AADL

Louise Avila
Marcus Chou
Taehyun Kim
11/9/2006

AADL Overview

m Architecture Analysis and Design
Language

m Models software and execution platform
architectures of performance critical,
embedded, real-time systems

m Standard way to describe systems
components and interfaces

"
AADL Standardization

m International standard by Society of Automotive
Engineers (SAE)
Textual and graphical language
XML/XMI data exchange format
Semantics of AADL for UML

Support for fault/reliability modeling and hazard
analysis

m Standard published in November 2004
m Derived from MetaH

Uses in Industry

m Honeywell

m Airbus

m Axlog

m European Space Agency
m General Dynamics

"
Motivation for AADL

m Current practices often error prone, manual,
paper intensive, and resistant to change

m System architecture hard to capture for
specification, design, and validation
m Lack of insight into critical system characteristics
Performance
Safety
Time criticality
Security
Fault Tolerance

" I
Current Practices are Inefficient
and Not Robust Enough

Requirements
Analysis

E manual, paper intensive, error prone, resistant to change j

" I
Model-Based System
Engineering

Model-Based System Engineering

Model-Based & Architecture-Driven

l & “ ,‘ =
Ry

Requirements
Analysis

Explicit Architecture
Engineering Models
Use of AADL

%ﬁ IE‘:I."/ c"fi-z'ﬁ #J}'

4= W

J‘W& => g /
System
Integration

M‘JA!

% l Predictable System
ﬁ Rapid Integration
Upgradeabili
Design, Analysis = =
and Implementation

" I
Benefits of Model-Based
Engineering

m Precise syntax and semantics for performance
critical systems

m Large scale model can be incrementally refined
m Early lifecycle tracking of modeling and analysis

m Analyze runtime computer system simulation
rather than just functional behavior

Additional Benefits of AADL

m Exchange engineering data between
multiple organizations

m Framework for modeling and analysis
m Facilitate automation of code generation

m Reduce design and implementation
defects

m System model precisely capture the
architecture

"
AADL Language Abstractions

m Component
Component Types
Component Implementations

m Packages
m Property sets and Annex Libraries

AADL Elements

\ese=PF Components_
+ data
Component Type * subprogram
identifier AIEENNEEENNIEEEEEEEEEEN + thread
« extends {component_type} ggrct:ss :)':Liidsgmu”
:;le::vusres................. SO .memory ______
« properties * parameter « device
A — * processor
/ i S = +bus
-~
/ ., Ty ~
l '.... —~ ~
~
/ ~

~ Package
public

— = - - - declarations

private

Component implementation
Property Set identifier

property types + extends {component implementation} - declarations
property definitions refines type
constants S
. mponents « port
* CONNECtIONSsssssssssssssnnnunnnnnn --) * access
+ call sequences « parameter
modes «u,,, Annex
- flows -..--..,.._" Library
b + properties LT P >} - modes
« mode transitions
Legend more details references 4 implements
(_“_"“"_"_"_ — o —— — PPTTTTTTTTITI TS

Components

m Defines interactions with other
components and internal structure

m Assigned a unique identity
m Defined through type or implementation

m 3 distinct component categories
Application Software
Execution Platform
Composite

"
AADL Component Types

m Model physical system components
m Specification of a component

m Software Types

Model source text, initialize address space,
units of concurrent execution

m Execution Platform Types

Support execution of threads, storage of data
and code, communication between threads

Component Type Example

process simple speed control
features
raw_speed: in data port speed_type,;
toggle _mode: in event port;
throttle cmd: out data port throttle data;
flows none;

end simple speed control;

Component Implementation

m Specify internal structure of component

m Implementation composition
Subcomponents
Interaction among features of subcomponents
Flows across sequences of subcomponents

Modes that represent operation states
Properties

" I
Component Implementation
Example

thread control _laws

end control_laws;

data static_data

end static_data;

thread implementation control laws.control input
subcomponents
configuration_data: data static_data;
calls none;

end control_laws.control _input;

" S
Packages, Property Sets, and
Annexes

m Packages declare a namespace for components

m Property sets
Named grouping of property declarations
Declares new properties and property types
m Annex
Enables user to extend AADL
Incorporate specialized notation within AADL model

