
AADL

Louise Avila
Marcus Chou
Taehyun Kim
11/9/2006

AADL Overview

 Architecture Analysis and Design
Language

 Models software and execution platform
architectures of performance critical,
embedded, real-time systems

 Standard way to describe systems
components and interfaces

AADL Standardization

 International standard by Society of Automotive
Engineers (SAE)
 Textual and graphical language
 XML/XMI data exchange format
 Semantics of AADL for UML
 Support for fault/reliability modeling and hazard

analysis
 Standard published in November 2004
 Derived from MetaH

Uses in Industry

 Honeywell
 Airbus
 Axlog
 European Space Agency
 General Dynamics

Motivation for AADL

 Current practices often error prone, manual,
paper intensive, and resistant to change

 System architecture hard to capture for
specification, design, and validation

 Lack of insight into critical system characteristics
 Performance
 Safety
 Time criticality
 Security
 Fault Tolerance

Current Practices are Inefficient
and Not Robust Enough

Model-Based System
Engineering

Benefits of Model-Based
Engineering
 Precise syntax and semantics for performance

critical systems
 Large scale model can be incrementally refined
 Early lifecycle tracking of modeling and analysis
 Analyze runtime computer system simulation

rather than just functional behavior

Additional Benefits of AADL

 Exchange engineering data between
multiple organizations

 Framework for modeling and analysis
 Facilitate automation of code generation
 Reduce design and implementation

defects
 System model precisely capture the

architecture

AADL Language Abstractions

 Component
Component Types
Component Implementations

 Packages
 Property sets and Annex Libraries

AADL Elements

 ttp://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn011.pdf

Components

 Defines interactions with other
components and internal structure

 Assigned a unique identity
 Defined through type or implementation
 3 distinct component categories

Application Software
Execution Platform
Composite

AADL Component Types

 Model physical system components
 Specification of a component
 Software Types

Model source text, initialize address space,
units of concurrent execution

 Execution Platform Types
Support execution of threads, storage of data

and code, communication between threads

Component Type Example

process simple_speed_control
features
raw_speed: in data port speed_type;
toggle_mode: in event port;
throttle_cmd: out data port throttle_data;
flows none;

end simple_speed_control;

Component Implementation

 Specify internal structure of component
 Implementation composition

Subcomponents
 Interaction among features of subcomponents
Flows across sequences of subcomponents
Modes that represent operation states
Properties

Component Implementation
Example
thread control_laws
end control_laws;
data static_data
end static_data;
thread implementation control_laws.control_input

subcomponents
configuration_data: data static_data;
calls none;

end control_laws.control_input;

Packages, Property Sets, and
Annexes
 Packages declare a namespace for components
 Property sets

 Named grouping of property declarations
 Declares new properties and property types

 Annex
 Enables user to extend AADL
 Incorporate specialized notation within AADL model

Package Example
package actuators_sensors

public
device speed_sensor
end speed_sensor;
-- …

end actuators_sensors;
system control
end control;
system implementation control.primary

subcomponents
speed_sensor: device actuators_sensors::speed_sensor;
-- …

end control.primary;
system implementation control.backup
subcomponents
speed_sensor: device actuators_sensors::speed_sensor;

Property Set Example
system implementation data_processing.accelerometer_data
properties

set_of_faults::comm_error_status => true;
end data_processing.accelerometer_data;
property set set_of_faults is

-- An example property name declaration
comm_error_status: aadlboolean applies to (system, device);
-- An example property type declaration
Speed_Range : type range of aadlreal 0.0 mph..150.0 mph units (mph);
-- An example property constant declaration
Maximum_Faults : constant aadlinteger => 3;

end set_of_faults;

AADL Representations

Textual Specification

 Component Type: system, process,
thread, thread group data, subprogram,
processor, device, memory, and bus

 Component Implementation: system,
process, thread, thread group data,
subprogram, processor, device, memory,
and bus

Graphical Representation

Communication Interaction

 Port connections
 Component access connections
 Subprogram calls
 Parameter connections

