Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Trademark

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOG, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartShunt and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rflAB, rPIC, Select Mode, SmartSensor, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOG® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Chapter 1. Introduction
- 1.1 Welcome .. 1
- 1.2 PICDEM 2 Plus Demonstration Board ... 2
- 1.3 Sample Devices ... 3
- 1.4 Sample Programs ... 3
- 1.5 PICDEM 2 Plus User’s Guide ... 4
- 1.6 Reference Documents .. 4

Chapter 2. Getting Started
- 2.1 PICDEM 2 Plus as a Stand-Alone Board – Preprogrammed Device 5
- 2.2 PICDEM 2 Plus Used with an In-Circuit Emulator or In-Circuit Debugger 6

Chapter 3. Tutorial
- 3.1 Tutorial Program Operation .. 7
- 3.2 Source Code and Application Notes .. 9

Appendix A. Hardware Detail
- A.1 Processor Sockets ... 11
- A.2 Display ... 11
- A.3 Power Supply ... 11
- A.4 RS-232 Serial Port ... 11
- A.5 Switches ... 12
- A.6 Oscillator Options ... 12
- A.7 Analog Input ... 12
- A.8 ICD Connector ... 12
- A.9 Temperature Sensor .. 12
- A.10 Serial EEPROM .. 12
- A.11 LCD .. 12
- A.12 Sample Devices ... 13
- A.13 Board Layout and Schematics ... 14

Index.. 17

Worldwide Sales and Service .. 18
Chapter 1. Introduction

1.1 WELCOME

Thank you for purchasing the PICDEM 2 Plus demonstration board from Microchip Technology Incorporated. The PICDEM 2 Plus is a simple board which demonstrates the capabilities of the 18, 28 and 40-pin PIC16 and PIC18 devices.

The PICDEM 2 Plus can be used stand-alone with a programmed part, with an in-circuit emulator (e.g., MPLAB® ICE) or with an in-circuit debugger (e.g., MPLAB ICD 2). Sample programs are provided to demonstrate the unique features of the supported devices.

The PICDEM 2 Plus Kit comes with the following:
1. PICDEM 2 Plus Demonstration Board (Figure 1-1)
2. Sample devices
3. CD-ROM, which contains:
 a) Sample programs
 b) PICDEM 2 Plus Demonstration Board User’s Guide
 c) Application Notes

If you are missing any part of the kit, please contact your nearest Microchip sales office listed in the back of this publication for help.
1.2 PICDEM 2 PLUS DEMONSTRATION BOARD

The PICDEM 2 Plus demonstration board has the following hardware features:

1. 18, 28 and 40-pin DIP sockets. (Although three sockets are provided, only one device may be used at a time.)
2. On-board +5V regulator for direct input from 9V, 100 mA AC/DC wall adapter or 9V battery, or hooks for a +5V, 100 mA regulated DC supply.
3. RS-232 socket and associated hardware for direct connection to an RS-232 interface.
4. In-Circuit Debugger (ICD) connector.
5. 5 KΩ pot for devices with analog inputs.
6. Three push button switches for external stimulus and Reset.
7. Green power-on indicator LED.
8. Four red LEDs connected to PORTB.
9. Jumper J6 to disconnect LEDs from PORTB.
10. 4 MHz canned crystal oscillator.
11. Unpopulated holes provided for crystal connection.
12. 32.768 kHz crystal for Timer1 clock operation.
13. Jumper J7 to disconnect on-board RC oscillator (approximately 2 MHz).
14. 32K x 8 Serial EEPROM.
15. LCD display.
17. Prototype area for user hardware.
18. Microchip TC74 thermal sensor.
1.3 SAMPLE DEVICES

Two FLASH devices are included. The device types may change, but will generally include PIC16 and PIC18 40-pin DIP devices.

1.4 SAMPLE PROGRAMS

The PICDEM 2 Plus Kit includes a CD-ROM with sample demonstration programs. These programs may be used with the included sample devices, with an In-Circuit Emulator (ICE) or with an In-Circuit Debugger (ICD). For each type of device (PIC16 or PIC18), demo source code (several ASM files) and compiled code (one Hex file) are provided.
1.5 PICDEM 2 PLUS USER’S GUIDE

This document describes the PICDEM 2 Plus demonstration board, tutorial and demonstration software. Detailed information on individual microcontrollers may be found in the device’s respective data sheet. Detailed information on In-Circuit Emulator (ICE) or In-Circuit Debugger (ICD) systems may be found in the respective tool’s user guide.

