
Problems in Interrupt-
Driven Software

Stack Overflow
Interrupt Overload

Robyn Evelyn
Wei Jiao

Truong Nghiem

Overview of Presentation

• Paper: “Safe and Structured Use of Interrupts in Real-Time and Embedded
Software”

- Interrupt Definitions and Semantics
- Problems in Interrupt-Driven Software

✓Stack Overflow
✓Interrupt Overload - with additional reference to “Preventing Interrupt
Overload”
✓Guidelines for Interrupt Driven Embedded Software

• Paper: “Eliminating Stack Overflow by Abstract Interpretation”

• Paper: “Memory Overflow Protection for Embedded Systems using Runtime
Checks, Reuse and Compression”

• Paper: “Multi Task Stack Sharing for Embedded Systems”

INTRODUCTION

Interrupts versus polling

• Reduce latency and overhead of event detection

• Reduce energy consumption

• Relatively non-portable across compilers and hardware platforms

• Prone to software errors which are difficult to detect

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

DEFINITIONS

Interrupt - Hardware-supported asynchronous transfer of control to an
interrupt vector

Interrupt Vector - Dedicated location in memory that specifies address execution
jumps to

Interrupt Handler - Code that is reachable from an interrupt vector

Interrupt Controller - Peripheral device that manages interrupts for the processor

Pending - Firing condition met and noticed but interrupt handler has not began
to execute

Interrupt Latency - Time from interrupt’s firing condition being met and start of
execution of interrupt handler

Nested Interrupt - Occurs when one interrupt handler preempts another

Reentrant Interrupt - Multiple invocations of a single interrupt handler are
concurrently active

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

SEMANTICS

• Semantics of interrupts differ across hardware platforms and embedded
compilers
‣ Execution of instructions

- Interrupts - typically executed atomically
- Slow instructions - typically executed non-atomically

However, not always the case: some architectures use single non-
interruptible instructions. Why? To reduce code size

Note: Such instructions increase latency.

Tradeoff between latency and code size

‣ Amount of state that is saved depends on the processor architecture
68HC11 (CISC) - all registers saved
AVR (RISC) - program counter only

‣ Support for interrupt handlers depends on the embedded compiler
Most support interrupt handlers that look like normal functions but
with a non-portable pragma indicating that code generator create an
interrupt prologue and epilogue for the function.

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

INTERRUPT-DRIVEN SOFTWARE

A system is interrupt-driven when a significant amount of its processing is initiated
by interrupts

PROBLEMS ENCOUNTERED

- Avoiding stack overflow
- Meeting real-time deadlines

- Dealing with interrupt overload

STACK OVERFLOW

• During execution stacks grow and shrink
• If stack becomes larger than memory allocated to it, RAM becomes corrupted

and system malfunctions
• How much memory should the programmer allocate for the stack?

• Overprovisioning: wastes memory that could be used for other
purposes

• Underprovisioning: system is prone to stack overflow
• How does the developer decide on the stack size?

• Testing-based approach - empirical data from simulated or actual runs
used as a guide

• Analysis-based approach - some form of counting push, pop and call
instructions along different paths; needs to be automatic

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

STACK OVERFLOW

Analysis vs. Testing approaches to sizing the stack
- goal is to bound the stack size by finding a path through the program that

produces the worst-case stack behavior

Testing-Based
• Run the system to see how big the stack gets
• System should be tested under heavy, diverse loads
• Real system - Initialize stack memory to known values and see how many get

overwritten
• Treats system as a black box
• Can miss paths through the code

Analysis-Based
• Looks at flow of control through system
• Goal is to find the path that pushes the maximum amount of data onto the

stack
• Complex - involves main function and interrupt handlers
• Often overestimates maximum stack size - sometimes gives infinite worst-case

stack depth
• Much faster than testing
• Possible to produce a guaranteed upper bound on stack depth - stack-safe

systems
worst depth seen in testing ≤ true worst depth ≤ analytic worst depth

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

STACK OVERFLOW

• Gaps between worst depth seen in testing and analytic worst depth can be
narrowed through hard work

