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The Challenge of EventThe Challenge of Event--Driven SystemsDriven Systems

• Almost all computers today are event-driven systems 
• The main programming challenge is to quickly pick and 

execute the right code in reaction to an event
• The reaction depends both on the nature of the event and 

on the current context, that is, the sequence of past events 
in which the system was involved

• Traditional “bottom up” approaches represent the context 
ambiguously by a multitude of variables and flags, which 
results in code riddled with a disproportionate number of 
convoluted conditional branches (if-else or switch-
case statements in C/C++)
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The Significance of “State”The Significance of “State”
• State machines make the response to an event explicitly 

dependent on both the nature of the event and the context 
of the system (state) 

• State captures the relevant aspects of the system’s history 
very efficiently

'A'

'a'
EXAMPLE: a character code generated by a 
keyboard depends if the Shift has been 
depressed, but not on how many and which 
specific characters have been typed previously. 
A keyboard can be said to be in the “shifted” 
state or in the “default” state. 

• A state can abstract away all possible (but irrelevant) event 
sequences and capture only the relevant ones
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State Machines State Machines —— Coding PerspectiveCoding Perspective

• When properly represented in software, a state machine 
radically reduces the number of different paths though the 
code and simplifies the conditions tested at each branching 
point

• In all but the most basic coding technique (e.g., the switch
statement) even the explicit testing of the “state variable” 
disappears as a conditional statement and is replaced by a 
table lookup or a function-pointer dereferencing

• This aspect is similar to the effect of polymorphism in OOP, 
which eliminates branching based on object's class
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Visual RepresentationVisual Representation——State DiagramsState Diagrams
• State machines have a compelling and intuitive graphical 

representation in form of state diagrams
• State diagrams are directed graphs in which nodes denote 

states and connectors denote transitions
• The UML provides a standard notation and precise, rich 

semantics for state machines

ANY_KEY/ send_upper_case_code();
shifted

ANY_KEY/send_lower_case_code();
default

SHIFT_DOWN SHIFT_UP

transition

initial
transition

internal
transition stateaction(s)



  

Translating a FSM : The wrong way

…
Jones, D. W. 1988. How (not) to code a finite state machine. SIGPLAN Not. 23, 8 (Aug. 1988), 19-22. 

• The standard advice for those coding a 
finite state machine is to use a while 
loop, a case statement, and a state 
variable. 

• This is bad, as the unstructured control 
transfers have been modeled in the code 
with assignments to variable state.

• The state variable serves as a goto 
statement, and the while and case 
statements obscure the underlying 
control structure.



  

Translating a FSM : A better way

 Its preferable to admit that the 
original FSM was unstructured 
and eliminate the cosmetic control 
structures by replacing them with 
goto statements.

 This example illustrates the fact 
that any sequential procedure can 
be viewed as a FSM with the 
program counter serving as the 
state variable.

Jones, D. W. 1988. How (not) to code a finite state machine. SIGPLAN Not. 23, 8 (Aug. 1988), 19-22. 



  

Translating a FSM : The best way
 The original FSM had reasonable 

structure. 

 So, the best way is to redraw it 
using a technique similar to that 
used in a recursive transition 
network.

 Here, the loop entries come from 
above, iteration connections are 
drawn from the side, and loop 
exits are drawn from the bottom.

Jones, D. W. 1988. How (not) to code a finite state machine. SIGPLAN Not. 23, 8 (Aug. 1988), 19-22. 
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The Limitations of Traditional The Limitations of Traditional FSMsFSMs

• The traditional FSMs tend to become unmanageable, even 
for moderately involved reactive systems (the “state-
explosion” phenomenon)

• In practice, many states are similar, but classical FSMs have 
no means of capturing such commonalities and require 
repeating the same behavior in many states

• What’s missing in FSMs is a mechanism of factoring out the 
common behavior in order to reuse it across many states
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Introducing StatechartsIntroducing Statecharts

• Statecharts (invented by David Harel in the 1980’s, [Harel 
87]) provide exactly what’s been missing in classical FSMs: a 
way of capturing the common behavior in order to reuse it 
across many states

• The most important innovation of statecharts is the 
introduction of hierarchically nested states

• The UML 1.4 state machines [OMG 01] are an object-based 
variant of Harel statecharts [Harel 87]. They incorporate 
several concepts similar to those defined in ROOMcharts, a 
variant of statechart defined in the ROOM modeling 
language [Selic+ 94].
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The Semantics of State NestingThe Semantics of State Nesting
• If a system is in the nested state s11 (called substate), it also 