Chapter 1: Introduction – This chapter introduces the PICDEM 2 Plus and provides a brief description of the hardware.

Chapter 2: Getting Started – This chapter goes through a basic step-by-step process for getting your PICDEM 2 Plus up and running as a stand-alone board or with an ICE or ICD.

Chapter 3: Tutorial – This chapter provides a detailed description of the tutorial program.

Appendix A: Hardware Description: This appendix describes in detail the hardware of the PICDEM 2 Plus board.

1.6 REFERENCE DOCUMENTS

Reference Documents may be obtained by contacting your nearest Microchip sales office (listed in the back of this document) or by downloading via the Microchip web site (www.microchip.com).

• Individual Data Sheets and Reference Manuals:
 - PIC16F87X Data Sheet (DS30292)
 - PIC18FX2 Data Sheet (DS39564)
 - PICmicro® Mid-Range MCU Family Reference Manual (DS33023)
 - PICmicro® 18C MCU Family Reference Manual (DS39500)
 - TC74 Data Sheet (DS21462)
• MPLAB® IDE Simulator, Editor User’s Guide (DS51025)
• MPASM™ User’s Guide with MPLINK™ Linker and MPLIB™ Librarian (DS33014)
• PRO MATE® II User’s Guide (DS30082)
• PICSTART® Plus User’s Guide (DS51028)
• MPLAB® ICE User’s Guide (DS51159)
• MPLAB® ICD 2 Quick Start Guide (DS51268)
• Microchip Third Party Guide (DS00104)
Chapter 2. Getting Started

The PICDEM 2 Plus may be used as a stand-alone board with a preprogrammed device, with an In-Circuit Emulator (ICE) or with an In-Circuit Debugger (ICD). For a list of PICmicro microcontroller compatible ICES or ICDs, please refer to the Development Systems Ordering Guide or the Microchip Third Party Guide.

2.1 PICDEM 2 PLUS AS A STAND-ALONE BOARD – PREPROGRAMMED DEVICE

The PICDEM 2 Plus may be demonstrated immediately by following the steps listed below:

- Place the preprogrammed sample device in the appropriate socket on the PICDEM 2 Plus board.
- Place a jumper on J6 (to enable the LEDs).
- Verify that the board is set up for a 4 MHz canned oscillator (i.e., no jumper on J7; a 4 MHz oscillator in Y2; Y1, C4 and C5 are empty).
- Apply power to the PICDEM 2 Plus. For information on acceptable power sources, see Appendix A.

To reprogram the sample device, the following will be necessary:

1. Program source code.

 User source code may be used to program the device or, if this has previously been done, the sample program may be restored from the file on the included CD-ROM.

2. An assembler, such as MPASM™ assembler (available with MPLAB IDE), or a compiler, such as MPLAB C18 (PIC18 devices only).

 Source code must be assembled or compiled into a Hex file before it can be programmed into the device. Microchip Technology’s MPASM assembler or MPLAB C18 C compiler may be used. Both are compatible with MPLAB IDE. However, other assemblers/compilers may be used. For a list of these PICmicro® MCU compatible language tools, please refer to the Microchip Third Party Guide.

3. A device programmer, such as PRO MATE® II, MPLAB® PM3(1), PICSTART® Plus or MPLAB® ICD 2 (programmer functionality available with MPLAB IDE v6.00 or greater).

 Once the sample program is in Hex file format, a programmer may be used to program a Flash device. Microchip Technology’s PRO MATE II device programmer, PICSTART Plus development programmer or MPLAB ICD 2 may be used. All are compatible with MPLAB IDE. However, other programmers may be used. For a list of these PICmicro MCU compatible programmers, please refer to the Microchip Third Party Guide.

 If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note 1: The MPLAB PM3 device programmer will be available in Q2 2004. Check the Microchip web site (www.microchip.com) for further information.
2.2 PICDEM 2 PLUS USED WITH AN IN-CIRCUIT EMULATOR OR IN-CIRCUIT DEBUGGER

To use PICDEM 2 Plus with an In-Circuit Emulator (ICE) or In-Circuit Debugger (ICD), refer to the tool’s user guide for instructions on how to power-up and configure the ICE/ICD, as well as how to connect to target boards (e.g., Figure 2-1).

FIGURE 2-1: PICDEM 2 PLUS CONNECTED TO MPLAB ICD 2 USING USB

Configure the PICDEM 2 Plus for the desired oscillator as described in Table 2-1. Refer to the ICE/ICD user’s guide for any oscillator configuration requirements.

