Problems in Interrupt-
Driven Software

Stack Overflow
Interrupt Overload

Robyn Evelyn
Wei Jiao
Truong Nghiem

Overview of Presentation

Paper: “Safe and Structured Use of Interrupts in Real-Time and Embedded
Software”
- Interrupt Definitions and Semantics
- Problems in Interrupt-Driven Software
Vv Stack Overflow
¥ Interrupt Overload - with additional reference to “Preventing Interrupt
Overload”
v Guidelines for Interrupt Driven Embedded Software
Paper: “Eliminating Stack Overflow by Abstract Interpretation”

Paper: “Memory Overflow Protection for Embedded Systems using Runtime
Checks, Reuse and Compression”

Paper: “Multi Task Stack Sharing for Embedded Systems”

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

INTRODUCTION

Interrupts versus polling

Reduce latency and overhead of event detection

Reduce energy consumption

Relatively non-portable across compilers and hardware platforms

Prone to software errors which are difficult to detect

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

DEFINITIONS

Interrupt - Hardware-supported asynchronous transfer of control to an
interrupt vector

Interrupt Vector - Dedicated location in memory that specifies address execution
jumps to

Interrupt Handler - Code that is reachable from an interrupt vector
Interrupt Controller - Peripheral device that manages interrupts for the processor

Pending - Firing condition met and noticed but interrupt handler has not began
to execute

Interrupt Latency - Time from interrupt’s firing condition being met and start of
execution of interrupt handler

Nested Interrupt - Occurs when one interrupt handler preempts another

Reentrant Interrupt - Multiple invocations of a single interrupt handler are
concurrently active

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

SEMANTICS

Semantics of interrupts differ across hardware platforms and embedded
compilers
» Execution of instructions
- Interrupts - typically executed atomically
- Slow instructions - typically executed non-atomically
However, not always the case: some architectures use single non-
interruptible instructions.Why? To reduce code size

Note: Such instructions increase latency.

Tradeoff between latency and code size

Amount of state that is saved depends on the processor architecture
68HCI | (CISC) - all registers saved
AVR (RISC) - program counter only

Support for interrupt handlers depends on the embedded compiler
Most support interrupt handlers that look like normal functions but
with a non-portable pragma indicating that code generator create an
interrupt prologue and epilogue for the function.

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

INTERRUPT-DRIVEN SOFTWARE

A system is interrupt-driven when a significant amount of its processing is initiated
by interrupts

PROBLEMS ENCOUNTERED

- Avoiding stack overflow
- Meeting real-time deadlines
- Dealing with interrupt overload

STACK OVERFLOW

During execution stacks grow and shrink
If stack becomes larger than memory allocated to it, RAM becomes corrupted
and system malfunctions
How much memory should the programmer allocate for the stack?
* Overprovisioning: wastes memory that could be used for other
purposes
* Underprovisioning: system is prone to stack overflow
How does the developer decide on the stack size?!
* Testing-based approach - empirical data from simulated or actual runs
used as a guide
* Andlysis-based approach - some form of counting push, pop and call
instructions along different paths; needs to be automatic

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

STACK OVERFLOW

Analysis vs.Testing approaches to sizing the stack
goal is to bound the stack size by finding a path through the program that
produces the worst-case stack behavior

Testing-Based

Run the system to see how big the stack gets

System should be tested under heavy, diverse loads

Real system - Initialize stack memory to known values and see how many get
overwritten

Treats system as a black box

Can miss paths through the code

Analysis-Based

Looks at flow of control through system

Goal is to find the path that pushes the maximum amount of data onto the
stack

Complex - involves main function and interrupt handlers

Often overestimates maximum stack size - sometimes gives infinite worst-case
stack depth

