
© 2005 Microchip Technology Inc. DS51295F

MPLAB® C18
C COMPILER

GETTING STARTED

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
DS51295F-page ii
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
© 2005 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C18 C COMPILER
GETTING STARTED
Table of Contents
Preface ... 1

Chapter 1. Overview
1.1 Introduction ... 9
1.2 Tools for Embedded Systems Programming .. 9
1.3 System Requirements .. 11
1.4 Directories .. 12
1.5 About the Language Tools ... 13
1.6 Execution Flow ... 14

Chapter 2. Installation
2.1 Introduction ... 15
2.2 Installing MPLAB C18 .. 15
2.3 Uninstalling MPLAB C18 .. 24

Chapter 3. Project Basics and MPLAB IDE Configuration
3.1 Introduction ... 25
3.2 Project Overview .. 25
3.3 Creating a File .. 26
3.4 Creating Projects .. 26
3.5 Using the Project Window .. 30
3.6 Configuring Language Tool Locations .. 30
3.7 Verify Installation and Build Options ... 33
3.8 Building and Testing ... 35

Chapter 4. Beginning Programs
4.1 Introduction ... 39
4.2 Program 1: “Hello, world!” .. 39
4.3 Program 2: Light LED Using Simulator .. 44
4.4 Program 3: Flash LED Using Simulator ... 49
4.5 Using the Demo Board ... 55

Chapter 5. Features
5.1 Overview .. 59
5.2 MPLAB Project Build Options ... 59
5.3 Demonstration: Code Optimization .. 64
5.4 Demonstration: Displaying Data in Watch Windows 76
© 2005 Microchip Technology Inc. DS51295F-page iii

MPLAB® C18 C Compiler Getting Started
Chapter 6. Architecture
6.1 Introduction ... 89
6.2 PIC18XXXX Architecture .. 90
6.3 MPLAB C18 Start-up Code .. 94
6.4 #pragma Directive .. 94
6.5 Sections .. 96
6.6 SFRS, Timers SW/HW ... 97
6.7 Interrupts .. 98
6.8 Math and I/O Libraries .. 98

Chapter 7. Troubleshooting
7.1 Introduction ... 99
7.2 Error Messages .. 100
7.3 Frequently Asked Questions (FAQs) .. 101

Glossary ...107

Index ...121

Worldwide Sales and Service ...124
DS51295F-page iv © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Preface
INTRODUCTION

This document is designed to help an embedded system engineer get started quickly
using Microchip’s MPLAB® C18 C compiler. PICmicro® microcontroller applications can
be developed rapidly using MPLAB C18 with PIC18 PICmicro MCUs, MPLINK™ linker
and MPLAB IDE. Please refer to the MPLAB® C18 C Compiler User’s Guide
(DS51288) for more details on the features of the compiler mentioned in this document.

The information in this guide is for the engineer or student who comes from a back-
ground in microcontrollers, understands the basic concepts of an 8-bit microcontroller
and has some familiarity with the C programming language.

Items discussed in this chapter are:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.
© 2005 Microchip Technology Inc. DS51295F-page 1

MPLAB® C18 C Compiler Getting Started
DOCUMENT LAYOUT

• Chapter 1. Overview – provides an overview of the MPLAB C18 compiler, its
components and its integration with MPLAB Integrated Development Environment
(IDE).

• Chapter 2. Installation – provides a step-by-step guide through the installation
process of MPLAB C18 Compiler.

• Chapter 3. Project Basics and MPLAB IDE Configuration – covers the MPLAB
IDE setup for use with MPLAB C18 using MPLAB projects and MPLAB SIM simu-
lator, and references the basics of MPLAB IDE configuration for running the
examples and applications in this guide.

• Chapter 4. Beginning Programs – contains simple examples, starting with a
simple “Hello, world!” introductory program, followed by a program to flash LEDs
connected to a PIC18 microcontroller.

• Chapter 5. Features – outlines the overall feature set of the MPLAB C18 com-
piler and provides code demonstrations of optimization and illustrations of the use
of MPLAB watch windows to view data elements and structures.

• Chapter 6. Architecture – explores the PIC18 architecture, with special features
of the MPLAB C18 Compiler that may be different from other C compilers.

• Chapter 7. Troubleshooting – has a list of common error messages and
frequently asked technical questions, along with answers and pointers for dealing
with problems.
DS51295F-page 2 © 2005 Microchip Technology Inc.