"
Package Example

package actuators_sensors
public
device speed_sensor
end speed_sensor;
end actuators_sensors;
system control
end control;
system implementation control.primary
subcomponents
speed_sensor: device actuators_sensors::speed_sensor;
end control.primary;
system implementation control.backup
subcomponents
speed_sensor: device actuators_sensors::speed_sensor;

" I
Property Set Example

system implementation data_processing.accelerometer_data
properties
set of faults::comm_error_status => true;
end data_processing.accelerometer_data;
property set set of faults is
-- An example property name declaration
comm_error_status: aadlboolean applies to (system, device);
-- An example property type declaration
Speed Range : type range of aadlreal 0.0 mph..150.0 mph units (mph);
-- An example property constant declaration
Maximum_Faults : constant aadlinteger => 3;
end set_of faults;

AADL Representations

AADL Textual ; AADL Graphical |
thread data_processing t 20 M) w w—— — i
features : — I
raw_speed_in: in data port; H .
speed_out: out data port; ; 4 data_processing ==
Properties i I
Period => 20 ms; I L
end data_processing; :

XML

<threadType name="data_processing">
<features>
<dataPort name="raw_speed_in"/>
<dataPort name="speed_out"
direction="out"/>
</features>

" I
Textual Specification

m Component Type: system, process,
thread, thread group data, subprogram,
processor, device, memory, and bus

m Component Implementation: system,
process, thread, thread group data,

subprogram, processor, device, memory,
and bus

Graphical Representation

Application Software Execution Platform

) device l
data process
P Lmemory
| 1 , ______ et

I thread group ! thread /
| [' ; b
_______ P) hus
/ |
I processor |

Composite

[" system] | package

- BN
Communication Interaction

m Port connections

m Component access connections
m Subprogram calls

m Parameter connections

"
Features - Definition

m Specify interaction points with other components

m Interface through which control and data
exchanged
Ports — support directional flow of control and data
Subprograms — synchronous procedure calls

Requires access
m Use to access external components

Provides access
s Make subcomponent accessible to external components

" I
Ports

m Data port: Interfaces for typed state data
transmission among components without
gueuing

m Event port: Interfaces for the
communication of events raised by
subprograms, threads, processors, or
devices that may be queued

m Event data port: Interfaces for message
transmission with queuing

Port Declarations

m Declared as features in the component
type declaration

m Ports are direction (in/out)

m Pattern for port connection

name : [descriptor] [source port] [connection
symbol] [destination port]

Graphically, port connections are solid lines
between the ports involved in the connection

AADL Model

m Describes properties and interfaces of
components
m Software components
Application software modules
m Execution platform components
Processors

Bus
Memory

AADL Model

m Describes how components interact and
are integrated to form complete systems

m Functional interfaces
m Performance critical aspects

m Implementation details specified by
software programming and hardware
description languages

" I
Software Components

m Abstractions to represent process source
text and execution paths through
executable code

Data
Subprograms
Threads
Thread Groups
Processes

" I
Data: Definition

m Data component represents a data type in
source text
m Data subcomponents
Represent internal structure

Example: fields in a record or structure or
Instance variables in a class

m Features model concept of operations
performed on a data type

m Components can have shared access to
data

"
Data: Example

m Data implementation with 4 data

subcomponents
//Supporting data declarations
data address data string
end address; end string;
data implementation data int
address.others properties
subcomponents Source Data Size => 64b;
street : data string; end int;

streetnumber: data int;
city: data string;
zlpcode: data int;

end address.others;

Data Example

m Data type weather DB has associated
access functions getCurrent and getFuture

m Represented by subprogram declarations
in features subclause

data weather DB

features
getCurrent: subprogram getCurrent;
getFuture: subprogram getFuture;

end weather_DB;

"
Subprogram: Definition

m Callable source text that is executed
sequentially

Function, method
m Operates on data or provides server
functions to components that call it
With or without parameters
In and in out parameters
Out and out in parameters

"
Subprogram: Definition

m Type declaration specified interactions
with other parts of source text

Required access to shared data

m Thread and subprogram implementations
can contain subprogram calls

" I
Subprogram: Example

data Matrix
end Matrix;

subprogram getCurrent
features

result: out parameter Matrix;
end getCurrent;

subprogram getFuture
features
date: in parameter date;
result: out parameter Matrix;
bad data: out event port; //handle an exception
wdb: requires data access weather DB;
end getFuture;