Features - Definition

 Specify interaction points with other components
 Interface through which control and data

exchanged
 Ports – support directional flow of control and data
 Subprograms – synchronous procedure calls
 Requires access

 Use to access external components
 Provides access

 Make subcomponent accessible to external components

Ports

 Data port: Interfaces for typed state data
transmission among components without
queuing

 Event port: Interfaces for the
communication of events raised by
subprograms, threads, processors, or
devices that may be queued

 Event data port: Interfaces for message
transmission with queuing

Port Declarations

 Declared as features in the component
type declaration

 Ports are direction (in/out)
 Pattern for port connection

name : [descriptor] [source port] [connection
symbol] [destination port]

Graphically, port connections are solid lines
between the ports involved in the connection

AADL Model

 Describes properties and interfaces of
components

 Software components
 Application software modules

 Execution platform components
 Processors
 Bus
 Memory

AADL Model

 Describes how components interact and
are integrated to form complete systems

 Functional interfaces
 Performance critical aspects
 Implementation details specified by

software programming and hardware
description languages

Software Components

 Abstractions to represent process source
text and execution paths through
executable code
Data
Subprograms
Threads
Thread Groups
Processes

Data: Definition

 Data component represents a data type in
source text

 Data subcomponents
Represent internal structure
Example: fields in a record or structure or

instance variables in a class
 Features model concept of operations

performed on a data type
 Components can have shared access to

data

Data: Example
 Data implementation with 4 data

subcomponents
data address
end address;

data implementation
address.others
 subcomponents
 street : data string;
 streetnumber: data int;
 city: data string;
 zipcode: data int;
end address.others;

//Supporting data declarations
data string
end string;

data int
 properties
 Source_Data_Size => 64b;
end int;

Data Example

 Data type weather_DB has associated
access functions getCurrent and getFuture

 Represented by subprogram declarations
in features subclause

data weather_DB

features

 getCurrent: subprogram getCurrent;

 getFuture: subprogram getFuture;

end weather_DB;

Subprogram: Definition

 Callable source text that is executed
sequentially
Function, method

 Operates on data or provides server
functions to components that call it
With or without parameters
 In and in out parameters
Out and out in parameters

Subprogram: Definition

 Type declaration specified interactions
with other parts of source text
Required access to shared data

 Thread and subprogram implementations
can contain subprogram calls

Subprogram: Example

data Matrix
end Matrix;

subprogram getCurrent
features
 result: out parameter Matrix;
end getCurrent;

subprogram getFuture
features
 date: in parameter date;
 result: out parameter Matrix;
 bad_data: out event port; //handle an exception
 wdb: requires data access weather_DB;
end getFuture;

Thread Definition

 Represent sequence of instructions in a
executable produced from source text

 Model schedulable units of control
Transition between different scheduling states
Can execute concurrently

 Can interact with each other through:
Exchanges of control and data specified in

port connections
Server subprogram calls
Shared data components

Thread: Definition

 Executes in the virtual address space of a
process

 Executes a code sequence when
dispatched and scheduled to execute

 State transitions
Thread halted
 Initialized
Suspended awaiting dispatch
Thread deactivation

Thread: Example

 Thread type declaration

thread Predict_Weather
 features
 target_date: in event data port date;
 prediction: out event data port weather_forecast;
 past_date: out event port;
 weather_database: requires data access weather_DB;
end Predict_Weather;

Thread Example
 Thread implementation

Thread implemementation Predict_Weather.others
Calls {
 current: subprogram weather_DB.getCurrent;
 future: subprogram weather_DB.getFuture;
 diff: subprogram Matrix_delta;
 interpret: subprogram Interpret_result;
};
connections
 parameter target_date -> future.date;
 event port future.bad_date -> past_date;
 parameter current.result -> diff.A;
 parameter future.result -> diff.B;
 parameter interpret.result -> prediction;
 data access weather_database -> future.wdb;
end Predict_Weather.others;