Preface
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier font:
Plain Courier Sample source code #define START

Filenames main.c

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Italic Courier A variable argument file.o, where file can be
any valid filename

0bnnnn A binary number where n is a
binary digit

0b00100, 0b10

0xnnnn A hexadecimal number where
n is a hexadecimal digit

0xFFFF, 0x007A

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

© 2005 Microchip Technology Inc. DS51295F-page 3

MPLAB® C18 C Compiler Getting Started
RECOMMENDED READING

PIC18 DEVELOPMENT REFERENCES

For more information on included libraries and precompiled object files for the
compilers, the operation of MPLAB IDE and the use of other tools, the following are
recommended reading.

MPLAB-C18-README.txt

For the latest information on using MPLAB C18 C Compiler, read the
MPLAB-C18-README.txt file (ASCII text) included with the software. This readme file
contains updated information that may not be included in this document.

Readme for XXX.txt

For the latest information on other Microchip tools (MPLAB IDE, MPLINK linker, etc.),
read the associated readme files (ASCII text file) included with the software.

MPLAB® C18 C Compiler User’s Guide (DS51288)

Comprehensive guide that describes the operation and features of Microchip’s
MPLAB C18 C compiler for PIC18 devices.

PIC18 Configuration Settings Addendum (DS51537)

Lists the Configuration bit settings for the Microchip PIC18 devices supported by the
MPLAB C18 C compiler’s #pragma config directive and the MPASM CONFIG
directive.

MPLAB C18 C Compiler Libraries (DS51297)

References MPLAB C18 libraries and precompiled object files. Lists all library functions
provided with the MPLAB C18 C Compiler with detailed descriptions of their use.

MPLAB® IDE User’s Guide (DS51519)

Describes how to set up the MPLAB IDE software and use it to create projects and
program devices.

MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian User’s
Guide (DS33014)

Describes how to use the Microchip PICmicro MCU assembler (MPASM), linker
(MPLINK), and librarian (MPLIB).

PICmicro® 18C MCU Family Reference Manual (DS39500)

Focuses on the PIC18 family of devices. The operation of the PIC18 family architecture
and peripheral modules is explained, but does not cover the specifics of each device.

PIC18 Device Data Sheets

Data sheets describe the operation and electrical specifications of PIC18 devices.

To obtain any of the above listed documents, visit the Microchip web site
(www.microchip.com) to retrieve these documents in Adobe Acrobat (.pdf) format.
DS51295F-page 4 © 2005 Microchip Technology Inc.

Preface
C LANGUAGE AND OTHER TEXTBOOKS

There are many textbooks and specialized texts to help with C in general, some
covering embedded application using Microchip microcontrollers,.

American National Standard for Information Systems – Programming Language – C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability, and efficient execution of C language programs on a
variety of computing systems.

Harbison, Samuel P. and Steele, Guy L., C: A Reference Manual, Fourth Edition.
Prentice-Hall, Englewood Cliffs, New Jersey 07632.

Covers the C programming language in great detail. This book is an authoritative
reference manual that provides a complete description of the C language, the
run-time libraries and a style of C programming that emphasizes correctness,
portability and maintainability.

Huang, Han-Way. PIC® Microcontroller: An Introduction to Software & Hardware
Interfacing. Thomson Delmar Learning, Clifton Park, New York 12065.

Presents a thorough introduction to the Microchip PIC18 microcontroller family,
including all the PIC microcontroller (MCU) programming and interfacing for
peripheral functions. Both PIC MCU assembly language and the MPLAB C18 C
compiler are used in this college level textbook.

Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Presents a concise exposition of C as defined by the ANSI standard. This book
is an excellent reference for C programmers.

Kochan, Steven G. Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Another excellent reference for learning ANSI C, used in colleges and
universities.

Peatman, John B. Embedded Design with the PIC18F452 Microcontroller, First
Edition. Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Focuses on Microchip Technology’s PIC18FXXX family and writing enhanced
application code.

Van Sickle, Ted. Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

Covers the basic principles of programming with C for microcontrollers.

Standards Committee of the IEEE Computer Society – IEEE Standard for Binary
Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers,
Inc., 345 East 47th Street, New York, New York 10017.

This standard describes the floating-point format used in MPLAB C18.
© 2005 Microchip Technology Inc. DS51295F-page 5

MPLAB® C18 C Compiler Getting Started
APPLICATION NOTES

Microchip provides a large library of application notes, many written to be compatible
with the MPLAB C18 C compiler. Here are a few. Check the Microchip web site for
recent additions.

