
AADL

Louise Avila
Marcus Chou
Taehyun Kim
11/9/2006

AADL Overview

 Architecture Analysis and Design
Language

 Models software and execution platform
architectures of performance critical,
embedded, real-time systems

 Standard way to describe systems
components and interfaces

AADL Standardization

 International standard by Society of Automotive
Engineers (SAE)
 Textual and graphical language
 XML/XMI data exchange format
 Semantics of AADL for UML
 Support for fault/reliability modeling and hazard

analysis
 Standard published in November 2004
 Derived from MetaH

Uses in Industry

 Honeywell
 Airbus
 Axlog
 European Space Agency
 General Dynamics

Motivation for AADL

 Current practices often error prone, manual,
paper intensive, and resistant to change

 System architecture hard to capture for
specification, design, and validation

 Lack of insight into critical system characteristics
 Performance
 Safety
 Time criticality
 Security
 Fault Tolerance

Current Practices are Inefficient
and Not Robust Enough

Model-Based System
Engineering

Benefits of Model-Based
Engineering
 Precise syntax and semantics for performance

critical systems
 Large scale model can be incrementally refined
 Early lifecycle tracking of modeling and analysis
 Analyze runtime computer system simulation

rather than just functional behavior

Additional Benefits of AADL

 Exchange engineering data between
multiple organizations

 Framework for modeling and analysis
 Facilitate automation of code generation
 Reduce design and implementation

defects
 System model precisely capture the

architecture

AADL Language Abstractions

 Component
Component Types
Component Implementations

 Packages
 Property sets and Annex Libraries

AADL Elements

 ttp://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn011.pdf

Components

 Defines interactions with other
components and internal structure

 Assigned a unique identity
 Defined through type or implementation
 3 distinct component categories

Application Software
Execution Platform
Composite

AADL Component Types

 Model physical system components
 Specification of a component
 Software Types

Model source text, initialize address space,
units of concurrent execution

 Execution Platform Types
Support execution of threads, storage of data

and code, communication between threads

Component Type Example

process simple_speed_control
features
raw_speed: in data port speed_type;
toggle_mode: in event port;
throttle_cmd: out data port throttle_data;
flows none;

end simple_speed_control;

Component Implementation

 Specify internal structure of component
 Implementation composition

Subcomponents
 Interaction among features of subcomponents
Flows across sequences of subcomponents
Modes that represent operation states
Properties

Component Implementation
Example
thread control_laws
end control_laws;
data static_data
end static_data;
thread implementation control_laws.control_input

subcomponents
configuration_data: data static_data;
calls none;

end control_laws.control_input;

Packages, Property Sets, and
Annexes
 Packages declare a namespace for components
 Property sets

 Named grouping of property declarations
 Declares new properties and property types

 Annex
 Enables user to extend AADL
 Incorporate specialized notation within AADL model

Package Example
package actuators_sensors

public
device speed_sensor
end speed_sensor;
-- …

end actuators_sensors;
system control
end control;
system implementation control.primary

subcomponents
speed_sensor: device actuators_sensors::speed_sensor;
-- …

end control.primary;
system implementation control.backup
subcomponents
speed_sensor: device actuators_sensors::speed_sensor;

Property Set Example
system implementation data_processing.accelerometer_data
properties

set_of_faults::comm_error_status => true;
end data_processing.accelerometer_data;
property set set_of_faults is

-- An example property name declaration
comm_error_status: aadlboolean applies to (system, device);
-- An example property type declaration
Speed_Range : type range of aadlreal 0.0 mph..150.0 mph units (mph);
-- An example property constant declaration
Maximum_Faults : constant aadlinteger => 3;

end set_of_faults;

AADL Representations

Textual Specification

 Component Type: system, process,
thread, thread group data, subprogram,
processor, device, memory, and bus

 Component Implementation: system,
process, thread, thread group data,
subprogram, processor, device, memory,
and bus

Graphical Representation

Communication Interaction

 Port connections
 Component access connections
 Subprogram calls
 Parameter connections