TABLE 2-1: OSCILLATOR SELECTION

<table>
<thead>
<tr>
<th>Oscillator Selection on PICDEM 2 Plus</th>
<th>Modification on PICDEM 2 Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>J7 installed, Y2 empty, Y1 empty</td>
</tr>
<tr>
<td>Crystal</td>
<td>J7 removed, Y2 empty, crystal in Y1, caps in C4 and C5</td>
</tr>
<tr>
<td>Canned Oscillator</td>
<td>J7 removed, oscillator in Y2 (Y1, C4, C5 empty)</td>
</tr>
<tr>
<td>Resonator – no internal caps</td>
<td>J7 removed, Y2 empty, resonator in Y1, caps in C4 and C5</td>
</tr>
<tr>
<td>Resonator – with internal caps</td>
<td>J7 removed, Y2 empty, resonator in Y1, C4 and C5 empty</td>
</tr>
</tbody>
</table>
Chapter 3. Tutorial

The tutorial program is preprogrammed into the sample device, (i.e., p16demo.hex for a PIC16 device and p18demo.hex for a PIC18 device). Also, this program is on the included CD-ROM program disk for user reference, (i.e., if the sample device has been reprogrammed with another program, the tutorial may be reprogrammed into the device).

For detailed information on the PICDEM 2 Plus hardware, please refer to Appendix A.

3.1 TUTORIAL PROGRAM OPERATION

The tutorial program is made up of four components, which are individually displayed on the LCD.

1. Voltmeter
 This mode uses the A/D module to measure the voltage of the R16 pot and display a voltage between 0.00V and 5.00V on the LCD. Voltage is continually updated until the mode is exited by pressing RB0.

2. Buzzer
 This mode turns on the Piezo buzzer, using the CCP1 module I/O pin, RC2. The period and duty cycle of the CCP1 frequency can be changed while the buzzer is on. The changes in period and duty cycle are recognized immediately in the buzzer tone. To change the period and/or the duty cycle, press RB0 under the “Buzzer” menu. The buzzer will then sound off with the default setting of 80h for the period and duty cycle. The cursor will flash over the period’s first digit, indicating that the PR2 register is ready to be incremented. To change the duty cycle, press RA4 once and the cursor will now flash over the duty cycle’s first digit, indicating it is now ready to increment the CCPR1L register. The next press of RA4 will exit the buzzer function.

3. Temperature
 This mode uses a TC74 thermal sensor to measure ambient temperature in Celsius and then display that temperature on the LCD. Communication between the PICmicro MCU and sensor is accomplished using the MSSP module. This mode is exited by pressing RB0. This mode contains code that will write to the external on-board EEPROM. Every two seconds, the code will write to a defined EEPROM address and store the current temperature in that address.

4. Clock
 Once this mode is entered from the main menu, a real-time clock will start counting from 00:00:00. The Timer1 module and a 32 kHz clock crystal are used to establish a real-time clock. By pressing RA4, the clock time can be set to the user’s preference. When RA4 is pressed to set the time, the cursor will flash over the hours ten digit. Press RA4 again and the cursor will now flash over the minutes ten digit. RB0 is used to increment hours and minutes whenever the cursor is flashing over either. After the minutes have been set, press RA4 and the time will be set and the LCD is returned to an active clock display.

The data that is sent to the LCD is also sent to the RS-232 serial port using the USART on the PICmicro MCU. A HyperTerminal™ program on the PC will be able to display the same information that is displayed on the LCD.
FIGURE 3-1: TUTORIAL PROGRAM FLOW CHART

Power-up

PICDEM™ 2 Plus

Voltmeter
RA4 = Next
RB0 = Now

Volts = 0.33V
RB0 = Exit

Buzzer
RA4 = Next
RB0 = Now

Prd = 128 DC = 128
RA4 = -> RB0 = ++

RA4 = 3 presses

Temperature
RA4 = Next
RB0 = Now

Temp = 022°C
RB0 = Exit

RA4 = 3 presses

Clock
RA4 = Next
RB0 = Now

00.00.02
RA4 = Set RB0 = Menu

00.00.03
RA4 = -> RB0 = ++

RA4 = 3 presses
3.2 SOURCE CODE AND APPLICATION NOTES

In addition to the assembled tutorial program (Hex files), source code used to create these Hex files is included on the PICDEM 2 Plus CD-ROM. Both source code and related Hex files are found in device-specific directories.