★ Clever tests to include missing paths
★ Run tests for longer
★ Analysis can take causal relationships between interrupt handlers into

account

Stack-depth Analysis

Control Flow Graph (CFG) - representation of possible movement of program
counter through system’s code

★ Straightforward - cyclic executive; single control graph
★ Use of analyzer - recursion, indirect calls, RTOS
★ Simple analyzer - push and pop instructions only
★ More sophisticated analyzer - alloca instructions

Safe and Structured Use of Interrupts in Real-Time and Embedded Software

INTERRUPT OVERLOAD

• Embedded systems particularly interrupt-driven
- constant micromanagement of peripherals
- processors can sleep until interrupt arrives
๏ Polling - performs well under overload but inefficient during underload

• Interrupt overload: Condition where external interrupts signaled frequently
enough to cause other activities running on the processor to be starved

• Case 1: Apollo Guidance Computer (AGC) - first recognizably modern
embedded system, used in real-time by astronaut pilots to collect and
provide flight information, and to automatically control all of the navigational
functions of the Apollo spacecraft. First moon landing - flood of radar data
overloaded CPU on Lunar Landing Module

• There is a need to bound the maximum interrupt arrival rates
- not easy; may require reasoning about complex physical systems

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

driven network subsystems [5, 19] drop excess packets as early
as possible and switch from interrupt-driven to polling mode dur-
ing overload. Dropping packets early—before copying them into a
buffer, for example—can delay the onset of interrupt overload but
cannot prevent it. Adaptively switching between interrupt-driven
and polling I/O is not a generally suitable strategy for embedded
systems with tight response time requirements: it does not offer any
guarantees about progress between the time when overload begins
and the time when the system responds. Our solutions focus on
predictability and responsiveness: they permit strong performance
guarantees to be made to non-interrupt work.
The third characteristic of embedded systems that motivates our

work is their extreme cost sensitivity, which often leads them to use
cheap peripherals with little or no onboard processing power. This
implies that for most embedded systems, developers will not be
able to modify device firmware to ensure that the main processor is
not overloaded by interrupts. Our solutions to interrupt overload—
in both software and hardware—all run on the main processor. In
contrast, Druschel and Banga [5] and Dannowski and Härtig [4]
have prevented interrupt overload by changing the firmware run-
ning on high-end NICs.
In the next section we describe potential causes for inter-

rupt overload. We present our solutions to interrupt overload in
Section 3, discuss additional interrupt scheduling issues in Sec-
tion 4, and analyze the schedulers’ behavior in Section 5. Section 6
presents the results of an experimental validation and evaluation of
our schedulers and Section 7 describes a case study in protecting an
embedded Ethernet device against network interrupt overload. Sec-
tion 8 describes an experiment in synthesizing a hardware-based
interrupt scheduler. We compare our work to related research in
Section 9 and conclude in Section 10.

2. Interrupt Overload

The first moon landing was nearly aborted when a flood of radar
data overloaded a CPU on the Lunar Landing Module, resulting
in guidance computer resets [20, pp. 345–355]. The problem on
Apollo 11 appears to have been caused by spurious signals coming
from a disconnected device. It would not have been severe had the
system been designed so that a single erroneous interrupt source
was not permitted to overload the computer.
Embedded systems tend to be particularly interrupt-driven. One

reason is that embedded systems are usually very cost-sensitive.
This leads to the use of cheap, dumb peripherals that require con-
stant micromanagement, with an extreme case being the canonical
“bit-banged” network interface where each bit is sent over the wire
using explicit software control. A second reason that interrupts are
used heavily is that many processors are capable of going to sleep,
greatly reducing power consumption, until an interrupt arrives. This
is an important energy optimization for devices that rely on batter-
ies. The obvious alternative to interrupts, polling, performs well
during overload but degrades performance and consumes power
during underload by generating useless work.
Interrupt overload is not necessarily caused by high interrupt

loads, but rather by unexpectedly high interrupt loads. For exam-
ple, a fast processor running software that performs minimal work
in interrupt mode can easily handle hundreds of thousands of in-
terrupts per second. On the other hand, a slow processor running
lengthy interrupt code can be overwhelmed by merely hundreds of
interrupts per second.
Computing a reliable maximum request rate for an interrupt

source in an embedded system is difficult, often requiring reasoning
about complex physical systems. For example, consider an optical
shaft encoder used to measure wheel speed on a robot. The maxi-
mum interrupt rate of the encoder depends on the maximum speed
of the robot and the design of the encoder wheel. However, what