• AN953 Data Encryption Routines for the PIC18
• AN851 A FLASH Bootloader for PIC16 and PIC18 Devices
• AN937 Implementing a PID Controller Using a PIC18 MCU
• AN914 Dynamic Memory Allocation for the MPLAB C18 C Compiler
• AN991 Using the C18 Compiler and the MSSP to Interface I2C™ EEPROMs with

PIC18 Devices
• AN878 PIC18C ECAN C Routines
• AN738 PIC18C CAN Routines in ‘C’
• AN930 J1939 C LIbrary for CAN-Enabled PICmicro® MCUs

DESIGN CENTERS

The Microchip web site at www.microchip.com has many design centers with informa-
tion to get started in a particular industry segment. These design centers include source
code, application notes, web resources and recommended Microchip MCUs for
particular applications.

These are some of the design centers available:

• Getting Started with Microchip
• Automotive Solutions
• High Pin Count/High Density Memory
• KEELOQ® Authentication solutions
• Battery Management Solutions
• LCD Solutions
• Connectivity Solutions

- Physical Protocols: CAN, LIN, USB
- Wireless Protocols: ZigBee™, Infrared, rfPIC®

- Internet Protocols: TCP/IP
• Low-Power Solutions
• Designing for Mechatronics
• Motor Control Solutions
• Home Appliance Solutions
• World’s Smallest Microcontrollers
DS51295F-page 6 © 2005 Microchip Technology Inc.

Preface
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using Internet browsers, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample pro-
grams, design resources, user’s guides and hardware support documents, latest
software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQ), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s Customer Notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers, MPASM and
MPLAB ASM30 assemblers, MPLINK and MPLAB LINK30 object linkers and
MPLIB and MPLAB LIB30 object librarians.

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

• MPLAB IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE and MPLAB SIM simulators, MPLAB Project Manager
and general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the MPLAB PM3 device programmer and the PICSTART® Plus development
programmer.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.
© 2005 Microchip Technology Inc. DS51295F-page 7

www.microchip.com

MPLAB® C18 C Compiler Getting Started
NOTES:
DS51295F-page 8 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Chapter 1. Overview
1.1 INTRODUCTION

This chapter introduces software tools used for embedded systems programming. It
examines the functions and differences between compilers and assemblers, and the
advantages of the C language. MPLAB C18 directory structures, the various language
tool executables and the execution flow are also presented.

Included in this chapter are these topics:

• Tools for Embedded Systems Programming
• System Requirements
• Directories
• About the Language Tools
• Execution Flow

1.2 TOOLS FOR EMBEDDED SYSTEMS PROGRAMMING

1.2.1 MPLAB C18 C Compiler

MPLAB C18 C Compiler is a cross-compiler that runs on a PC and produces code that
can be executed by the Microchip PIC18XXXX family of microcontrollers. Like an
assembler, the MPLAB C18 compiler translates human-understandable statements
into ones and zeros for the microcontroller to execute. Unlike an assembler, the
compiler does not do a one-to-one translation of machine mnemonics into machine
code.

MPLAB C18 takes standard C statements, such as “if(x==y)” and “temp=0x27”,
and converts them into PIC18XXXX machine code. The compiler incorporates a good
deal of intelligence in this process. It can optimize code using routines that were
employed on one C function to be used by other C functions. The compiler can
rearrange code, eliminate code that will never be executed, share common code
fragments among multiple functions, and can identify data and registers that are used
inefficiently, optimizing their access.

Code is written using standard ANSI C notation. Source code is compiled into blocks
of program code and data which are then “linked” with other blocks of code and data,
then placed into the various memory regions of the PIC18XXXX microcontroller. This
process is called a “build,” and it is often executed many times in program development
as code is written, tested and debugged. This process can be made more intelligent by
using a “make” facility, which invokes the compiler only for those C source files in the
project that have changed since the last build, resulting in faster project build times.

MPLAB C18 compiler and its associated tools, such as the linker and assembler, can
be invoked from the command line to build a .HEX file that can be programmed into a
PIC18XXXX device. MPLAB C18 and its other tools can also be invoked from within
MPLAB IDE. The MPLAB graphical user interface serves as a single environment to
write, compile and debug code for embedded applications.