Application Notes are also included on the CD-ROM for additional examples of use.

For information on how to reprogram the device with new or modified code, or how to restore the tutorial program, please see Section 2.1 “PICDEM 2 Plus as a Stand-Alone Board – Preprogrammed Device”.
Appendix A. Hardware Detail

The PICDEM 2 Plus hardware is extremely simple and is intended to illustrate the ease of use of various PICmicro MCUs. The PICDEM 2 Plus features the following hardware elements:

A.1 PROCESSOR SOCKETS

Although three sockets are provided, only one device may be used at a time.

- 18-pin socket
- 28-pin socket
- 40-pin socket

A.2 DISPLAY

Four red LEDs are connected to PORTB of each processor type. The PORTB pins are set high to light the LEDs. These LEDs may be disconnected from PORTB by removing jumper J6.

One green LED is provided to determine whether there is power to the PICDEM 2 Plus board (LED on) or not (LED off).

A.3 POWER SUPPLY

There are three ways to supply power to the PICDEM 2 Plus:

- A 9V battery can be plugged into J8.
- A 9V, 100 mA unregulated AC or DC supply can be plugged into J2. A power supply can be purchased through Microchip, Part #AC162039.
- A +5V, 100 mA regulated DC supply can be connected to the hooks provided.

Note: The PICDEM 2 Plus kit does not include a power supply.

MPLAB ICE 2000 users have a regulated +5V power supply available in the logic probe connector and can easily connect to the hooks on PICDEM 2 Plus (Red probe to +5V and Black probe to GND).

MPLAB ICD 2 users may use the ICD to power the target board to 5V, up to 200 mA, if the MPLAB ICD 2 is connected to the PC with a serial cable.

A.4 RS-232 SERIAL PORT

An RS-232 level shifting IC has been provided with all necessary hardware to support connection of an RS-232 host through the DB9 connector. The port is configured as DCE and can be connected to a PC using a straight-through cable.

The PIC16/PIC18 RX and TX pins are tied to the RX and TX lines of the MAX232A.
A.5 SWITCHES

Three switches provide the following functions:

- **S1** – MCLR to hard reset the processor
- **S2** – Active-low switch connected to RA4
- **S3** – Active-low switch connected to RB0

Switches S1 and S3 have debounce capacitors, whereas S2 does not, allowing the user to investigate debounce techniques.

When pressed, the switches are grounded. When idle, they are pulled high (+5V).

A.6 OSCILLATOR OPTIONS

- RC oscillator (2 MHz approximately) supplied. This oscillator may be disabled by removing jumper J7.
- Pads provided for user furnished crystal and two capacitors.
- Removable 4 MHz canned oscillator.
- 32.768 kHz (watch type) crystal for Timer1.

A.7 ANALOG INPUT

A 5 KΩ potentiometer is connected through a series 470 ohm resistor to AN0. The pot can be adjusted from VDD to GND to provide an analog input to the parts with an A/D module.

A.8 ICD CONNECTOR

By way of the modular connector (J5), the MPLAB ICD 2 can be connected for low-cost debugging. The ICD connector utilizes RB6 and RB7 of the microcontroller for in-circuit debugging.

A.9 TEMPERATURE SENSOR

This is a serial digital thermal sensor (TC74) connected to the 28 and 40-pin microcontrollers via RC3 and RC4. Communication is accomplished with the TC74 via its 2-wire I²C™ compatible serial port. This device has an address of \(1001101_2\).

A.10 SERIAL EEPROM

A 24L256 256K (32K x 8) serial EEPROM is included on the board to illustrate I²C bus concepts.

A.11 LCD

An LCD display with two lines, 16 characters each, is connected to the 28 and 40-pin sockets. There are three control lines (RA3:RA1) and four data lines (RD3:RD0).

A 5 KΩ pot may be installed into R20 to adjust contrast on the LCD. If this is done, R5 and R6 need to be removed.
A.12 SAMPLE DEVICES

A sample part programmed with a simple program is included in the PICDEM 2 Plus kits.

Table A-1 lists the I/O features and port connections for each processor type.