Source Max. Interrupt Freq. (Hz)

knife switch bounce 333
loose wire 500
toggle switch bounce 1 000
rocker switch bounce 1 300

serial port @115 kbps 11 500
10 Mbps Ethernet 14 880
CAN bus 15 000
I2C bus 50 000
USB 90 000
100 Mbps Ethernet 148 800
Gigabit Ethernet 1 488 000

Table 1. Potential sources of excessive interrupts for embedded
processors. The top part of the table reflects the results of experi-
ments and the bottom part presents numbers that we computed or
found in the literature.

happens if the robot exceeds its maximum design speed, for ex-
ample while going downhill? What if the encoder wheel gets dirty,
causing it to deliver pulses too often?
The data in Table 1 show some measured and computed worst-

case interrupt rates. Even innocuous-seeming hardware, such as
switches, can display interesting electrical behavior. For exam-
ple, during the transition from open to closed and closed to open,
switches that we measured (using a logic analyzer) created tran-
sient signals that an embedded processor would interpret as inter-
rupt requests exceeding 1 kHz. This could easily cause problems
for a system designed to handle only tens of switch transitions per
second. The traditional way to debounce a switch is to implement
a low-pass filter either in hardware or software. Although debounc-
ing techniques are well-known to embedded systems designers, it
is not enough just to debounce all switches: new and unforeseen
“switches” can appear at run-time as a result of loose contacts or
damaged wires. Both of these problems are more likely in embed-
ded systems that operate in difficult environmental conditions with
heat and vibration, and without routine maintenance. These condi-
tions are, of course, very common—for example, in automobiles.
Network interfaces represent another potential source for inter-

rupt overload. For example, consider an embedded CPU that ex-
changes data with other processors over 10Mbps Ethernet using
a specialized protocol that specifies 1000-byte packets. If the net-
work interface interrupts on packet arrival, the maximum interrupt
rate is 1.25 kHz. However, if a malfunctioning or malicious node
sends minimum-sized (72 byte) packets, the interrupt rate increases
to nearly 15 kHz [13], potentially starving important processing.

3. Preventing Interrupt Overload

This section briefly reviews interrupt handling and then presents
our techniques for preventing interrupt overload. Two of these
schemes operate entirely in software, and can be run on off-the-
shelf microprocessors. The third technique is implemented in hard-
ware.

3.1 Interrupt background

There is variation in the details of interrupt implementations: we
describe the behavior of the Atmel AVR family of microcontrollers
as it is typical and these are the processors that we use to evaluate
our work in Section 6. Each interrupt has two special hardware bits
associated with it: an enable bit and a pending bit. Also, there is a
global interrupt enable bit that can be used to disable all interrupt
handlers.

LCTES’05 2 2005/5/2

Preventing Interrupt Overload

• Switches can generate surprisingly high-frequency events
- Embedded systems are prone to unforseen “switches”
- Debounce switch using low-pass filter in hardware or software

• Preventing interrupt overload - stopping processor from handling interrupts when
developer-specified conditions are met.

- filtering using hardware
- scheduling interrupts in software; involves controlling the interrupt’s

enable bit (software scheduler)

• Two types of software scheduler
- Strict
- Bursty

Strict Software Scheduler

- Enforces minimum interarrival time between interrupts or maximum
interrupt frequency

- Interrupt prologue modified to clear the interrupt’s enable bit. Sets up a
one-shot timer to expire one interarrival time in the future; when timer
expires the handler re-enables the interrupt

- Incurs some overhead; number of interrupts handled is doubled

Bursty Software Scheduler

- Lower overhead but weaker isolation
- Disables the interrupt only after a burst of interrupt requests has been

observed
- Requires maximum burst size and maximum arrival rate for bursts
- Interrupt prologue modified to increment counter. When counter

reaches max burst size, clear interrupt’s enable bit
- Counter is cleared by a periodic timer set to the frequency of burst

arrival rate

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

Scheduling multiple interrupt sources

• Strict Scheduler
- Simply replicate software for each interrupt

• Bursty Scheduler
- Opportunities for optimization

✓ Use single periodic timer to clear counters for multiple interrupt
sources

- Choose burst size that strikes a balance between overhead and
protection from overload

