
Hierarchical State Machines -
a Fundamentally Important

Way of Design
Presented by

Madhukar Anand

Based on slides by Miro Samek

4quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

The Challenge of EventThe Challenge of Event--Driven SystemsDriven Systems

• Almost all computers today are event-driven systems
• The main programming challenge is to quickly pick and

execute the right code in reaction to an event
• The reaction depends both on the nature of the event and

on the current context, that is, the sequence of past events
in which the system was involved

• Traditional “bottom up” approaches represent the context
ambiguously by a multitude of variables and flags, which
results in code riddled with a disproportionate number of
convoluted conditional branches (if-else or switch-
case statements in C/C++)

5quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

The Significance of “State”The Significance of “State”
• State machines make the response to an event explicitly

dependent on both the nature of the event and the context
of the system (state)

• State captures the relevant aspects of the system’s history
very efficiently

'A'

'a'
EXAMPLE: a character code generated by a
keyboard depends if the Shift has been
depressed, but not on how many and which
specific characters have been typed previously.
A keyboard can be said to be in the “shifted”
state or in the “default” state.

• A state can abstract away all possible (but irrelevant) event
sequences and capture only the relevant ones

6quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

State Machines State Machines —— Coding PerspectiveCoding Perspective

• When properly represented in software, a state machine
radically reduces the number of different paths though the
code and simplifies the conditions tested at each branching
point

• In all but the most basic coding technique (e.g., the switch
statement) even the explicit testing of the “state variable”
disappears as a conditional statement and is replaced by a
table lookup or a function-pointer dereferencing

• This aspect is similar to the effect of polymorphism in OOP,
which eliminates branching based on object's class

7quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Visual RepresentationVisual Representation——State DiagramsState Diagrams
• State machines have a compelling and intuitive graphical

representation in form of state diagrams
• State diagrams are directed graphs in which nodes denote

states and connectors denote transitions
• The UML provides a standard notation and precise, rich

semantics for state machines

ANY_KEY/ send_upper_case_code();
shifted

ANY_KEY/send_lower_case_code();
default

SHIFT_DOWN SHIFT_UP

transition

initial
transition

internal
transition stateaction(s)

Translating a FSM : The wrong way

…
Jones, D. W. 1988. How (not) to code a finite state machine. SIGPLAN Not. 23, 8 (Aug. 1988), 19-22.

• The standard advice for those coding a
finite state machine is to use a while
loop, a case statement, and a state
variable.

• This is bad, as the unstructured control
transfers have been modeled in the code
with assignments to variable state.

• The state variable serves as a goto
statement, and the while and case
statements obscure the underlying
control structure.

Translating a FSM : A better way

 Its preferable to admit that the
original FSM was unstructured
and eliminate the cosmetic control
structures by replacing them with
goto statements.

 This example illustrates the fact
that any sequential procedure can
be viewed as a FSM with the
program counter serving as the
state variable.

Jones, D. W. 1988. How (not) to code a finite state machine. SIGPLAN Not. 23, 8 (Aug. 1988), 19-22.

Translating a FSM : The best way
 The original FSM had reasonable

structure.

 So, the best way is to redraw it
using a technique similar to that
used in a recursive transition
network.

 Here, the loop entries come from
above, iteration connections are
drawn from the side, and loop
exits are drawn from the bottom.

Jones, D. W. 1988. How (not) to code a finite state machine. SIGPLAN Not. 23, 8 (Aug. 1988), 19-22.

8quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

The Limitations of Traditional The Limitations of Traditional FSMsFSMs

• The traditional FSMs tend to become unmanageable, even
for moderately involved reactive systems (the “state-
explosion” phenomenon)

• In practice, many states are similar, but classical FSMs have
no means of capturing such commonalities and require
repeating the same behavior in many states

• What’s missing in FSMs is a mechanism of factoring out the
common behavior in order to reuse it across many states

9quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Introducing StatechartsIntroducing Statecharts

• Statecharts (invented by David Harel in the 1980’s, [Harel
87]) provide exactly what’s been missing in classical FSMs: a
way of capturing the common behavior in order to reuse it
across many states

• The most important innovation of statecharts is the
introduction of hierarchically nested states

• The UML 1.4 state machines [OMG 01] are an object-based
variant of Harel statecharts [Harel 87]. They incorporate
several concepts similar to those defined in ROOMcharts, a
variant of statechart defined in the ROOM modeling
language [Selic+ 94].

10quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

The Semantics of State NestingThe Semantics of State Nesting
• If a system is in the nested state s11 (called substate), it also

(implicitly) is in the surrounding state s1 (called superstate)

s1

s11
superstate

substate

• Any event is first handled
in the context of substate
s11, but all unhandled
events are automatically
passed over to the next
level of nesting (s1
superstate)

• The substates need only define the differences from the
superstates, and otherwise can easily share (reuse)
behavior defined in higher levels of nesting

11quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Programming By DifferenceProgramming By Difference

• State nesting lets you define a new state rapidly in terms of an
old one, by reusing the behavior from the parent state

• State nesting allows new states to be specified by difference
rather than created from scratch each time

• State nesting lets you get new behavior almost for free,
reusing most of what is common from the superstates

• The fundamental character of state nesting comes from the
combination of hierarchy and programming-by-difference,
which is otherwise known in software as inheritance

• State nesting leads to behavioral inheritance [Samek+ 00, 02]

12quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Liskov Substitution Principle for StatesLiskov Substitution Principle for States

• Liskov Substitution Principle (LSP) is a universal law of
generalization. In the traditional formulation for classes LSP
requires that a subclass can be freely substituted for its
superclass

• Because behavioral inheritance is just a specific kind of
inheritance, the LSP can (and should) be applicable to nested
states as well as classes

• LSP generalized for states means that the behavior of a
substate should be consistent with the superstate

• Compliance with the LSP (for states) allows you to build
better (correct) state hierarchies that make efficient use of
abstraction

13quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Guaranteed Initialization and CleanupGuaranteed Initialization and Cleanup
• UML state machines allow states to have optional entry

actions executed automatically upon the entry to the state
and exit actions executed upon the exit

• The value of entry and exit actions is that they provide
means for guaranteed initialization and cleanup, much like
class constructors and destructors in OOP

• Entry and exit actions are particularly important and
powerful in conjunction with the state hierarchy, because
they determine the identity of the hierarchical states

• The order of execution of entry actions must always proceed
from the outermost state to the innermost state. The
execution of exit actions proceeds in exact opposite order

14quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Implementing HSMsImplementing HSMs
• The goal of this HSM implementation is to provide a

minimal and generic event-processor that you can use with
any event queuing and dispatching mechanism.

• This HSM implementation addresses only:

• Nested states with full support for behavioral inheritance,

• Guaranteed initialization and cleanup with state entry and exit
actions, and

• Support for specializing state models via class inheritance.

• The strategy is to provide just enough (but not more!) truly
fundamental elements to allow for the efficient construction
of all other (higher level) statechart features, including those
bundled into the UML specification.

15quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Structure of the HSM ImplementationStructure of the HSM Implementation

• All concrete state machines derive from the abstract QHsm
base class

+ init()
+ dispatch()
tran()
top() : QState

- state__ : QState
- source__ : QState

«abstract»
QHsm

Calc

Behavioral Inheritance
meta-pattern sig : QSignal

. . .

QEvent

Concrete
HSMs

Events with
parameters

timekeeping()
setting()

Watch

Abstract
HSM Base
Class Generic

Event Base
Class

lParam
wParam

Win32Evt
keyID

CalcEvt

event
parameters

state-handler
methods

return 0

typedef /* signature of state-handler method */
 QPseudoState /* return type (pseudostate) */
 (*QState) /* name of pointer-to-function */
 (QHsm *, /* name of the class */
 QEvent const *); /* immutable event */

• “State” (QState)
is represented as
pointer-to-member-
function of the
QHsm class

• All events are instances of QEvent class, or subclasses of
QEvent (for events with parameters).

16quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

The The QHsm QHsm Base ClassBase Class

• The QHsm base class provides the following methods:
• init() to trigger the topmost initial transition.
• dispatch() to dispatch an event for processing according to the

state machine semantics
• tran() for taking a state transition

• Clients derive concrete state machines from the QHsm class
• Clients add behavior by adding state handler methods to

the QHsm subclass

• Clients call QHsm::init() method once

• Clients call QHsm::dispatch() repetitively for each
event

17quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

State HandlersState Handlers
• A state handler method takes immutable pointer to QEvent

(QEvent const *) and returns a pointer to the superstate
handler if it doesn’t handle the event, or NULL if it does.

• State handlers use internally the QHsm method tran() to
code state transitions. Transitions are coded in the source
state.

• The signature of state handler is determined by the QState
pointer-to-function (pointer-to-member-function in C++):

typedef QPseudoState (*QStateQStateQStateQState)(QHsm *, QEvent const*); // C
typedef QPseudoState (QHsm::*QStateQStateQStateQState)(QEvent const*); // C++

•C/C++ doesn’t allow to define strictly recursive signature

18quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Dispatching EventsDispatching Events —— QHsmDispatchQHsmDispatch()()

• QHsmDispatch() traverses the state hierarchy starting from
the current state (me->state__):

• At each level QHsmDispatch() passes the event to the
corresponding state handler method

• The processing ends when some state handler handles the
event (returns NULL)

• The top state (defined in QHsm) always returns NULL

void QHsmDispatch(QHsm *me, QEvent const *e) {
for (me->source__ = me->state__; me->source__ != 0;

me->source__ = (QState)(*me*me*me*me---->source__>source__>source__>source__)(me, e))
{}

}

19quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

QSignalQSignal and and QEventQEvent

• The sig attribute of QEvent conveys the type of the event
(what happened).

• Signals must be of a scalar type and are typically enumerated.
The four lowest signals are reserved.

• Event parameters are added by deriving new event classes
from QEvent

typedef unsigned short QSignalQSignalQSignalQSignal;
struct QEventQEventQEventQEvent {

QSignal sigsigsigsig; /* signal of the event instance */
/* ... other QEvent attributes not shown here */

};
enum { /* reserved signals */

Q_INIT_SIG = 1, Q_ENTRY_SIG, Q_EXIT_SIG,
Q_USER_SIG /* the first signal free to use */

};

20quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Annotated ExampleAnnotated Example

• Let’s code in C the following non-trivial HSM:

entry/
exit/

s0

entry/
exit/

s1

entry/
exit/
h[foo]/foo=0;

s11

entry/
exit/

s2

entry/
exit/

s21

entry/
exit/

s211

a
b

c

c

d f

f

g

b
d

e

g

h[!foo]/
foo=1;

• The state machine has six states s0, s1, s11, s2, s21, and
s211, and its alphabet consists of eight signals: a through h.

21quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Subclassing Subclassing QHsmQHsm (in C) (in C)

• Declare the constructor, initial pseudostate and all six state
handler methods (the unusual indentation indicates state
nesting)

typedef struct QHsmTst QHsmTst;
struct QHsmTst { /* QhsmTst state machine */

QHsm super_; /* extends QHsm */
int foo__; /* private extended state variable */

};
QHsmTst *QHsmTstCtor(QHsmTst *me);
void QHsmTst_initial(QHsmTst *me, QEvent const *e);
QSTATE QHsmTst_s0(QHsmTst*me, QEvent const *e);
QSTATE QHsmTst_s1(QHsmTst*me, QEvent const *e);
QSTATE QHsmTst_s11(QHsmTst*me, QEvent const *e);
QSTATE QHsmTst_s2(QHsmTst*me, QEvent const *e);
QSTATE QHsmTst_s21(QHsmTst*me, QEvent const *e);
QSTATE QHsmTst_s211(QHsmTst*me, QEvent const *e);

22quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

The Constructor and Initial Pseudostate The Constructor and Initial Pseudostate

• In C you need to explicitly construct the superclass QHsm

• In the initial pseudostate you must take the initial transition
via the macro Q_INIT()