The MPLAB dialogs and project manager handle most of the details of the compiler,
assembler and linker, allowing the task of writing and debugging the application to
remain the main focus.
© 2005 Microchip Technology Inc. DS51295F-page 9

MPLAB® C18 C Compiler Getting Started
MPLAB C18 compiler makes development of embedded systems applications easier
because it uses the C standard language. There are many books that teach the C
language, and some are referenced in the Preface “Recommended Reading”. This
guide will assume an understanding of the fundamentals of programming in C. The
advantage of the C language is that it is widely used, is portable across different archi-
tectures, has many references and textbooks, and is easier to maintain and extend
than assembly language. Additionally, MPLAB C18 can compile extremely efficient
code for the PIC18XXXX microcontrollers.

1.2.2 MPASM Cross-Assembler and MPLINK Linker

Often, both a cross-assembler and a cross-compiler are used to write code for a
project. MPASM is a component of the MPLAB IDE and it works in conjunction with
MPLINK to link assembly language code sections with C code from the MPLAB C18 C
Compiler.

Assembly language routines are practical for small sections of code that need to run
very fast, or in a strictly defined time.

1.2.3 Other Tools

In this guide, examples will be written and built with MPLAB C18 Compiler through the
graphical user interface and development environment of MPLAB IDE. The MPLAB
IDE Getting Started guide has tutorials and walk-throughs to help understand MPLAB
IDE. Additional assembly language and linker information can be referenced in the
MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian User’s
Guide.

Microchip’s PICDEM™ 2 Plus can use a PIC18F452 as its main microcontroller, and
the examples here will work with this development board, flashing LEDs on this board.

Likewise, the MPLAB ICD 2 can be used to program the PIC18F452 for the
PICDEM 2 Plus development board and debug the programs. These hardware tools
are not required to run the examples in this guide. Debugging can be done within the
free MPLAB IDE using MPLAB SIM, the PIC18XXXX simulator.

Note: While the execution time of code created by a compiler can become nearly
as fast as code created using assembly language, it is constrained by the
fact that it is a translation process, ending in machine code that could have
been generated from assembly language, so it can never run faster than
assembly language code.
DS51295F-page 10 © 2005 Microchip Technology Inc.

Overview
1.3 SYSTEM REQUIREMENTS

The suggested system requirements for using MPLAB C18 and the MPLAB IDE are:

• Intel® Pentium® class PC running Microsoft® 32-bit Windows operating system
(Windows 2000, Windows XP Home or Windows XP Professional)

• Approximately 250 MB hard disk space
• Optional hardware tools for some of the examples in this guide:

- PICDEM 2 Plus Development Board and power supply
- MPLAB ICD 2 In-Circuit Debugger (requires serial or USB connection)

Although MPLAB C18 can be used without MPLAB IDE, this guide demonstrates its
use within the MPLAB integrated development environment. MPLAB IDE should be
installed before installing MPLAB C18. The default installation for MPLAB IDE may
have preset selections. When installing MPLAB IDE for use with MPLAB C18, at a
minimum, these components must be selected (see Figure 1-1):

• MPLAB IDE Device Support
- 8-bit MCUs

• Microchip Applications
- MPLAB IDE
- MPLAB SIM
- MPASM Suite (this is also installed with MPLAB C18, so it doesn’t need to be

installed with MPLAB IDE)

FIGURE 1-1: MPLAB® IDE INSTALLATION MENU

* Optional. If an MPLAB ICD 2 is available for programming and debugging, this
should be selected.
© 2005 Microchip Technology Inc. DS51295F-page 11

MPLAB® C18 C Compiler Getting Started
1.4 DIRECTORIES

MPLAB C18 can be installed anywhere on the PC. Its default installation directory is
the C:\mcc18 folder.

Figure 1-2 shows the directory structure for the typical installation of MPLAB C18:

FIGURE 1-2: MPLAB® C18 DIRECTORY STRUCTURE

The MPLAB C18 installation directory contains the readme file for the compiler, the
assembler and the linker. A description of the subdirectories’ contents are shown in
Table 1-1:

TABLE 1-1: MPLAB® C18 SUBDIRECTORY DESCRIPTIONS

Directory Description

bin Contains the executables for the compiler and linker. These are
described in more detail in Section 1.5 “About the Language Tools”.

doc Contains the documentation for the C18 C compiler. Will be created
only if documentation is selected for installation (see
Section 2.2.5 “Select Components” and Figure 2-5).

example Contains sample applications to help users get started with
MPLAB C18, including the examples discussed in this document.
These may differ slightly from the code used in Chapter 4. “Beginning
Programs”.

h Contains the header files for the standard C library and the
processor-specific libraries for the supported PICmicro® MCUs.

lib Contains the standard C library (clib.lib or clib_e.lib), the
processor-specific libraries (p18xxxx.lib or p18xxxx_e.lib,
where xxxx is the specific device number) and the start-up modules
(c018.o, c018_e.o, c018i.o, c018i_e.o, c018iz.o,
c018iz_e.o).

lkr Contains the linker script files for use with MPLAB C18.

mpasm Contains the MPASM assembler and the assembly header files for the
devices supported by MPLAB C18 (p18xxxx.inc).

src Contains the source code, in the form of C and assembly files, for the
standard C library, the processor-specific libraries and the start-up
modules. There are subfolders for Extended and Traditional
(Non-Extended) modes.
DS51295F-page 12 © 2005 Microchip Technology Inc.