Modeling Interrupt Schedulers

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

and protection from overload. There are more choices to make in
a system with multiple interrupt sources. Simply picking the least
common multiple (LCM) of the burst arrival rates for all interrupt
sources is likely to result in a very high frequency and thus poor
overall performance.
We can round up the maximum allowed rates to some multiples

of a large number, allowing a single slow timer to service them
all and still maintain reasonable protection. For example, a system
with three sources with maximum arrival rates of 324, 200, and
754Hz can be serviced by a single timer of 110Hz and have a
maximum burst size of 3, 2, and 7, respectively.
Also, note that the hardware timers provided by an embedded

processor natively support only certain frequencies, so it is likely
that some rounding will be required anyway.

4. Discussion

This section discusses a few additional issues in preventing inter-
rupt overload.

Design space issues Although it would not be difficult to imple-
ment a bursty scheduler in hardware, we have not done so. The
choices of strict vs. bursty and hardware vs. software are orthog-
onal: it is unlikely that we would have learned anything new by
doing this. Similarly, we could have implemented a bursty sched-
uler that uses a one-shot timer, instead of a periodic timer, to reset
the burst counter. Again, our judgment was that we wouldn’t have
learned anything new.

Interface issues A drawback of a software-based interrupt sched-
uler is that asynchronously modifying interrupt enable bits from
timer callbacks is an inconvenience to developers who want to dis-
able an individual interrupt source as a strategy for implementing
mutual exclusion. In other words, we have made the interrupt en-
able bit into a shared variable, inviting race conditions. There are
two solutions to this problem. The first is a hardware solution: each
interrupt line could be outfitted with two enable bits, one that is
set and cleared by the interrupt scheduling logic, the other being
reserved for programmers. The interrupt would be permitted to fire
only when both bits (and also the global interrupt enable bit) are set.
The second solution is a software-based implementation equivalent
to having two interrupt enable bits: the interrupt bit must be modi-
fied using function calls that only set the hardware interrupt enable
bit when both the interrupt scheduler and user code want to do so.
This is simple to implement but adds time and space overhead.

Implications of dropping interrupts A potential problem with
scheduling interrupts is that during overload the CPU may miss
some interrupts that otherwise would have been processed. This
could lead to degraded quality of service or even system failure.
The rationale for using interrupt schedulers is as follows. When
interrupt overload occurs there is no way to avoid making a difficult
tradeoff—either interrupts must be dropped or else other processing
will starve. Our work makes an implicit assumption that a system’s
core processing is more important than, for example, receiving
every network packet that arrives. Clearly this assumption could be
incorrect for a particular system. In general, however, we strongly
belive that failures should be forced to occur in a predictable,
bounded manner, with as little impact on the rest of the system
as possible. Interrupt schedulers can help achieve this goal.

5. Performance Analysis

Interrupt controllers implicitly run interrupts at a higher priority
than non-interrupt work. It is well-known that static priority sched-
ulers have poor fairness characteristics during overload: low prior-
ity work is starved [21]. The goal of our work is to avoid this kind

Parameter Cost (cycles)

tint 79
tpoll 4
tsetup 5
texpire 79
tflip 5
tcount 12
tclear 5

Table 2. Overhead constants for the ATmega103L with TinyOS. A
cycle is 250 ns.

of starvation by applying reservation-like scheduling techniques to
interrupts. In this section we show how to make quantitative perfor-
mance guarantees to low-priority work in the presence of scheduled
interrupts—this cannot be done otherwise, except by making risky
assumptions about maximum interrupt arrival rates.