Features - Definition

 Specify interaction points with other components
 Interface through which control and data

exchanged
 Ports – support directional flow of control and data
 Subprograms – synchronous procedure calls
 Requires access

 Use to access external components
 Provides access

 Make subcomponent accessible to external components

Ports

 Data port: Interfaces for typed state data
transmission among components without
queuing

 Event port: Interfaces for the
communication of events raised by
subprograms, threads, processors, or
devices that may be queued

 Event data port: Interfaces for message
transmission with queuing

Port Declarations

 Declared as features in the component
type declaration

 Ports are direction (in/out)
 Pattern for port connection

name : [descriptor] [source port] [connection
symbol] [destination port]

Graphically, port connections are solid lines
between the ports involved in the connection

AADL Model

 Describes properties and interfaces of
components

 Software components
 Application software modules

 Execution platform components
 Processors
 Bus
 Memory

AADL Model

 Describes how components interact and
are integrated to form complete systems

 Functional interfaces
 Performance critical aspects
 Implementation details specified by

software programming and hardware
description languages

Software Components

 Abstractions to represent process source
text and execution paths through
executable code
Data
Subprograms
Threads
Thread Groups
Processes

Data: Definition

 Data component represents a data type in
source text

 Data subcomponents
Represent internal structure
Example: fields in a record or structure or

instance variables in a class
 Features model concept of operations

performed on a data type
 Components can have shared access to

data

Data: Example
 Data implementation with 4 data

subcomponents
data address
end address;

data implementation
address.others
 subcomponents
 street : data string;
 streetnumber: data int;
 city: data string;
 zipcode: data int;
end address.others;

//Supporting data declarations
data string
end string;

data int
 properties
 Source_Data_Size => 64b;
end int;

Data Example

 Data type weather_DB has associated
access functions getCurrent and getFuture

 Represented by subprogram declarations
in features subclause

data weather_DB

features

 getCurrent: subprogram getCurrent;

 getFuture: subprogram getFuture;

end weather_DB;

Subprogram: Definition

 Callable source text that is executed
sequentially
Function, method

 Operates on data or provides server
functions to components that call it
With or without parameters
 In and in out parameters
Out and out in parameters

Subprogram: Definition

 Type declaration specified interactions
with other parts of source text
Required access to shared data

 Thread and subprogram implementations
can contain subprogram calls

Subprogram: Example

data Matrix
end Matrix;

subprogram getCurrent
features
 result: out parameter Matrix;
end getCurrent;

subprogram getFuture
features
 date: in parameter date;
 result: out parameter Matrix;
 bad_data: out event port; //handle an exception
 wdb: requires data access weather_DB;
end getFuture;

Thread Definition

 Represent sequence of instructions in a
executable produced from source text

 Model schedulable units of control
Transition between different scheduling states
Can execute concurrently

 Can interact with each other through:
Exchanges of control and data specified in

port connections
Server subprogram calls
Shared data components

Thread: Definition

 Executes in the virtual address space of a
process

 Executes a code sequence when
dispatched and scheduled to execute

 State transitions
Thread halted
 Initialized
Suspended awaiting dispatch
Thread deactivation

Thread: Example

 Thread type declaration

thread Predict_Weather
 features
 target_date: in event data port date;
 prediction: out event data port weather_forecast;
 past_date: out event port;
 weather_database: requires data access weather_DB;
end Predict_Weather;

Thread Example
 Thread implementation

Thread implemementation Predict_Weather.others
Calls {
 current: subprogram weather_DB.getCurrent;
 future: subprogram weather_DB.getFuture;
 diff: subprogram Matrix_delta;
 interpret: subprogram Interpret_result;
};
connections
 parameter target_date -> future.date;
 event port future.bad_date -> past_date;
 parameter current.result -> diff.A;
 parameter future.result -> diff.B;
 parameter interpret.result -> prediction;
 data access weather_database -> future.wdb;
end Predict_Weather.others;