Overview
1.5 ABOUT THE LANGUAGE TOOLS

The bin and mpasm subdirectories of the MPLAB C18 compiler installation
directory contain the executables that comprise the MPLAB C18 compiler, MPASM
assembler and the MPLINK linker. Typically, most of these run automatically during the
build process. MPLAB IDE Project Manager needs to know where the main
compiler, assembler, linker and library executables are installed (as set by
Project>LanguageToolLocations). A brief description of some of these tools is shown
in Table 1-2.

More detailed information on the language tools, including their command line usage,
can be found in the MPLAB® C18 C Compiler User’s Guide (DS51288) and the
MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian User’s
Guide (DS33014).

TABLE 1-2: MPLAB® C18, MPASM™ ASSEMBLER AND MPLINK™ LINKER
EXECUTABLES

Executable Description

mcc18.exe The compiler shell. It takes as input a C file (e.g., file.c) and
invokes the Extended or Non-Extended mode compiler
executable.

mplink.exe The driver program for the linker. It takes as input a linker script,
such as 18F452.lkr, object files and library files and passes
these to _mplink.exe. It then takes the output COFF file from
_mplink.exe and passes it to mp2hex.exe.

_mplink.exe The linker. It takes as input a linker script, object files and library
files and outputs a COFF (Common Object File Format)
executable (e.g., file.out or file.cof). This COFF file is
the result of resolving unassigned addresses of data and code
of the input object files and referenced object files from the
libraries. _mplink.exe also optionally produces a map file
(e.g., file.map) that contains detailed information on the
allocation of data and code.

mp2hex.exe The COFF to hex file converter. The hex file is a file format
readable by a PICmicro® programmer, such as the PICSTART®
Plus or the PRO MATE® II. mp2hex.exe takes as input the
COFF file produced by _mplink.exe and outputs a hex file
(e.g., file.hex).

mplib.exe The librarian. It allows for the creation and management of a
library file (e.g., file.lib) that acts as an archive for the
object files. Library files are useful for organizing object files
into reusable code repositories.

mpasmwin.exe The Windows® assembler executable. It takes as input an
assembly source file (e.g., file.asm) and outputs either a
COFF file (e.g., file.o) or a hex file and COD file
(e.g., file.hex and file.cod). Assembly source files may
include assembly header files (e.g, p18f452.inc), which also
contain assembly source code.
© 2005 Microchip Technology Inc. DS51295F-page 13

MPLAB® C18 C Compiler Getting Started
1.6 EXECUTION FLOW

An example of the flow of execution of the language tools is illustrated in Figure 1-3.

FIGURE 1-3: LANGUAGE TOOLS EXECUTION FLOW

In the above example, two C files are compiled by MPLAB C18, file2.c and
file3.c, and an assembly file, file1.asm, is assembled by MPASM. These result
in object files, named file1.o, file2.o and file3.o.

A precompiled object file, file4.o, is used with file3.o to form a library called
lib1.lib. Finally, the remaining object files are combined with the library file by the
linker.

MPLINK also has as an input linker script, script.lkr. MPLINK produces the output
files, output.cof and output.map, and the HEX file, output.hex.

MPASMWIN

MPLIB

MPLINK

MCC18 MCC18

Input
Source
Files

Object
Files

Library
and

Linker
Script
Files

Output
Files

output.hexoutput.mapoutput.cof

lib1.lib script.lkr

file1.o file2.o file3.o file4.o

file1.asm file2.c file3.c

™

™

DS51295F-page 14 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Chapter 2. Installation
2.1 INTRODUCTION

MPLAB IDE should be installed on the PC prior to installing MPLAB C18. MPLAB IDE
is provided on CD-ROM and is available from www.microchip.com at no charge. The
project manager for MPLAB IDE and the MPLAB SIM simulator are both components
of MPLAB IDE and, along with the built-in debugger, are used extensively in this guide
(see Section 1.3 “System Requirements”).