(implicitly) is in the surrounding state s1 (called superstate)

s1

s11
superstate

substate

• Any event is first handled 
in the context of substate 
s11, but all unhandled 
events are automatically 
passed over to the next 
level of nesting (s1
superstate)

• The substates need only define the differences from the 
superstates, and otherwise can easily share (reuse) 
behavior defined in higher levels of nesting
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Programming By DifferenceProgramming By Difference

• State nesting lets you define a new state rapidly in terms of an
old one, by reusing the behavior from the parent state

• State nesting allows new states to be specified by difference
rather than created from scratch each time

• State nesting lets you get new behavior almost for free, 
reusing most of what is common from the superstates

• The fundamental character of state nesting comes from the 
combination of hierarchy and programming-by-difference, 
which is otherwise known in software as inheritance

• State nesting leads to behavioral inheritance [Samek+ 00, 02]
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Liskov Substitution Principle for StatesLiskov Substitution Principle for States

• Liskov Substitution Principle (LSP) is a universal law of 
generalization. In the traditional formulation for classes LSP 
requires that a subclass can be freely substituted for its 
superclass

• Because behavioral inheritance is just a specific kind of 
inheritance, the LSP can (and should) be applicable to nested 
states as well as classes

• LSP generalized for states means that the behavior of a 
substate should be consistent with the superstate

• Compliance with the LSP (for states) allows you to build 
better (correct)  state hierarchies that make efficient use of 
abstraction
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Guaranteed Initialization and CleanupGuaranteed Initialization and Cleanup
• UML state machines allow states to have optional entry 

actions executed automatically upon the entry to the state 
and exit actions executed upon the exit

• The value of entry and exit actions is that they provide 
means for guaranteed initialization and cleanup, much like 
class constructors and destructors in OOP

• Entry and exit actions are particularly important and 
powerful in conjunction with the state hierarchy, because 
they determine the identity of the hierarchical states

• The order of execution of entry actions must always proceed 
from the outermost state to the innermost state. The 
execution of exit actions proceeds in exact opposite order
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Implementing HSMsImplementing HSMs
• The goal of this HSM implementation is to provide a 

minimal and generic event-processor that you can use with 
any event queuing and dispatching mechanism. 

• This HSM implementation addresses only:

• Nested states with full support for behavioral inheritance,

• Guaranteed initialization and cleanup with state entry and exit 
actions, and

• Support for specializing state models via class inheritance.

• The strategy is to provide just enough (but not more!) truly 
fundamental elements to allow for the efficient construction 
of all other (higher level) statechart features, including those
bundled into the UML specification.
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Structure of the HSM ImplementationStructure of the HSM Implementation

• All concrete state machines derive from the abstract QHsm 
base class

+ init()
+ dispatch()
# tran()
# top() : QState

- state__ : QState
- source__ : QState

«abstract»
QHsm

Calc

Behavioral Inheritance
meta-pattern sig : QSignal

. . .

QEvent

Concrete
HSMs

Events with
parameters

timekeeping()
setting()

Watch

Abstract
HSM Base
Class Generic

Event Base
Class

lParam
wParam

Win32Evt
keyID

CalcEvt

event
parameters

state-handler
methods

return 0

typedef          /* signature of state-handler method */
   QPseudoState         /* return type (pseudostate) */
      (*QState )          /* name of pointer-to-function */
            (QHsm *,                    /* name of the class */
             QEvent const *);          /* immutable event */

• “State” (QState) 
is represented as 
pointer-to-member-
function of the 
QHsm class

• All events are instances of QEvent class, or subclasses of 
QEvent (for events with parameters).
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The The QHsm QHsm Base ClassBase Class

• The QHsm base class provides the following methods:
• init() to trigger the topmost initial transition.
• dispatch() to dispatch an event for processing according to the 

state machine semantics
• tran() for taking a state transition

• Clients derive concrete state machines from the QHsm class
• Clients add behavior by adding state handler methods to 

the QHsm subclass

• Clients call QHsm::init() method once

• Clients call QHsm::dispatch() repetitively for each 
event
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State HandlersState Handlers
• A state handler method takes immutable pointer to QEvent

(QEvent const *) and returns a pointer to the superstate 
handler if it doesn’t handle the event, or NULL if it does. 

• State handlers use internally the QHsm method tran() to 
code state transitions. Transitions are coded in the source 
state.