QHsmTst *QHsmTstCtor(QHsmTst *me) {
QHsmCtorQHsmCtorQHsmCtorQHsmCtor____(&me->super_, /* construct the superclass */

(QPseudoState)QHsmTst_initial);
return me;

}

void QHsmTst_initial(QHsmTst *me, QEvent const *e) {
printf("top-INIT;");
me->foo__ = 0; /* init. extended state variable */
Q_INITQ_INITQ_INITQ_INIT(QHsmTst_s0); /* the topmost initial tran. */

}

23quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

What Elements Go Into a State Handler? What Elements Go Into a State Handler?
• To find out which elements go to a given state handler,

you follow around the boundary of the state (say, s21) in
the diagram

entry/
exit/

s0

entry/
exit/

s1

entry/
exit/
h[foo]/foo=0;

s11

entry/
exit/

s2

entry/
exit/

s21

entry/
exit/

s211

a
b

c

c

d f

f

g

b
d

e

g

h[!foo]/
foo=1;

• You need to include: all transitions originating at the
boundary, entry actions, exit actions, internal transitions,
and the initial transition

24quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Coding a State Handler Coding a State Handler

• Each state maps to a state handler method. For example,
state s21 maps to QHsmTst_s21() state handler.

• All state handler methods have the same skeleton
(housekeeping code, [Douglass 99])

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */

/* . . . */
}
return (QSTATE)QHsmTst_s2; /* designate the superstate */

}

25quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Coding Entry and Exit ActionsCoding Entry and Exit Actions

• You intercept the reserved signals Q_ENTRY_SIG or
Q_EXIT_SIG, enlist actions you want to execute, and
terminate with “return 0” (event handled)

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
case Q_ENTRY_SIG:case Q_ENTRY_SIG:case Q_ENTRY_SIG:case Q_ENTRY_SIG: printfprintfprintfprintf("s21("s21("s21("s21----ENTRY;"); return 0;ENTRY;"); return 0;ENTRY;"); return 0;ENTRY;"); return 0;
case Q_EXIT_SIG:case Q_EXIT_SIG:case Q_EXIT_SIG:case Q_EXIT_SIG: printfprintfprintfprintf("s21("s21("s21("s21----EXIT;"); return 0;EXIT;"); return 0;EXIT;"); return 0;EXIT;"); return 0;

/* . . . */
}
return (QSTATE)QHsmTst_s2; /* designate the superstate */

}

26quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Coding the Initial TransitionCoding the Initial Transition

• You intercept the reserved signal Q_INIT_SIG, enlist the
actions, and then designate the target substate through the
macro Q_INIT() , after which you exit state handler with
“return 0” (event handled)

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
/* . . . */
case Q_INIT_SIG: case Q_INIT_SIG: case Q_INIT_SIG: case Q_INIT_SIG: /* intercept the reserved init signal */

printfprintfprintfprintf("s21("s21("s21("s21----INIT;");INIT;");INIT;");INIT;");
Q_INIT(Q_INIT(Q_INIT(Q_INIT(QHsmTstQHsmTstQHsmTstQHsmTst_s211); _s211); _s211); _s211); /* designate the substate */
return 0;return 0;return 0;return 0; /* event handled */

/* . . . */
}
return (QSTATE)QHsmTst_s2; /* designate the superstate */

}

27quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Coding a Regular TransitionCoding a Regular Transition

• You intercept the custom defined signal (e.g., B_SIG),
enlist the actions, and then designate the target state
through the macro Q_TRAN() , after which you exit state
handler with “return 0” (event handled)

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
/* . . . */
case B_SIG: case B_SIG: case B_SIG: case B_SIG: /* intercept the custom signal */

printfprintfprintfprintf("s21("s21("s21("s21----B;");B;");B;");B;");
Q_TRAN(Q_TRAN(Q_TRAN(Q_TRAN(QHsmTstQHsmTstQHsmTstQHsmTst_s211); _s211); _s211); _s211); /* designate the target state */
return 0;return 0;return 0;return 0; /* event handled */

/* . . . */
}
return (QSTATE)QHsmTst_s2; /* designate the superstate */

}

28quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Coding a Transition With a GuardCoding a Transition With a Guard
• You intercept the custom defined signal (e.g., H_SIG), and

you immediately test the guard inside an if (…). If the
guard evaluates FALSE you break to return the superstate.