Much faster than testing

Possible to produce a guaranteed upper bound on stack depth - stack-safe
systems

worst depth seen in testing < true worst depth < analytic worst depth

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

STACK OVERFLOW

Gaps between worst depth seen in testing and analytic worst depth can be
narrowed through hard work
*x Clever tests to include missing paths
* Run tests for longer
* Analysis can take causal relationships between interrupt handlers into
account

Stack-depth Analysis

Control Flow Graph (CFG) - representation of possible movement of program
counter through system’s code

Straightforward - cyclic executive; single control graph
Use of analyzer - recursion, indirect calls, RTOS
Simple analyzer - push and pop instructions only
More sophisticated analyzer - alloca instructions

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

INTERRUPT OVERLOAD

Embedded systems particularly interrupt-driven
- constant micromanagement of peripherals
- processors can sleep until interrupt arrives
® Polling - performs well under overload but inefficient during underload

Interrupt overload: Condition where external interrupts signaled frequently
enough to cause other activities running on the processor to be starved

Case |: Apollo Guidance Computer (AGC) - first recognizably modern
embedded system, used in real-time by astronaut pilots to collect and
provide flight information, and to automatically control all of the navigational
functions of the Apollo spacecraft. First moon landing - flood of radar data
overloaded CPU on Lunar Landing Module

There is a need to bound the maximum interrupt arrival rates
- not easy; may require reasoning about complex physical systems

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

Source Max. Interrupt Freq. (Hz)
knife switch bounce 333
loose wire 500
toggle switch bounce 1000
rocker switch bounce 1300
serial port @115 kbps 11500
10 Mbps Ethernet 14 880
CAN bus 15000
12C bus 50000
USB 90 000
100 Mbps Ethernet 148 800
Gigabit Ethernet 1488000

Table 1. Potential sources of excessive interrupts for embedded
processors. The top part of the table reflects the results of experi-
ments and the bottom part presents numbers that we computed or
found in the literature.

Preventing Interrupt Overload

Switches can generate surprisingly high-frequency events
- Embedded systems are prone to unforseen “switches”
- Debounce switch using low-pass filter in hardware or software

Preventing interrupt overload - stopping processor from handling interrupts when
developer-specified conditions are met.
- filtering using hardware
- scheduling interrupts in software; involves controlling the interrupt’s
enable bit (software scheduler)

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

&
Preventing Interrupt Overload

Two types of software scheduler

Strict
Bursty

Strict Software Scheduler

Enforces minimum interarrival time between interrupts or maximum
interrupt frequency

Interrupt prologue modified to clear the interrupt’s enable bit. Sets up a
one-shot timer to expire one interarrival time in the future; when timer

expires the handler re-enables the interrupt
Incurs some overhead; number of interrupts handled is doubled

Bursty Software Scheduler

Lower overhead but weaker isolation

Disables the interrupt only after a burst of interrupt requests has been
observed

Requires maximum burst size and maximum arrival rate for bursts
Interrupt prologue modified to increment counter. When counter
reaches max burst size, clear interrupt’s enable bit

Counter is cleared by a periodic timer set to the frequency of burst
arrival rate

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

Scheduling multiple interrupt sources

Strict Scheduler
- Simply replicate software for each interrupt

Bursty Scheduler
- Opportunities for optimization
v Use single periodic timer to clear counters for multiple interrupt
sources
Choose burst size that strikes a balance between overhead and
protection from overload

Modeling Interrupt Schedulers

Parameter | Cost (cycles)
Lint 79
tpoll 4
tsetup 5
texpire 79
Laip 5
tcount 12
Lelear 5

Table 2. Overhead constants for the ATmegalO03L with TinyOS. A
cycle is 250 ns.