" I
Thread Definition

m Represent sequence of instructions in a
executable produced from source text
m Model schedulable units of control

Transition between different scheduling states
Can execute concurrently

m Can interact with each other through:

Exchanges of control and data specified in
port connections

Server subprogram calls
Shared data components

"
Thread: Definition

m Executes in the virtual address space of a
process

m Executes a code sequence when
dispatched and scheduled to execute
m State transitions
Thread halted
Initialized
Suspended awaiting dispatch
Thread deactivation

"
Thread: Example

m Thread type declaration

thread Predict Weather
features
target date: in event data port date;
prediction: out event data port weather forecast;
past date: out event port;
weather database: requires data access weather DB;
end Predict Weather;

Thread Example

m Thread implementation

Thread iImplemementation Predict Weather.others
Calls {
current: subprogram weather DB.getCurrent;
future: subprogram weather DB.getFuture;
diff: subprogram Matrix delta;
interpret: subprogram Interpret result;
b
connections
parameter target date -> future.date;
event port future.bad date -> past date;
parameter current.result -> diff.A;
parameter future.result -> diff.B;
parameter interpret.result -> prediction;
data access weather database -> future.wdb;
end Predict Weather.others;

" I
Thread Properties

m Used to specify critical runtime aspects of
a thread within the architectural
representation

m Enables early analyses of thread behavior
m Properties
Timing (WCET)
Dispatch protocols (periodic, aperiodic)
Memory size
Processor binding

" S
Thread Properties: Example

thread control

properties

-— nomlinal execution properties
Compute Entrypoilnt => "control ep";
Compute Execution Time => 5 ms .. 10 ms;
Compute Deadline => 20 ms;

Dispatch Protocol => Periodic;

—-— 1nitilalization execution properties
Initialize Entrypoint => "init control";
Initialize Execution Time => 2 ms .. 5 ms;
Initialize Deadline => 10 ms;

end control;

" I
Thread and Events

m Every thread has default in event port named
Dispatch

If connected (i.e. named as destination in a
connection declaration), arrival of event results in
dispatch of thread

Ignored by periodic threads (dispatches are
determined by the clock)

m Every thread has default out event port named
Complete

If connected, event raised on port when execution of
thread dispatch completes

" I
Thread Group: Definition

m Organizational component to logically group
threads contained in processes

m Type specifies features and required
subcomponent access

m Implementation represents contained threads
and their connectivity

m Single reference to multiple threads and
associated data

Threads with a common execution rate

Threads and data components needed for processing
iInput signals

Thread Group: Example

m Thread group contains a thread, 2 data
components and another thread group

thread group control
properties
Period => 50 ms;
end control;

thread group implementation control.roll axis
subcomponents

control group: thread group control laws.roll;
control data: data data control.primary;
error data: data data error.log;

error detectilion: thread monitor.impl;
end control.roll axis;

» NN
Processes: Definition

m Represents a protected address space

A space partitioning where protection is
provided from other components accessing
anything inside the process

m Contains
Executable code and data
Executable code and data of subcomponents

A Thread to represent an actively executing
component

Processes: Example

m Implementation with 3 subcomponents
Two ports: input and output

process

control processing
features

input: in data port;
output: out data port;
end

control processing;

process implementation

control processing.speed control
subcomponents

control input: thread

control in.input processing 01;
control output: thread

control out.output processing 01;
control thread group: thread group
control threads.control thread set 01;
set point data: data set point data type;
end control processing.speed control;

" I
Execution Platform Components

m Represent computational and interfacing
resources within a system
Processor
Memory
Bus
Device
m Software components mapped onto execution
platforms

Threads bound to processor
Processes bound to memory

» B
Processor

m Represents hardware and associated
software that execute and schedule
threads

m May have embedded software that
implements scheduling and other
capabilities that support thread execution

"
Memory

m Represent storage components for data and
executable code

Subprograms, data and processes are bound to
memory components

m Randomly accessible physical storage
RAM or ROM

m Complex permanent storage
Disks

m Physical runtime properties
Word size and word count

" I
Bus

m Represents hardware and associated
communication protocols that enable
interactions among other execution platform
components