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
case H_SIG: case H_SIG: case H_SIG: case H_SIG: /* self transition with a guard */

if (!meif (!meif (!meif (!me---->>>>foofoofoofoo__) { __) { __) { __) { /* test the guard condition */
printfprintfprintfprintf("s21("s21("s21("s21----H;");H;");H;");H;");
memememe---->>>>foofoofoofoo__ = !0;__ = !0;__ = !0;__ = !0;
Q_TRAN(Q_TRAN(Q_TRAN(Q_TRAN(QHsmTstQHsmTstQHsmTstQHsmTst_s21); _s21); _s21); _s21); /* self transition */
return 0;return 0;return 0;return 0;

}}}}
break;break;break;break; /* event notnotnotnot handled */

}
return (QSTATE)QHsmTst_s2; /* designate the superstate */

}

29quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

The Complete The Complete s21s21 State Handler State Handler
QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {

switch (eswitch (eswitch (eswitch (e---->>>>sigsigsigsig)))) {
case Q_ENTRY_SIG: printf("s21-ENTRY;"); return 0return 0return 0return 0;
case Q_EXIT_SIG: printf("s21-EXIT;"); return 0return 0return 0return 0;
case Q_INIT_SIG: printf("s21INIT;");

Q_INITQ_INITQ_INITQ_INIT(QHsmTst_s211); return 0return 0return 0return 0;
case B_SIG: printf("s21-B;");

Q_TRANQ_TRANQ_TRANQ_TRAN(QHsmTst_s211); return 0return 0return 0return 0;
case H_SIG: /* self transition with a guard */

if (!me->foo__) { /* test the guard condition */
printf("s21-H;");
me->foo__ = !0;
Q_TRANQ_TRANQ_TRANQ_TRAN(QHsmTst_s21); /* self transition */
return 0return 0return 0return 0;

}
break; /* break to return the superstate */

}
return (QSTATE)return (QSTATE)return (QSTATE)return (QSTATE)QHsmTstQHsmTstQHsmTstQHsmTst_s2;_s2;_s2;_s2; /* return the superstate */

}

30quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Test Harness Test Harness
#include "qhsm.h“ /* include the HSM interface */
static QHsmTst test; /* instantiate the HSM */

int main() {
printf("QHsmTst example, version 1.00, libraries: %s\n",

QHsmGetVersion());
QHsmTstCtorQHsmTstCtorQHsmTstCtorQHsmTstCtor(&test); /* explicitly construct the HSM */
QHsmInitQHsmInitQHsmInitQHsmInit((QHsm *)&test, 0); /* initial transition */
for (;;) {

char c;
printf("\nSignal<-");
c = getc(stdin);
getc(stdin); /* discard '\n' */
if (c < 'a' || 'h' < c) {

return 0;
}
QHsmDispatchQHsmDispatchQHsmDispatchQHsmDispatch((QHsm *)&test, &testQEvt[c - 'a']);

}
return 0;

}

31quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

An Example SessionAn Example Session
1: QHsmTst example, version 1.00, libraries: QHsm 2.2.5
2: top-INIT;s0-ENTRY;s0-INIT;s1-ENTRY;s1-INIT;s11-ENTRY;
3: Signal<-a
4: s1-A;s11-EXIT;s1-EXIT;s1-ENTRY;s1-INIT;s11-ENTRY;
5: Signal<-e
6: s0-E;s11-EXIT;s1-EXIT;s2-ENTRY;s21-ENTRY;s211-ENTRY;
7: Signal<-e
8: s0-E;s211-EXIT;s21-EXIT;s2-EXIT;s2-ENTRY;s21-NTRY;

s211-ENTRY;
9: Signal<-a
10:
11: Signal<-h
12: s21-H;s211-EXIT;s21-EXIT;s21-ENTRY;s21-INIT;s211-ENTRY;
13: Signal<-h
14:
15: Signal<-x

32quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

Changing the State MachineChanging the State Machine
EXERCISE: modify the state machine by moving transition
‘e’ from s0 to s2, and by changing target of transition ‘f’
in state s1 from s211 to s21. Test the modified HSM.

entry/
exit/

s0

entry/
exit/

s1

entry/
exit/
h[foo]/foo=0;

s11

entry/
exit/

s2

entry/
exit/

s21

entry/
exit/

s211

a
b

c

c

d f

f

g

b
d

e

g

h[!foo]/
foo=1;

33quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

SummarySummary
• You can quite easily (once you know the pattern) implement

HSMs in C and C++. In fact, coding a non-trivial HSM turned
out to be an exercise in following a few simple rules.

• With just a bit of practice, you will forget that you are
"translating" state models into code; rather, you will directly
code state machines in C or C++, just as you directly code
classes in C++ or Java.

• At this point, you will no longer struggle with convoluted
if-else statements and gazillions of flags. You will start
thinking at a higher level of abstraction.

• Thus, a sufficiently small and truly practical implementation
of statecharts can trigger a paradigm shift in your way of
thinking about programming reactive systems. I call this
paradigm shift Quantum Programming (QP) [Samek 02].

Discussion /Criticism from Users

 Run to completion (RTC) semantics.
 Avoids internal concurrency issues. But it is not good for ensuring timely

response into higher priority interrupts.

 Can different timing semantics be captured with such a framework?
 For instance, how easy is to encode temporal scopes for states?

 How hard is debugging?
 “Run-to-completion“ semantics results in excessive self-posting of events

and queuing.

Discussion /Criticism from Users

 “There is no real value in separating semantics (state-chart description)
from functionality (code which uses the state-machine), but this turned out to
be a maintenance nightmare” - Amazon review.

 QP does not offer orthogonal states, which is needed to model concurrent
aspects of a system.
 Somewhat salvaged by the publish/subscribe framework but still clumsy.

Frank Schuhardt, http://www.amazon.com/gp/pdp/profile/A2IA4GCO91XW95/

34quantum programming
Copyright © 2003 by Miro Samek. All Rights Reserved.

ReferencesReferences
• [Beck 00] Beck, Kent, Extreme Programming Explained, Addison-Wesley, 2000.
• [Douglass 99] Douglass, Bruce Powel, Doing Hard Time, Developing Real-Time Systems

with UML, Objects, Frameworks, and Patterns. Addison-Wesley, 1999.
• [Duby 01] Duby, Carolyn, "Class 203: Implementing UML Statechart Diagrams",

Proceedings of Embedded Systems Conference, San Francisco 2001.
• [Ganssle 98] Ganssle, Jack G., "The Challenges of Real-Time Programming",

Embedded Systems Programming, July 1998 pp. 20-26.
• [Gamma+ 95] Gamma, Erich, et al., Design Patterns, Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.
• [Harel 87] Harel, David, "Statecharts: A Visual Formalism for Complex Systems",

Science of Com-puter Programming, 8, 1987, pp. 231-274.
• [Labrosse 99] Labrosse, Jean J., MicroC/OS-II, The Real-Time Kernel. R&D Publ., 1999.
• [OMG 01] Object Management Group, Inc., OMG Unified Modeling Language

Specification v1.4, http://www.omg.org, September 2001.
• [Samek+ 00] Samek, Miro and Paul Y. Montgomery, “State-Oriented Programming”,

Embedded Systems Programming, August 2000 pp. 22-43
• [Samek 02] Samek, Miro, Practical Statecharts in C/C++: Quantum Programming for

Embedded Systems, CMP Books, 2002, ISBN: 1-57820-110-1.
• [Selic+ 94] Selic, Bran, Garth Gullekson, and Paul. T. Ward, Real-Time Object

Oriented Modeling, John Wiley & Sons, 1994.