• The signature of state handler is determined by the QState
pointer-to-function (pointer-to-member-function in C++):

typedef QPseudoState (*QStateQStateQStateQState)(QHsm *, QEvent const*); // C
typedef QPseudoState (QHsm::*QStateQStateQStateQState)(QEvent const*); // C++

•C/C++ doesn’t allow to define strictly recursive signature
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Dispatching EventsDispatching Events —— QHsmDispatchQHsmDispatch()()

• QHsmDispatch() traverses the state hierarchy starting from 
the current state (me->state__):

• At each level QHsmDispatch() passes the event to the 
corresponding state handler method

• The processing ends when some state handler handles the 
event (returns NULL)

• The top state (defined in QHsm) always returns NULL

void QHsmDispatch(QHsm *me, QEvent const *e) {
for (me->source__ = me->state__; me->source__ != 0;

me->source__ = (QState)(*me*me*me*me---->source__>source__>source__>source__)(me, e)) 
{}

}
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QSignalQSignal and and QEventQEvent

• The sig attribute of QEvent conveys the type of the event 
(what happened). 

• Signals must be of a scalar type and are typically enumerated. 
The four lowest signals are reserved. 

• Event parameters are added by deriving new event classes 
from QEvent

typedef unsigned short QSignalQSignalQSignalQSignal;
struct QEventQEventQEventQEvent {

QSignal sigsigsigsig; /* signal of the event instance */
/* ...    other QEvent attributes not shown here */

};
enum {                          /* reserved signals */

Q_INIT_SIG = 1, Q_ENTRY_SIG, Q_EXIT_SIG,
Q_USER_SIG       /* the first signal free to use */

};
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Annotated ExampleAnnotated Example

• Let’s code in C the following non-trivial HSM:

entry/
exit/

s0

entry/
exit/

s1

entry/
exit/
h[foo]/foo=0;

s11

entry/
exit/

s2

entry/
exit/

s21

entry/
exit/

s211

a
b

c

c

d f

f

g

b
d

e

g

h[!foo]/
foo=1;

• The state machine has six states s0, s1, s11, s2, s21, and 
s211, and its alphabet consists of eight signals: a through h.
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Subclassing Subclassing QHsmQHsm (in C) (in C) 

• Declare the constructor, initial pseudostate and all six state 
handler methods (the unusual indentation indicates state 
nesting)

typedef struct QHsmTst QHsmTst;
struct QHsmTst {            /* QhsmTst state machine */

QHsm super_;                      /* extends QHsm */
int foo__;     /* private extended state variable */

};
QHsmTst *QHsmTstCtor(QHsmTst *me);
void QHsmTst_initial(QHsmTst *me, QEvent const *e);
QSTATE QHsmTst_s0(QHsmTst*me, QEvent const *e);  
QSTATE QHsmTst_s1(QHsmTst*me, QEvent const *e);  
QSTATE QHsmTst_s11(QHsmTst*me, QEvent const *e);  
QSTATE QHsmTst_s2(QHsmTst*me, QEvent const *e);  
QSTATE QHsmTst_s21(QHsmTst*me, QEvent const *e);  
QSTATE QHsmTst_s211(QHsmTst*me, QEvent const *e);  
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The Constructor and Initial Pseudostate The Constructor and Initial Pseudostate 

• In C you need to explicitly construct the superclass QHsm

• In the initial pseudostate you must take the initial transition 
via the macro Q_INIT()

QHsmTst *QHsmTstCtor(QHsmTst *me) {
QHsmCtorQHsmCtorQHsmCtorQHsmCtor____(&me->super_, /* construct the superclass */

(QPseudoState)QHsmTst_initial);
return me;

}

void QHsmTst_initial(QHsmTst *me, QEvent const *e) {
printf("top-INIT;");
me->foo__ = 0;    /* init. extended state variable */
Q_INITQ_INITQ_INITQ_INIT(QHsmTst_s0);   /* the topmost initial tran. */

}
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What Elements Go Into a State Handler? What Elements Go Into a State Handler? 
• To find out which elements go to a given state handler, 

you follow around the boundary of the state (say, s21) in 
the diagram

entry/
exit/

s0

entry/
exit/

s1

entry/
exit/
h[foo]/foo=0;

s11

entry/
exit/

s2

entry/
exit/

s21

entry/
exit/

s211

a
b

c

c

d f

f

g

b
d

e

g

h[!foo]/
foo=1;

• You need to include: all transitions originating at the 
boundary, entry actions, exit actions, internal transitions, 
and the initial transition
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Coding a State Handler Coding a State Handler 

• Each state maps to a state handler method. For example, 
state s21 maps to QHsmTst_s21() state handler.