Connection between 2 threads on separate
Processors

m Communication specified using access and
binding declarations to a bus

m Represent complex inter-network communication
by connecting buses to other buses

I
Device

m Represent entities that interface with the
external environment of an application
system

m Examples
Sensors, actuators
Standalone systems (GPS)

m Complex behavior

"
Example

m Device Roll _Rate Sensor interacts with
processor Intel RTOS through a bus

m Bus access requirement specified in both
type declarations

m Out data port on roll rate sensor device
provides rate data from the sensor

Example

Roll Rate S ensori

>

<

x_1553.|-|s_1sa>

N

Intel_RTOS

" I
Example

processor Intel RTOS

features

Al1553: requires bus access X 1553.HS 1553;
end Intel RTOS;

device Roll Rate Sensor
features
Al1553: requires bus access X 1553.HS 1553;
raw roll rate: out data port;
end Roll Rate Sensor;

bus X 1553
end X 1553;

bus implementation X 1553.HS 1553
end X 1553.HS 1553;

"
Modes

m Modes represent alternative operational
states of a system or component.

m Modes can establish

alternative configuration of active
components and connections.

variable call sequences within a thread.

mode-specific properties for software or
hardware components.

Mode Example (Graphical)

Mode Example (Textual)

process control algorithms

features

status _data: in data port;

aircraft data: in data port;

command: out data port;

end control algorithms;

process implementation control algorithms.impl

subcomponents

controller: thread controller;

ground algorithms: thread ground algorithms in modes (ground); thread controller

flight algorithms: thread flight algorithms in modes (flight); features .

connections - SaErs '“'“?‘;-ifidazﬁtp;r,:;t ort;

Cl: daté PQrF.alrcra::_ra:a -> ground algorithms.aircraft data in .y~1:ch o gllgn:. Rt gort,

IPOdes (ground) ;- L . ,) , end controller;

C2: data port aircraft data -> flight algorithms.aircraft data in L

modes (flight); thread ground algorithms

C3: data port ground algorithms.command data -> command in modes features -

(ground) ; aircraft data: in data port:;

C4: data port flight algorithms.command data -> command in modes command data: out data port;

(flight); end gra:an:i_al:;fc::ri:‘ﬂ- =

modes e

ground: initial mode; thread flight algcrithms

flight: mode; features)

ground -[controller.switch to flight]-> flight; A% rerati datar ‘nrdabh poxte

213 A R R command data: ut data port;

flight -[controller.switch to ground]-> ground; = R
R S e end lljdv _algorithms;

end control algorithms.impl;

I
Flows

m Flows enable the detailed description and
analysis of an abstract information path through

a system.

m Flow declaration
source: a feature of a component
sink: a feature of a component
flow path: flows through a component

Flow Declaration

device brake pedal
features

brake event:
flows

flow source bprake

T 10W1
end brake pedal;
system cruise control
features

SRR

out event data port Ifloat type:;

event;

in event data port;

throttle setting: out data port float type;

flows

end cruise

device throttle actuator
features
throttle setting:

flows

Flowl: flow sink throttle
end throttle actuator;

ow: flow path brake event

in data port float type;

.
o —— -

[flow sourcej [

flow sink

throttle_
actuator

1

[_ flow path J

" B
Flow Paths

system implementation cruise control.impl

subcomponents

data _in: process interface;

control laws: process control;

connections

Cl: event data port brake event -> data in.brake event;

C3: data port data in.out port -> control laws

C5: data port control laws.out port -> tl

flows

brake flow: flow path brake event
C3 >

1.interface flowl ->
ﬁvr'l rl:ul -> 5 ->

throttle

€ 25 ting;
end cruiszs

_control.impl;

c

process interfacs
features

flow path
control_flow1

\
flow path (7
interface_flow1

:u:_::r:: out data port float type;

flows

interface flowl: flow path brake event -> out port;
end interfacs;

brake event: in event data port ; ("' =

)
S

Cc5

process control
features

in port: in data port float type;

out port: out data port float type;

flows

control flowl: flow path in port -> out port;
end control; - -

Properties

m Properties provide descriptive information about
components, features, modes, or subprogram calls.

m A property has a name, type, and an associated value.