5.1 Static priority analysis

There are many different priority-based real-time analyses [8, 16,
26, 29, 25]. The common idea across all of this work is that given
a worst-case execution time (WCET), a minimum interarrival time,
and a priority for each member of a collection of tasks, the worst-
case completion time of each task instance, relative to the time it
became ready, can be efficiently computed. In the next section we
show how to compute WCET (denoted C) and minimum interar-
rival time (denoted T) for each interrupt in an embedded system.
Our work does not address the problem of computing the WCET of
generic code; this is a well-studied static analysis problem [6, 17].
Rather, given some basic system overheads and a WCET for the
user-specified part of the interrupt, we show how to put these num-
bers together into an aggregate WCET that includes all overheads.
Once C and T have been computed for all tasks, an appropriate
real-time analysis can be run to find out if a system is schedulable.
The details of the analysis chosen are irrelevant: we simply focus
on deriving inputs that are common across real-time analyses.

5.2 Modeling interrupt schedulers

Consider a system with a single interrupt handler that is connected
to an external device. We want to ensure that every pair of inter-
rupts processed by the CPU is separated by at least the minimum
interarrival time tarrival. Let twork be the worst-case execution time
of processing a unit of work generated by the device, tint be the
overhead of taking an interrupt as opposed to polling (usually just
the cost of the interrupt prologue and epilogue), and tpoll be the cost
of polling: determining if the device has any new work that needs
processing. Furthermore, let tsetup be the time taken to arrange for
a one-shot timer interrupt to arrive in the future and texpire be the
overhead to take either a periodic or one-shot timer interrupt. For
the bursty scheduler, let tcount be the overhead of incrementing the
interrupt counter and checking it against the threshold value, and
let tclear be the cost of clearing this counter. Finally, let tflip be the
overhead for either setting or clearing an interrupt enable flag. Of
these overheads, it is usually the case that only twork is under con-
trol of the developer—the other constants are determined by the
platform: the hardware and RTOS. For example, the values of these
constants on our test platform (described in Section 6) are given
in Table 2. We computed these values empirically by counting in-
structions; they are approximate.
The rest of this section shows how to compute the important

real-time parameters C and T for each interrupt source.

LCTES’05 4 2005/5/2

t_work = worst-case execution time of processing one unit of work
t_arrival = minimum interarrival time
t_int = overhead of taking interrupt as opposed to polling
t_poll = cost of polling
t_setup = time taken to set up the one-shot timer
t_expire = overhead for one-shot or periodic timer to expire
t_count = overhead of incrementing counter
t_clear = cost of clearing counter
t_flip = overhead of setting or clearing interrupt enable flag

Note that t_work is the only one under the control of the programmer

Goal: to compute the WCET (C) and the worst-case inter-arrival time (T), real-
time parameters for each interrupt source

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

and protection from overload. There are more choices to make in
a system with multiple interrupt sources. Simply picking the least
common multiple (LCM) of the burst arrival rates for all interrupt
sources is likely to result in a very high frequency and thus poor
overall performance.
We can round up the maximum allowed rates to some multiples

of a large number, allowing a single slow timer to service them
all and still maintain reasonable protection. For example, a system
with three sources with maximum arrival rates of 324, 200, and
754Hz can be serviced by a single timer of 110Hz and have a
maximum burst size of 3, 2, and 7, respectively.
Also, note that the hardware timers provided by an embedded

processor natively support only certain frequencies, so it is likely
that some rounding will be required anyway.

4. Discussion

This section discusses a few additional issues in preventing inter-
rupt overload.

Design space issues Although it would not be difficult to imple-
ment a bursty scheduler in hardware, we have not done so. The
choices of strict vs. bursty and hardware vs. software are orthog-
onal: it is unlikely that we would have learned anything new by
doing this. Similarly, we could have implemented a bursty sched-
uler that uses a one-shot timer, instead of a periodic timer, to reset
the burst counter. Again, our judgment was that we wouldn’t have
learned anything new.

Interface issues A drawback of a software-based interrupt sched-
uler is that asynchronously modifying interrupt enable bits from
timer callbacks is an inconvenience to developers who want to dis-
able an individual interrupt source as a strategy for implementing
mutual exclusion. In other words, we have made the interrupt en-
able bit into a shared variable, inviting race conditions. There are
two solutions to this problem. The first is a hardware solution: each
interrupt line could be outfitted with two enable bits, one that is
set and cleared by the interrupt scheduling logic, the other being
reserved for programmers. The interrupt would be permitted to fire
only when both bits (and also the global interrupt enable bit) are set.
The second solution is a software-based implementation equivalent
to having two interrupt enable bits: the interrupt bit must be modi-
fied using function calls that only set the hardware interrupt enable
bit when both the interrupt scheduler and user code want to do so.
This is simple to implement but adds time and space overhead.