• All state handler methods have the same skeleton 
(housekeeping code, [Douglass 99])

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */

/* . . . */ 
} 
return (QSTATE)QHsmTst_s2;  /* designate the superstate */

}
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Coding Entry and Exit ActionsCoding Entry and Exit Actions

• You intercept the reserved signals Q_ENTRY_SIG or 
Q_EXIT_SIG, enlist actions you want to execute, and 
terminate with “return 0” (event handled)

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
case Q_ENTRY_SIG:case Q_ENTRY_SIG:case Q_ENTRY_SIG:case Q_ENTRY_SIG: printfprintfprintfprintf("s21("s21("s21("s21----ENTRY;"); return 0;ENTRY;"); return 0;ENTRY;"); return 0;ENTRY;"); return 0;
case Q_EXIT_SIG:case Q_EXIT_SIG:case Q_EXIT_SIG:case Q_EXIT_SIG: printfprintfprintfprintf("s21("s21("s21("s21----EXIT;");   return 0;EXIT;");   return 0;EXIT;");   return 0;EXIT;");   return 0;

/* . . . */ 
} 
return (QSTATE)QHsmTst_s2;  /* designate the superstate */

}
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Coding the Initial TransitionCoding the Initial Transition

• You intercept the reserved signal Q_INIT_SIG, enlist the 
actions, and then designate the target substate through the 
macro Q_INIT() , after which you exit state handler with 
“return 0” (event handled)

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
/* . . . */ 
case Q_INIT_SIG:  case Q_INIT_SIG:  case Q_INIT_SIG:  case Q_INIT_SIG:  /* intercept the reserved init signal */

printfprintfprintfprintf("s21("s21("s21("s21----INIT;");INIT;");INIT;");INIT;");
Q_INIT(Q_INIT(Q_INIT(Q_INIT(QHsmTstQHsmTstQHsmTstQHsmTst_s211);     _s211);     _s211);     _s211);     /* designate the substate */
return 0;return 0;return 0;return 0; /* event handled */

/* . . . */ 
} 
return (QSTATE)QHsmTst_s2;  /* designate the superstate */

}
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Coding a Regular TransitionCoding a Regular Transition

• You intercept the custom defined signal (e.g., B_SIG), 
enlist the actions, and then designate the target state 
through the macro Q_TRAN() , after which you exit state 
handler with “return 0” (event handled)

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
/* . . . */ 
case B_SIG:              case B_SIG:              case B_SIG:              case B_SIG:              /* intercept the custom signal */

printfprintfprintfprintf("s21("s21("s21("s21----B;");B;");B;");B;");
Q_TRAN(Q_TRAN(Q_TRAN(Q_TRAN(QHsmTstQHsmTstQHsmTstQHsmTst_s211);  _s211);  _s211);  _s211);  /* designate the target state */
return 0;return 0;return 0;return 0; /* event handled */

/* . . . */ 
} 
return (QSTATE)QHsmTst_s2;  /* designate the superstate */

}
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Coding a Transition With a GuardCoding a Transition With a Guard
• You intercept the custom defined signal (e.g., H_SIG), and 

you immediately test the guard inside an if (…). If the 
guard evaluates FALSE you break to return the superstate.

QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {
switch (e->sig) { /* demultiplex events based on signal */
case H_SIG:         case H_SIG:         case H_SIG:         case H_SIG:         /* self transition with a guard */

if (!meif (!meif (!meif (!me---->>>>foofoofoofoo__) {        __) {        __) {        __) {        /* test the guard condition */
printfprintfprintfprintf("s21("s21("s21("s21----H;");H;");H;");H;");
memememe---->>>>foofoofoofoo__ = !0;__ = !0;__ = !0;__ = !0;
Q_TRAN(Q_TRAN(Q_TRAN(Q_TRAN(QHsmTstQHsmTstQHsmTstQHsmTst_s21);       _s21);       _s21);       _s21);       /* self transition */
return 0;return 0;return 0;return 0;

}}}}
break;break;break;break; /* event notnotnotnot handled */

} 
return (QSTATE)QHsmTst_s2;  /* designate the superstate */

}
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The Complete The Complete s21s21 State Handler State Handler 
QSTATE QHsmTst_s21(QHsmTst *me, QEvent const *e) {

switch (eswitch (eswitch (eswitch (e---->>>>sigsigsigsig)))) {
case Q_ENTRY_SIG: printf("s21-ENTRY;"); return 0return 0return 0return 0;
case Q_EXIT_SIG: printf("s21-EXIT;");   return 0return 0return 0return 0;
case Q_INIT_SIG: printf("s21INIT;");

Q_INITQ_INITQ_INITQ_INIT(QHsmTst_s211);  return 0return 0return 0return 0;
case B_SIG: printf("s21-B;");

