic_vector(19 downto 0);

-- output left back, right back

 OUTPUT2, OUTPUT3: std_logic_vector(19 downto 0);

-- output center / subwoofer

 OUTPUT4, OUTPUT5: std_logic_vector(19 downto 0);

);

 end FAUST_process;

 architecture arch of FAUST_process is

-- local registers

-- memory block prototype

 begin

-- instantiation of dual port memory blocks

-- FSM for local reg <-> memory interaction

-- FSM for local reg <-> local reg interaction

-- FSM for ALU op

 end arch;

 Wiener Neustadt University of Applied Sciences, Austria 72

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FAUST2HDL framework

• The VHDL file is part of a SOC framework
• The framework has been reused from the

wavetable synthesizer
– Interface to µC via memory mapped registers
– Parameter calculations should be done in

software
– Sound processing is done in hardware
– Stereo in, 5.1 out (AC97 protocol standard)

37

 Wiener Neustadt University of Applied Sciences, Austria 73

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

FAUST2VHDL code generator

IBM CoreConnect O nChip Peripheral Bus

O PB IPIF

FA U ST_FW

FA U ST IP

“process“

A C97

Control

O PB - PLB

PPC 405

@ 300 M H z

O nChip

RA M

Program &

D ata

U A RT

RS 232
Param s

Stereo A udio

48 kH z

ETH

M A C

100 M bit

Ethernet

 Wiener Neustadt University of Applied Sciences, Austria 74

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

XUP V2P board – the hardware

38

 Wiener Neustadt University of Applied Sciences, Austria 75

C
o
m

p
u
te

r
E
n
g
in

ee
ri
n
g