Implications of dropping interrupts A potential problem with
scheduling interrupts is that during overload the CPU may miss
some interrupts that otherwise would have been processed. This
could lead to degraded quality of service or even system failure.
The rationale for using interrupt schedulers is as follows. When
interrupt overload occurs there is no way to avoid making a difficult
tradeoff—either interrupts must be dropped or else other processing
will starve. Our work makes an implicit assumption that a system’s
core processing is more important than, for example, receiving
every network packet that arrives. Clearly this assumption could be
incorrect for a particular system. In general, however, we strongly
belive that failures should be forced to occur in a predictable,
bounded manner, with as little impact on the rest of the system
as possible. Interrupt schedulers can help achieve this goal.

5. Performance Analysis

Interrupt controllers implicitly run interrupts at a higher priority
than non-interrupt work. It is well-known that static priority sched-
ulers have poor fairness characteristics during overload: low prior-
ity work is starved [21]. The goal of our work is to avoid this kind

Parameter Cost (cycles)

tint 79
tpoll 4
tsetup 5
texpire 79
tflip 5
tcount 12
tclear 5

Table 2. Overhead constants for the ATmega103L with TinyOS. A
cycle is 250 ns.

of starvation by applying reservation-like scheduling techniques to
interrupts. In this section we show how to make quantitative perfor-
mance guarantees to low-priority work in the presence of scheduled
interrupts—this cannot be done otherwise, except by making risky
assumptions about maximum interrupt arrival rates.

5.1 Static priority analysis

There are many different priority-based real-time analyses [8, 16,
26, 29, 25]. The common idea across all of this work is that given
a worst-case execution time (WCET), a minimum interarrival time,
and a priority for each member of a collection of tasks, the worst-
case completion time of each task instance, relative to the time it
became ready, can be efficiently computed. In the next section we
show how to compute WCET (denoted C) and minimum interar-
rival time (denoted T) for each interrupt in an embedded system.
Our work does not address the problem of computing the WCET of
generic code; this is a well-studied static analysis problem [6, 17].
Rather, given some basic system overheads and a WCET for the
user-specified part of the interrupt, we show how to put these num-
bers together into an aggregate WCET that includes all overheads.
Once C and T have been computed for all tasks, an appropriate
real-time analysis can be run to find out if a system is schedulable.
The details of the analysis chosen are irrelevant: we simply focus
on deriving inputs that are common across real-time analyses.

5.2 Modeling interrupt schedulers

Consider a system with a single interrupt handler that is connected
to an external device. We want to ensure that every pair of inter-
rupts processed by the CPU is separated by at least the minimum
interarrival time tarrival. Let twork be the worst-case execution time
of processing a unit of work generated by the device, tint be the
overhead of taking an interrupt as opposed to polling (usually just
the cost of the interrupt prologue and epilogue), and tpoll be the cost
of polling: determining if the device has any new work that needs
processing. Furthermore, let tsetup be the time taken to arrange for
a one-shot timer interrupt to arrive in the future and texpire be the
overhead to take either a periodic or one-shot timer interrupt. For
the bursty scheduler, let tcount be the overhead of incrementing the
interrupt counter and checking it against the threshold value, and
let tclear be the cost of clearing this counter. Finally, let tflip be the
overhead for either setting or clearing an interrupt enable flag. Of
these overheads, it is usually the case that only twork is under con-
trol of the developer—the other constants are determined by the
platform: the hardware and RTOS. For example, the values of these
constants on our test platform (described in Section 6) are given
in Table 2. We computed these values empirically by counting in-
structions; they are approximate.
The rest of this section shows how to compute the important

real-time parameters C and T for each interrupt source.