Thread Properties

 Used to specify critical runtime aspects of
a thread within the architectural
representation

 Enables early analyses of thread behavior
 Properties

Timing (WCET)
Dispatch protocols (periodic, aperiodic)
Memory size
Processor binding

Thread Properties: Example
thread control
properties
-- nominal execution properties
 Compute_Entrypoint => "control_ep";
 Compute_Execution_Time => 5 ms .. 10 ms;
 Compute_Deadline => 20 ms;
 Dispatch_Protocol => Periodic;
-- initialization execution properties
 Initialize_Entrypoint => "init_control";
 Initialize_Execution_Time => 2 ms .. 5 ms;
 Initialize_Deadline => 10 ms;
end control;

Thread and Events

 Every thread has default in event port named
Dispatch
 If connected (i.e. named as destination in a

connection declaration), arrival of event results in
dispatch of thread

 Ignored by periodic threads (dispatches are
determined by the clock)

 Every thread has default out event port named
Complete
 If connected, event raised on port when execution of

thread dispatch completes

Thread Group: Definition

 Organizational component to logically group
threads contained in processes

 Type specifies features and required
subcomponent access

 Implementation represents contained threads
and their connectivity

 Single reference to multiple threads and
associated data
 Threads with a common execution rate
 Threads and data components needed for processing

input signals

Thread Group: Example

 Thread group contains a thread, 2 data
components and another thread group

thread group control
 properties
 Period => 50 ms;
end control;

thread group implementation control.roll_axis
subcomponents
 control_group: thread group control_laws.roll;
 control_data: data data_control.primary;
 error_data: data data_error.log;
 error_detection: thread monitor.impl;
end control.roll_axis;

Processes: Definition

 Represents a protected address space
A space partitioning where protection is

provided from other components accessing
anything inside the process

 Contains
Executable code and data
Executable code and data of subcomponents
A Thread to represent an actively executing

component

Processes: Example

 Implementation with 3 subcomponents
Two ports: input and output

process implementation
control_processing.speed_control
subcomponents
control_input: thread
control_in.input_processing_01;
control_output: thread
control_out.output_processing_01;
control_thread_group: thread group
control_threads.control_thread_set_01;
set_point_data: data set_point_data_type;
end control_processing.speed_control;

process
control_processing
features
input: in data port;
output: out data port;
end
control_processing;

Execution Platform Components

 Represent computational and interfacing
resources within a system
 Processor
 Memory
 Bus
 Device

 Software components mapped onto execution
platforms
 Threads bound to processor
 Processes bound to memory

Processor

 Represents hardware and associated
software that execute and schedule
threads

 May have embedded software that
implements scheduling and other
capabilities that support thread execution

Memory
 Represent storage components for data and

executable code
 Subprograms, data and processes are bound to

memory components
 Randomly accessible physical storage

 RAM or ROM
 Complex permanent storage

 Disks
 Physical runtime properties

 Word size and word count

Bus
 Represents hardware and associated

communication protocols that enable
interactions among other execution platform
components
 Connection between 2 threads on separate

processors
 Communication specified using access and

binding declarations to a bus
 Represent complex inter-network communication

by connecting buses to other buses

Device

 Represent entities that interface with the
external environment of an application
system

 Examples
Sensors, actuators
Standalone systems (GPS)

 Complex behavior

Example

 Device Roll_Rate_Sensor interacts with
processor Intel_RTOS through a bus

 Bus access requirement specified in both
type declarations

 Out data port on roll rate sensor device
provides rate data from the sensor

Example

Example
processor Intel_RTOS
 features
 A1553: requires bus access X_1553.HS_1553;
end Intel_RTOS;

device Roll_Rate_Sensor
 features
 A1553: requires bus access X_1553.HS_1553;
 raw_roll_rate: out data port;
end Roll_Rate_Sensor;

bus X_1553
end X_1553;

bus implementation X_1553.HS_1553
end X_1553.HS_1553;

Modes

 Modes represent alternative operational
states of a system or component.