Thread Properties

 Used to specify critical runtime aspects of
a thread within the architectural
representation

 Enables early analyses of thread behavior
 Properties

Timing (WCET)
Dispatch protocols (periodic, aperiodic)
Memory size
Processor binding

Thread Properties: Example
thread control
properties
-- nominal execution properties
 Compute_Entrypoint => "control_ep";
 Compute_Execution_Time => 5 ms .. 10 ms;
 Compute_Deadline => 20 ms;
 Dispatch_Protocol => Periodic;
-- initialization execution properties
 Initialize_Entrypoint => "init_control";
 Initialize_Execution_Time => 2 ms .. 5 ms;
 Initialize_Deadline => 10 ms;
end control;

Thread and Events

 Every thread has default in event port named
Dispatch
 If connected (i.e. named as destination in a

connection declaration), arrival of event results in
dispatch of thread

 Ignored by periodic threads (dispatches are
determined by the clock)

 Every thread has default out event port named
Complete
 If connected, event raised on port when execution of

thread dispatch completes

Thread Group: Definition

 Organizational component to logically group
threads contained in processes

 Type specifies features and required
subcomponent access

 Implementation represents contained threads
and their connectivity

 Single reference to multiple threads and
associated data
 Threads with a common execution rate
 Threads and data components needed for processing

input signals

Thread Group: Example

 Thread group contains a thread, 2 data
components and another thread group

thread group control
 properties
 Period => 50 ms;
end control;

thread group implementation control.roll_axis
subcomponents
 control_group: thread group control_laws.roll;
 control_data: data data_control.primary;
 error_data: data data_error.log;
 error_detection: thread monitor.impl;
end control.roll_axis;

Processes: Definition

 Represents a protected address space
A space partitioning where protection is

provided from other components accessing
anything inside the process

 Contains
Executable code and data
Executable code and data of subcomponents
A Thread to represent an actively executing

component

Processes: Example

 Implementation with 3 subcomponents
Two ports: input and output

process implementation
control_processing.speed_control
subcomponents
control_input: thread
control_in.input_processing_01;
control_output: thread
control_out.output_processing_01;
control_thread_group: thread group
control_threads.control_thread_set_01;
set_point_data: data set_point_data_type;
end control_processing.speed_control;

process
control_processing
features
input: in data port;
output: out data port;
end
control_processing;

Execution Platform Components

 Represent computational and interfacing
resources within a system
 Processor
 Memory
 Bus
 Device

 Software components mapped onto execution
platforms
 Threads bound to processor
 Processes bound to memory

Processor

 Represents hardware and associated
software that execute and schedule
threads

 May have embedded software that
implements scheduling and other
capabilities that support thread execution

Memory
 Represent storage components for data and

executable code
 Subprograms, data and processes are bound to

memory components
 Randomly accessible physical storage

 RAM or ROM
 Complex permanent storage

 Disks
 Physical runtime properties

 Word size and word count

Bus
 Represents hardware and associated

communication protocols that enable
interactions among other execution platform
components
 Connection between 2 threads on separate

processors
 Communication specified using access and

binding declarations to a bus
 Represent complex inter-network communication

by connecting buses to other buses

Device

 Represent entities that interface with the
external environment of an application
system

 Examples
Sensors, actuators
Standalone systems (GPS)

 Complex behavior

Example

 Device Roll_Rate_Sensor interacts with
processor Intel_RTOS through a bus

 Bus access requirement specified in both
type declarations

 Out data port on roll rate sensor device
provides rate data from the sensor

Example

Example
processor Intel_RTOS
 features
 A1553: requires bus access X_1553.HS_1553;
end Intel_RTOS;

device Roll_Rate_Sensor
 features
 A1553: requires bus access X_1553.HS_1553;
 raw_roll_rate: out data port;
end Roll_Rate_Sensor;

bus X_1553
end X_1553;

bus implementation X_1553.HS_1553
end X_1553.HS_1553;

Modes

 Modes represent alternative operational
states of a system or component.