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

Parameter | Cost (cycles)
Lint 79
tpoll 4
tsetup 5
texpire 79
Lhip 5
tcount 1 2
tclear 5

Table 2. Overhead constants for the ATmegal03L with TinyOS. A
cycle is 250 ns.

t_work = worst-case execution time of processing one unit of work
t_arrival = minimum interarrival time

t_int = overhead of taking interrupt as opposed to polling

t_poll = cost of polling

t_setup = time taken to set up the one-shot timer

t_expire = overhead for one-shot or periodic timer to expire
t_count = overhead of incrementing counter

t_clear = cost of clearing counter

t_flip = overhead of setting or clearing interrupt enable flag

Note that t_work is the only one under the control of the programmer

Goal: to compute the WCET (C) and the worst-case inter-arrival time (T), real-
time parameters for each interrupt source

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

Does not address the computation of WCET of generic code, a well-studied
problem

Pure Interrupts

T=0

low-priority work is starved

corresponds to stuck level-triggered interrupt

Pure Polling
polling driven by timer that expires every t_arrival

worst-case: work from device must be processed at each expiration
T =t _arrival
C =t_expire + t_poll + t_work

Strict Software Scheduler

model scheduler as pair of tasks; one for interrupt handler, one for timer
interrupt

both tasks have T = t_arrival

Interrupt handler: C = t_int + t_flip + t_setup + t_work

Timer: C = t_expire + t_flip

Bursty Software Scehduler
model as pair of tasks
N = burst size

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

Bursty Software Scehduler

model as pair of tasks

N = burst size

both tasks have T = t_arrival

Interrupt handler: C = N*(t_int + t_work + t_count) + t_flip
Burst of interrupts is modeled as single task arrival

Timer: C = t_expire + t_clear + t_flip

Basic strategies for avoiding interrupt overload

Keep interrupt handlers short
Bound arrival rates of interrupts - may involve studying the interrupting
device
Reduce worst-case arrival rate
Poll for events rather than using interrupts
- adds processor overhead even when there are no events to process
- consider switching between interrupts and polling depending on
system load
» switching will create additional overhead
Use an interrupt scheduler - hardware or software that limits maximum
arrival rate of an interrupt source

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

—— pure polling

—+— pure interrupts

—eo— emulated hardware scheduler
—&— strict software scheduler

—e— bursty software scheduler N=4
—&— bursty software scheduler N=16

N
e}
L

N
(@)

maximum allowed interrupt
arrival rate: 4 kHz

underload overload
R ——

(O8]
e}
i BT

[\
S
vl vy

—
()
I RS

[70]
R
%]
]
-
=]
3]
=
1]
7]
~—
(=
=
R
R
2]
=1
=]
=
=
=]
«
[72]
~—
(=¥
=
R
R
2]
~—
.E
>
=
=
3]
72!
=
=
[~
@)
N

T T T :""'I T T Tt
1000 10000 100000
Offered interrunt load (Hz)

Figure 1. Comparing the performance of different interrupt sched-
ulers when interrupt handlers perform no work

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

General guidelines for Interrupt-Driven Embedded Software

Scheduling
Scheduling discipline must be specified - preemptive or non-preemptive

priority-based scheduling. Include response-time equations
Never permit two different interrupt handlers to preempt each other
Reasons for preemption identified. Strive to eliminate useless preemption

Callgraph

|dentify callgraphs for system; one per interrupt, one for main, one for each
thread
Avoid recursive loops

Time Correctness

Determine maximum arrival rate of each interrupt source.

Determine deadline for each interrupt and cost of missing a deadline
Determine WCET for each interrupt. Consider also the WCET of the non-
time-sensitive part of interrupt handler

Determine longest amount of time for which interrupts are disabled (used
as blocking term in schedulability equations)

Stack Correctness
Develop a stack model

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&
Preventing Interrupt Overload

General guidelines for Interrupt-Driven Embedded Software

Stack Correctness

Develop a stack model; identify effect of interrupts on each stack

Determine stack budget - worst-case amount of RAM available for
interrupts

Worst-case stack memory usage for each interrupt

Overall worst-case stack depth

Concurrency Correctness

Reachability analysis to determine which data structures are reachable from
which interrupt handlers

Automatic data structures must be unshared

Protect shared variables