TABLE A-1: PORT CONNECTIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>LEDs</th>
<th>RS-232</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Pot R16</th>
<th>LCD</th>
<th>EEPROM</th>
<th>Buzzer</th>
<th>ICD</th>
<th>Temp Sensor</th>
<th>Y1/Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pin</td>
<td>RB3:RB0</td>
<td>N/A</td>
<td>MCLR</td>
<td>RA4</td>
<td>RB0</td>
<td>RA0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>RB6/RB7</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>28-pin</td>
<td>RB3:RB0</td>
<td>RC6/RC7</td>
<td>MCLR</td>
<td>RA4</td>
<td>RB0</td>
<td>RA0</td>
<td>RA3:RA1</td>
<td>RC3/RC4</td>
<td>RC2</td>
<td>RB6/RB7</td>
<td>RC3/RC4</td>
<td>Yes</td>
</tr>
<tr>
<td>40-pin</td>
<td>RB3:RB0</td>
<td>RC6/RC7</td>
<td>MCLR</td>
<td>RA4</td>
<td>RB0</td>
<td>RA0</td>
<td>RA3:RA1</td>
<td>RC3/RC4</td>
<td>RC2</td>
<td>RB6/RB7</td>
<td>RC3/RC4</td>
<td>Yes</td>
</tr>
</tbody>
</table>
A.13 BOARD LAYOUT AND SCHEMATICS

The following figures show the parts layout (silkscreen) and schematics for the PICDEM 2 Plus board.

FIGURE A-1: PICDEM 2 PLUS PARTS LAYOUT
FIGURE A-3: PICDEM 2 PLUS SCHEMATIC (CONTINUED)
Index

A
- A/D Input ...2, 12

B
- Board .. 1, 2, 5, 11
- Parts Layout .. 14
- Power Supply ... 5, 11
- Schematics ... 14
- Silkscreen ... 14
- Buzzer .. 7
- Buzzer, Piezo ... 2

C
- Clock .. 7

D
- Demonstration Board. See Board.
- Demonstration Programs. See Sample Programs.

E
- EEPROM, Serial ...2, 12

H
- Hardware ... 11

I
- ICD Connector ... 12

K
- Kit Components ... 1

L
- LCD ...2, 12
- LEDs
 - Green Power..2, 11
 - Red Display .. 2, 5, 11

M
- MPASM Assembler.. 5
- MPASM Assembler User’s Guide with
 - MPLINK Linker and MPLIB Librarian............... 4
- MPLAB C18 .. 5
- MPLAB ICD 2 .. 1, 5, 6, 11, 12
- MPLAB ICD 2 Quick Start Guide 4
- MPLAB ICE ... 1, 6, 11
- MPLAB ICE User’s Guide 4
- MPLAB IDE .. 5
- MPLAB IDE User’s Guide 4

O
- Oscillator Options .. 12
- Oscillator Selection .. 6

P
- PIC16F87X Data Sheet .. 4
- PIC16 ... 1
- Tutorial Program .. 7
- PIC18FXX2 Data Sheet .. 4
- PIC18 ... 1
- Tutorial Program .. 7
- PICDEM 2 Plus Board. See Board.
- PICDEM 2 Plus Kit. See Kit Components.
- PICSTART® Plus .. 5
- PICSTART® Plus User’s Guide 4
- Piezo Buzzer .. 2
- PRO MATE® II .. 5
- PRO MATE® II User’s Guide 4
- Push Buttons. See Switches.

R
- Reference Documents ... 4
- RS-232 .. 2, 11

S
- Sample Devices ..1, 3, 13
- Sample Programs .. 1, 3
- Sockets .. 11
- Switches .. 2, 12

T
- TC74 .. 2
- TC74 Data Sheet .. 4
- Temperature ... 7
- Temperature Sensor .. 12
- TC74 ... 12
- Tutorial ... 7
- Tutorial Program
 - Flow Chart ... 8
 - Source Code, Application Notes 9

V
- Voltmeter ... 7
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-932-3848
Fax: 978-932-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104

China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599

China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
233 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051, China
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shunde
Room 401, Hongjian Building, No. 2
Foshan City, Guangdong 528303, China
Tel: 86-757-28395507
Fax: 86-757-2839571

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355
Fax: 86-532-5027205

India
Divyacsree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaunesseny Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Benex S-1 6F
3-18-20, Shinjuku
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
188-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 189980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Regus Business Centre
Lastrup hol 1-3
Balleres DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - Ier Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-91-97

Germany
Steinheilstrasse 10
D-65737 Tsmming, Germany
Tel: 49-99-627-144-0
Fax: 49-99-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
P. A. De Biesbosch 10
D-65737 Tsmming, Germany
Tel: 49-99-627-144-0
Fax: 49-99-627-144-44

United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869 Fax: 44-118-921-5820