 Modes can establish
alternative configuration of active

components and connections.
variable call sequences within a thread.
mode-specific properties for software or

hardware components.

Mode Example (Graphical)

Mode Example (Textual)

Flows

 Flows enable the detailed description and
analysis of an abstract information path through
a system.

 Flow declaration
 source: a feature of a component
 sink: a feature of a component
 flow path: flows through a component

Flow Declaration

Flow Paths

Properties
 Properties provide descriptive information about

components, features, modes, or subprogram calls.
 A property has a name, type, and an associated value.

 Property set
property set set name is
{ property type | property name | property constant }+

end set name ;

 property type declaration
identifier: type property type definition;

 property name declaration
name: property type applies to (property owner category);

 property constant declaration
identifier: constant (type) => property value

Property Declaration
property set my_set is
queue_access: aadlboolean applies to (data);
array_size: set_of_types::array applies to (system,

process, thread);
maximum_faults: constant addlinteger => 3;
end my_set;
--
property set set_of_types is
length: type aadlreal 7.5 .. 150.0 units(feet);
array: type enumeration (single, double, triplex);
end set_of_types;

Property Association
 Property Association assigns a value or list of values to a

named property.

thread data_processing
features
Sensor_data: in data port {Required_Connection => false;};
end data_processing;
--

thread implementation data_processing.speed_data
properties

Period => 100 ms;

Compute_Execution_Time => 2 ms .. 5 ms in binding (Intel);
Compute_Execution_Time => 3 ms .. 7 ms in binding (AMD);

end data_processing.speed_data;

OSATE Introduction

 Open Source AADL Tool Environment
 Developed by Software Engineering Institute
 Set of plug-ins to the open source Eclipse

platform
 Supports processing of AADL models
 Available at:

 www.aadl.info

OSATE Features

 Syntax-sensitive text and AADL object model
editor

 Parser and semantic checker for textual AADL
 AADL XML viewer and editor
 Auto-build support
 Analysis tools for performing architecture

consistency checks
 A graphical AADL editing by the TOPCASED

OSATE

Simple Example 1

 Security Example
 System
 Process
 Threads with Security Level Property
 Features

 Externally visible characteristic or component type
 Used to interact with other components

 Connections
 Directional link between features of two components
 Used to exchange data, events or subprogram calls

 Data and Event Ports
 Connection points between components

Security Example

main (system)

sys (process)

signal

pe (event port)

pd (data port)

T1 (thread)
SL=4

T2 (thread)
SL=8

OSATE Analysis

 Security Level Checks
 Compares security level of source and

destination components in a connection
declaration

 Is the security level of the source
component the same or lower than
destination?

Simple Example 2

 Safety Example

 Similar to Security Example
 Threads with Safety Criticality property

Safety Criticality Example

Main (system)

sys (process)

pe (event port)

pd (data port)

T1 (thread)
SC=4

T2 (thread)
SC=6

OSATE Analysis

 Safety Level Checks
 Component with lower safety should not

drive the operation of a component with a
higher safety criticality.

 Is the safety criticality level of the source
component higher or equal to the safety
criticality level of the destination
component?

Simple Example 3

 Sunseekerdemo
 A simple missile guidance example

 Process
 Sunseekerplant

 out data port has StreamMissRate 0.06
 Sunseekercontroller

 In data port has StreamMissRate 0.05

 Connection
 From out data port of Sunseekerplant to in data port of

Sunseekercontroller

Miss Rate Example

Sunseekerplant

(process)

Sunseekercontroller

(process)

Sunseekercontrolsystem_Type (system)

Main (system)

out data port

(StreamMissRate = 0.06)

in data port

(StreamMissRate = 0.05)

OSATE Analysis

 Check Miss Rates
 The outgoing rate specifies the maximum

produced miss rate.
 The incoming rate specifies the maximum

expected rate that the controller can
handle.

 Is the outgoing rate lower than or equal to
the incoming rate?

References

 http://www.aadl.info
 http://www.sae.org/technical/standards/AS

5506