LCTES’05 4 2005/5/2

• Does not address the computation of WCET of generic code, a well-studied
problem

Pure Interrupts
- T = 0
- low-priority work is starved
- corresponds to stuck level-triggered interrupt

Pure Polling
- polling driven by timer that expires every t_arrival
- worst-case: work from device must be processed at each expiration
- T = t_arrival
- C = t_expire + t_poll + t_work

Strict Software Scheduler
- model scheduler as pair of tasks; one for interrupt handler, one for timer

interrupt
- both tasks have T = t_arrival
- Interrupt handler: C = t_int + t_flip + t_setup + t_work
- Timer: C = t_expire + t_flip

Bursty Software Scehduler
- model as pair of tasks
- N = burst size

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

Bursty Software Scehduler
- model as pair of tasks
- N = burst size
- both tasks have T = t_arrival
- Interrupt handler: C = N*(t_int + t_work + t_count) + t_flip
- Burst of interrupts is modeled as single task arrival
- Timer: C = t_expire + t_clear + t_flip

Basic strategies for avoiding interrupt overload

• Keep interrupt handlers short
• Bound arrival rates of interrupts - may involve studying the interrupting

device
• Reduce worst-case arrival rate
• Poll for events rather than using interrupts

- adds processor overhead even when there are no events to process
- consider switching between interrupts and polling depending on

system load
‣ switching will create additional overhead

• Use an interrupt scheduler - hardware or software that limits maximum
arrival rate of an interrupt source

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

Pure interrupts In the worst case, interarrival time of interrupts is
zero, and low-priority work is starved. This condition corresponds
to a stuck level-triggered interrupt.

Pure polling Polling is driven by a timer that expires once every
minimum interarrival time, and in the worst case work from the
device must be processed at each expiration. This situation can be
modeled as a periodic task with T = tarrival and C = texpire+ tpoll+
twork.

Strict software scheduler This scheduler can be modeled as a pair
of tasks, one representing the interrupt handler, the other represent-
ing the timer interrupt that re-enables the device interrupt, both with
T = tarrival. To see that this is correct, first notice that since the
timer interrupt is always set to expire one interarrival time in the
future, it cannot recur more often than this. Second, the interrupt
itself cannot recur more often than once every tarrival because each
time it arrives, its enable bit is cleared for one interarrival time.
The worst-case execution times are as follows: for the interrupt
C = tint + tflip + tsetup + twork, and for the timer C = texpire + tflip.

Bursty software scheduler Again, we model the interrupt and
timer tasks separately. The burst size N can take any value, and
the period T of the timer and interrupt are both equal to minimum
interarrival time for bursts of interrupts. Then, for the timer, C =
texpire+tclear+tflip and for the interruptC = N(tint+twork+tcount)+
tflip. In other words, for purposes of real-time analysis, we model a
worst-case burst of interrupts as a single task arrival.
When using this scheduler it is possible for a burst of interrupts

to arrive just before the periodic timer interrupt, and then for a
second burst to arrive immediately after. Many real-time analyses
can deal correctly with this case: the key is to avoid making any
assumption about when, within its period, a task will run; this is
handed by a release jitter term in the schedulability equations [29].
The jitter for a burst of interrupts should be set to T − C. An
alternate approach, also correct but more pessimistic, is to double
the WCET of the task representing the burst of interrupts.

Hardware scheduler The interrupt scheduler permits at most one
interrupt per interarrival time, and therefore it can be modeled as a
periodic task with T = tarrival and C = tint + twork.

6. Experimental Evaluation

The analytical results in the previous section can be used to com-
pute lower bounds on the rate of progress of low-priority work in an
embedded system. These bounds are best computed using schedul-
ing theory as they are not easy to determine empirically. This sec-
tion uses experiments run on a real system—no simulation results
are used—to show that our techniques work and to evaluate their
overhead in practice. In each case, our hardware-based interrupt
scheduler that is implemented on a second microcontroller repre-
sents the “gold standard” against which the software schedulers
should be compared: it provides perfect protection with zero soft-
ware overhead.