Q_TRANQ_TRANQ_TRANQ_TRAN(QHsmTst_s211);  return 0return 0return 0return 0;
case H_SIG:       /* self transition with a guard */

if (!me->foo__) { /* test the guard condition */
printf("s21-H;");
me->foo__ = !0;
Q_TRANQ_TRANQ_TRANQ_TRAN(QHsmTst_s21);       /* self transition */
return 0return 0return 0return 0;

}
break;       /* break to return the superstate */

} 
return (QSTATE)return (QSTATE)return (QSTATE)return (QSTATE)QHsmTstQHsmTstQHsmTstQHsmTst_s2;_s2;_s2;_s2; /* return the superstate */

}
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Test Harness Test Harness 
#include "qhsm.h“         /* include the HSM interface */
static QHsmTst test; /* instantiate the HSM */    

int main() {
printf("QHsmTst example, version 1.00, libraries: %s\n",

QHsmGetVersion());
QHsmTstCtorQHsmTstCtorQHsmTstCtorQHsmTstCtor(&test); /* explicitly construct the HSM */
QHsmInitQHsmInitQHsmInitQHsmInit((QHsm *)&test, 0); /* initial transition */
for (;;) {

char c;
printf("\nSignal<-");
c = getc(stdin);
getc(stdin);                     /* discard '\n' */
if (c < 'a' || 'h' < c) {

return 0; 
}
QHsmDispatchQHsmDispatchQHsmDispatchQHsmDispatch((QHsm *)&test, &testQEvt[c - 'a']);

}
return 0;

}
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An Example SessionAn Example Session
1: QHsmTst example, version 1.00, libraries: QHsm 2.2.5
2: top-INIT;s0-ENTRY;s0-INIT;s1-ENTRY;s1-INIT;s11-ENTRY;
3: Signal<-a
4: s1-A;s11-EXIT;s1-EXIT;s1-ENTRY;s1-INIT;s11-ENTRY;
5: Signal<-e
6: s0-E;s11-EXIT;s1-EXIT;s2-ENTRY;s21-ENTRY;s211-ENTRY;
7: Signal<-e
8: s0-E;s211-EXIT;s21-EXIT;s2-EXIT;s2-ENTRY;s21-NTRY;

s211-ENTRY;
9: Signal<-a
10:
11: Signal<-h
12: s21-H;s211-EXIT;s21-EXIT;s21-ENTRY;s21-INIT;s211-ENTRY;
13: Signal<-h
14:
15: Signal<-x
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Changing the State MachineChanging the State Machine
EXERCISE: modify the state machine by moving transition 
‘e’ from s0 to s2, and by changing target of transition ‘f’
in state s1 from s211 to s21. Test the modified HSM. 

entry/
exit/

s0

entry/
exit/

s1

entry/
exit/
h[foo]/foo=0;

s11

entry/
exit/

s2

entry/
exit/

s21

entry/
exit/

s211

a
b

c

c

d f

f

g

b
d

e

g

h[!foo]/
foo=1;
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SummarySummary
• You can quite easily (once you know the pattern) implement 

HSMs in C and C++. In fact, coding a non-trivial HSM turned 
out to be an exercise in following a few simple rules.

• With just a bit of practice, you will forget that you are 
"translating" state models into code; rather, you will directly 
code state machines in C or C++, just as you directly code 
classes in C++ or Java. 

• At this point, you will no longer struggle with convoluted 
if-else statements and gazillions of flags. You will start 
thinking at a higher level of abstraction. 

• Thus, a sufficiently small and truly practical implementation 
of statecharts can trigger a paradigm shift in your way of 
thinking about programming reactive systems. I call this 
paradigm shift Quantum Programming (QP) [Samek 02].



  

Discussion /Criticism from Users

 Run to completion (RTC) semantics.
 Avoids internal concurrency issues. But it is not good for ensuring timely 

response into higher priority interrupts.

 Can different timing semantics be captured with such a framework?
 For instance, how easy is to encode temporal scopes for states?

 How hard is debugging?
 “Run-to-completion“ semantics results in excessive self-posting of events 

and queuing. 



  

Discussion /Criticism from Users

 “There is no real value in separating semantics (state-chart description) 
from functionality (code which uses the state-machine), but this turned out to 
be a maintenance nightmare” - Amazon review.

 QP does not offer orthogonal states, which is needed to model concurrent 
aspects of a system. 
 Somewhat salvaged by the publish/subscribe framework but still clumsy.

Frank Schuhardt,  http://www.amazon.com/gp/pdp/profile/A2IA4GCO91XW95/
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