m Property set
property set set name is
{ property type | property name | property constant }+
end set name ;

property type declaration
identifier: type property type definition;
property name declaration
name: property type applies to (property owner category);

property constant declaration
identifier: constant (type) => property value

"
Property Declaration

property set my set is
queue access: aadlboolean applies to (data);

array size: set of types::array applies to (system,
process, thread);

maximum faults: constant addlinteger => 3;

end my set;

property set set of types 1is

length: type aadlreal 7.5 .. 150.0 units(feet);

array: type enumeration (single, double, triplex);
end set of types;

"
Property Association

m Property Association assigns a value or list of values to a
named property.

thread data processing

features
Sensor data: in data port {Required Connection => false;};

end data processing;

thread implementation data processing.speed data

properties
Period => 100 ms;
Compute Execution Time => 2 ms .. 5 ms in binding (Intel);
Compute Execution Time => 3 ms .. 7 ms in binding (AMD);

end data processing.speed data;

OSATE Introduction

m Open Source AADL Tool Environment
m Developed by Software Engineering Institute

m Set of plug-ins to the open source Eclipse
platform

m Supports processing of AADL models

m Available at:
www.aadl.info

" I
OSATE Features

m Syntax-sensitive text and AADL object model
editor

m Parser and semantic checker for textual AADL
m AADL XML viewer and editor
m Auto-build support

m Analysis tools for performing architecture
consistency checks

m A graphical AADL editing by the TOPCASED

;ﬂ Resource - Welcome - OSATE

File Edit MNavigate Search Project OSATE Analyses Run - Window Help

Jri- 0 | ual@s 0o 00 |x]|ewnm Bl e 0|0 E- -
Eﬁ'l f\c,Resource
“e- Navigator X =8 Welcome &3 | securityexample. aad| I safetyexample.aad| |§;ﬁ€safetyexample.aaxl |»4 =8
e =7 .
% 95 Open Source AADL Tool Environment (OSATE)
SR [MFE xampleModels -
- aadl This page will guide you to the use of OSATE,
& packages To get started, read the sections below and click on the related links.,
[+ propertysets)
Avionics_System.aad| (= Learn more .
CockpitDisplay.aad| To learn about the OSATE capabilities vou can browse the OSATE User Manual
- - play. To learn more about the Eclipse platform capabilities vou can browse the Workbench User Guide.
cruise_control_example_4.aad|
cruise_control.aad|
Display_System_¥2.aadl
Display_System.aad|
errarmodelexample. aadl
instancemodeexample.aad|
[P TR SR | ;l
0= Outline &2 I =8
An outline is not available.
Tasks I 1 Properties &3 |Pr0b|ems| | B3 ¥ =0
Property | Value -‘-!

"
Simple Example 1

m Security Example
System
Process
Threads with Security Level Property

Features
s Externally visible characteristic or component type
s Used to interact with other components
Connections

m Directional link between features of two components
s Used to exchange data, events or subprogram calls

Data and Event Ports

s Connection points between components

" S
Security Example

6d (data p main (system) \

K pe (event port) /

OSATE Analysis

m Security Level Checks

m Compares security level of source and
destination components in a connection
declaration

m |s the security level of the source
component the same or lower than
destination?

" I
Simple Example 2

m Safety Example

Similar to Security Example
Threads with Safety Criticality property

" S
Safety Criticality Example

Mata port Main (system) \

k pe (event port)

"
OSATE Analysis

m Safety Level Checks

m Component with lower safety should not
drive the operation of a component with a
higher safety criticality.

m |s the safety criticality level of the source
component higher or equal to the safety
criticality level of the destination
component?

" I
Simple Example 3

m Sunseekerdemo

m A simple missile guidance example

Process

m Sunseekerplant

out data port has StreamMissRate 0.06
m Sunseekercontroller

In data port has StreamMissRate 0.05

Connection

s From out data port of Sunseekerplant to in data port of
Sunseekercontroller

" N
Miss Rate Example

/ Main (system) \

\ (StreamMissRate = 0.06) (StreamMissRate = 0.05)

"
OSATE Analysis

m Check Miss Rates

m The outgoing rate specifies the maximum
produced miss rate.

m The incoming rate specifies the maximum
expected rate that the controller can
handle.

m Is the outgoing rate lower than or equal to
the incoming rate?

References

m http://www.sae.org/technical/standards/AS
5506