6.1 Methodology and equipment

To evaluate our three interrupt schedulers, we implemented the
software schedulers on Berkeley “Mica” motes [10], sensor net-
work nodes based on Atmel’s ATmega103L microcontroller. These
processors run at 4MHz and have 4KB of SRAM for data stor-
age. Because of their small size, they almost always run only one
application, allowing the application to have full control over the
interrupt arrival rate restrictions. Our prototype hardware scheduler
is implemented as a special-purpose program running on a second
microcontroller.
In the experiments in Sections 6.2 and 6.3, the mote was pre-

sented with externally generated periodic interrupts at frequencies

100 1000 10000 100000
Offered interrupt load (Hz)

0

10

20

30

40

50

%
 C

PU
 u

se
d

by
 in

te
rr

up
ts

 a
nd

 in
te

rr
up

t s
ch

ed
ul

er
s

pure polling
pure interrupts
emulated hardware scheduler
strict software scheduler
bursty software scheduler N=4
bursty software scheduler N=16

underload overload

maximum allowed interrupt
arrival rate: 4 kHz

Figure 1. Comparing the performance of different interrupt sched-
ulers when interrupt handlers perform no work

between 0.26 kHz and 16 kHz. Interrupt schedulers were set to en-
force a maximum arrival rate of 4 kHz. We inferred the CPU over-
head of scheduling and handling the interrupts by observing the
rate of progress of a background task running on the mote. There
was very little variation across repetitions of the experiments and
so we omit confidence intervals.
Although 16 kHz is a high frequency, it is not uncommon for

embedded systems, especially those connected to “dumb” hard-
ware, to deal with lots of interrupts, as indicated in Table 1. Also,
for example, the TinyOS motes, during the start symbol detection
phase of wireless radio communication, take interrupts every 50µs,
a 20 kHz arrival rate.

6.2 Overhead of scheduling interrupts

In our first experiment, the interrupt handler returns without per-
forming any real work. This, coupled with the high maximum in-
terrupt rate, was designed to avoid masking any overheads asso-
ciated with our interrupt scheduling techniques. The results of this
experiment are shown in Figure 1. The “pure polling” and “pure in-
terrupts” lines were the controls in this experiment, and their over-
heads are as expected: polling has constant overhead that is inde-
pendent of the interrupt arrival rate, while the overhead of handling
interrupts in the standard way is linear in the interrupt arrival rate.
In contrast with polling, all of our interrupt scheduling tech-

niques approach zero CPU overhead when interrupts are infre-
quent. In contrast with interrupts, the overhead of all of our tech-
niques flattens out even in the presence of very high frequency in-
terrupts. Thus, all of our schemes achieve our goals of low over-
head in the expected case while avoiding CPU overload under high
interrupt loads.
The interrupt schedulers implemented in software incur some

overhead. Figure 1 shows that each of the software schedulers ap-
proximates the ideal performance of the hardware interrupt sched-
uler more or less closely. In terms of lost CPU capacity relative
to the hardware interrupt scheduler, the strict software scheduler

LCTES’05 5 2005/5/2

General guidelines for Interrupt-Driven Embedded Software

Scheduling
• Scheduling discipline must be specified - preemptive or non-preemptive

priority-based scheduling. Include response-time equations
• Never permit two different interrupt handlers to preempt each other
• Reasons for preemption identified. Strive to eliminate useless preemption

Callgraph
• Identify callgraphs for system; one per interrupt, one for main, one for each

thread
• Avoid recursive loops

Time Correctness
• Determine maximum arrival rate of each interrupt source.
• Determine deadline for each interrupt and cost of missing a deadline
• Determine WCET for each interrupt. Consider also the WCET of the non-

time-sensitive part of interrupt handler
• Determine longest amount of time for which interrupts are disabled (used

as blocking term in schedulability equations)

Stack Correctness
• Develop a stack model

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

General guidelines for Interrupt-Driven Embedded Software

Stack Correctness
• Develop a stack model; identify effect of interrupts on each stack
• Determine stack budget - worst-case amount of RAM available for

interrupts
• Worst-case stack memory usage for each interrupt
• Overall worst-case stack depth

Concurrency Correctness
• Reachability analysis to determine which data structures are reachable from

which interrupt handlers
• Automatic data structures must be unshared
• Protect shared variables

Safe and Structured Use of Interrupts in Real-Time and Embedded Software
&

Preventing Interrupt Overload