 Modes can establish
alternative configuration of active

components and connections.
variable call sequences within a thread.
mode-specific properties for software or

hardware components.

Mode Example (Graphical)

Mode Example (Textual)

Flows

 Flows enable the detailed description and
analysis of an abstract information path through
a system.

 Flow declaration
 source: a feature of a component
 sink: a feature of a component
 flow path: flows through a component

Flow Declaration

Flow Paths

Properties
 Properties provide descriptive information about

components, features, modes, or subprogram calls.
 A property has a name, type, and an associated value.

 Property set
property set set name is
{ property type | property name | property constant }+

end set name ;

 property type declaration
identifier: type property type definition;

 property name declaration
name: property type applies to (property owner category);

 property constant declaration
identifier: constant (type) => property value

Property Declaration
property set my_set is
queue_access: aadlboolean applies to (data);
array_size: set_of_types::array applies to (system,

process, thread);
maximum_faults: constant addlinteger => 3;
end my_set;
--
property set set_of_types is
length: type aadlreal 7.5 .. 150.0 units(feet);
array: type enumeration (single, double, triplex);
end set_of_types;

Property Association
 Property Association assigns a value or list of values to a

named property.

thread data_processing
features
Sensor_data: in data port {Required_Connection => false;};
end data_processing;
--

thread implementation data_processing.speed_data
properties

Period => 100 ms;

Compute_Execution_Time => 2 ms .. 5 ms in binding (Intel);
Compute_Execution_Time => 3 ms .. 7 ms in binding (AMD);

end data_processing.speed_data;

OSATE Introduction

 Open Source AADL Tool Environment
 Developed by Software Engineering Institute
 Set of plug-ins to the open source Eclipse

platform
 Supports processing of AADL models
 Available at:

 www.aadl.info

OSATE Features

 Syntax-sensitive text and AADL object model
editor

 Parser and semantic checker for textual AADL
 AADL XML viewer and editor
 Auto-build support
 Analysis tools for performing architecture

consistency checks
 A graphical AADL editing by the TOPCASED

OSATE

Simple Example 1

 Security Example
 System
 Process
 Threads with Security Level Property
 Features

 Externally visible characteristic or component type
 Used to interact with other components

 Connections
 Directional link between features of two components
 Used to exchange data, events or subprogram calls

 Data and Event Ports
 Connection points between components

Security Example

main (system)

sys (process)

signal

pe (event port)

pd (data port)

T1 (thread)
SL=4

T2 (thread)
SL=8

OSATE Analysis

 Security Level Checks
 Compares security level of source and

destination components in a connection
declaration

 Is the security level of the source
component the same or lower than
destination?

Simple Example 2

 Safety Example

 Similar to Security Example
 Threads with Safety Criticality property

Safety Criticality Example

Main (system)

sys (process)

pe (event port)

pd (data port)

T1 (thread)
SC=4

T2 (thread)
SC=6

OSATE Analysis

 Safety Level Checks
 Component with lower safety should not

drive the operation of a component with a
higher safety criticality.

 Is the safety criticality level of the source
component higher or equal to the safety
criticality level of the destination
component?

Simple Example 3

 Sunseekerdemo
 A simple missile guidance example

 Process
 Sunseekerplant

 out data port has StreamMissRate 0.06
 Sunseekercontroller

 In data port has StreamMissRate 0.05

 Connection
 From out data port of Sunseekerplant to in data port of

Sunseekercontroller

Miss Rate Example

Sunseekerplant

(process)

Sunseekercontroller

(process)

Sunseekercontrolsystem_Type (system)

Main (system)

out data port

(StreamMissRate = 0.06)

in data port

(StreamMissRate = 0.05)

OSATE Analysis

 Check Miss Rates
 The outgoing rate specifies the maximum

produced miss rate.
 The incoming rate specifies the maximum

expected rate that the controller can
handle.

 Is the outgoing rate lower than or equal to
the incoming rate?

References

 http://www.aadl.info
 http://www.sae.org/technical/standards/AS

5506