This chapter discusses in detail the installation of MPLAB C18. Should it become
necessary to remove the software, uninstall directions are provided.

2.2 INSTALLING MPLAB C18

To install MPLAB C18, run the installation program from the CD-ROM. If installing an
MPLAB C18 upgrade, run the upgrade installation program downloaded from the
Microchip web site. A series of dialogs step through the setup process.

2.2.1 Welcome

A welcome screen (Figure 2-1) displays the version number of MPLAB C18 that the
installation program will install.

FIGURE 2-1: INSTALLATION: WELCOME SCREEN

Click Next> to continue.

Nee
ds

 U
pd

at
ing
© 2005 Microchip Technology Inc. DS51295F-page 15

MPLAB® C18 C Compiler Getting Started
2.2.2 License Agreement

The MPLAB C18 license agreement is presented. Read the agreement, then click
“I Accept”.

FIGURE 2-2: INSTALLATION: LICENSE AGREEMENT

After accepting the license agreement, click Next> to continue.
DS51295F-page 16 © 2005 Microchip Technology Inc.

Installation
2.2.3 Readme File

The MPLAB C18 readme file is displayed (Figure 2-3). This file contains important
information about this release of MPLAB C18, such as supported devices, new fea-
tures and known issues and work arounds. The readme file will change with each
release. It will look similar to the figure shown below, but the contents will differ.

FIGURE 2-3: INSTALLATION: README FILE

Review the readme and click Next> to continue.
© 2005 Microchip Technology Inc. DS51295F-page 17

MPLAB® C18 C Compiler Getting Started
2.2.4 Select Installation Directory

Choose the directory where MPLAB C18 is to be installed.

If installing MPLAB C18 for the first time, the default installation directory is C:\mcc18,
as shown in Figure 2-4. Click Browse to install in a different location.

If installing an upgrade, the setup program attempts to set the default installation direc-
tory to the directory of the previous installation. The installation directory for an upgrade
must be the same directory of the previous installation or upgrade.

FIGURE 2-4: INSTALLATION: SELECT INSTALLATION DIRECTORY

Click Next>.

Note: Files in the installation directory and its subdirectories may be overwritten
or removed during the installation process. To save any files, such as
modified linker scripts or library source code from a previous installation,
copy those files to a directory outside the installation directory before
continuing.

Note: If using an upgrade version and not installing over an existing version, an
error message box will be displayed that says, “No previous installation”.
DS51295F-page 18 © 2005 Microchip Technology Inc.

Installation
2.2.5 Select Components

Choose the components to be installed by checking the appropriate boxes (Figure 2-5).
Table 2-1 provides a detailed description of the available components.

There are linker scripts for MPASM provided with MPLAB IDE. Make sure to use the
linker scripts that are installed with MPLAB C18, not those that were installed
with MPLAB IDE when using the MPLAB C18 compiler. The linker scripts provided
with MPLAB C18 have some special directives for the compiler.

FIGURE 2-5: INSTALLATION: SELECT COMPONENTS

Click Next> to continue.

Note: MPASM and MPLINK are provided free with MPLAB IDE. They are also
included in the MPLAB C18 compiler installation. To ensure compatibility
between all tools, the versions of MPASM and MPLINK provided with the
MPLAB C18 compiler should be used.

Note: Not all installations include documentation. Upgrades and some web
downloads have documentation distributed separately.
© 2005 Microchip Technology Inc. DS51295F-page 19

MPLAB® C18 C Compiler Getting Started
TABLE 2-1: MPLAB® C18 SOFTWARE COMPONENTS

Component Description

Program files The executables for the compiler and linker. Install this component
unless this is an upgrade for the auxiliary files only (not the
executables).

Assembler files The MPASM™ assembler and the assembly header files for the
devices supported by MPLAB C18 (p18xxxx.inc).

Linker script files Files required by the MPLINK™ linker. There is one file for each sup-
ported PIC18 microcontroller. Each file provides a default memory
configuration for the processor and directs the linker in the allocation of
code and data in the processor’s memory.

Note: These linker scripts differ from the linker scripts provided with
the MPLAB IDE in that these are specifically designed for use
with MPLAB C18. It is recommended this component be
installed.

Standard headers The header files for the standard C library and the processor-specific
libraries. It is recommended this component be installed.

Standard libraries This component contains the standard C library, the processor-specific
libraries and the start-up modules. See the MPLAB® C18 C Compiler
Libraries (DS51297) and the MPLAB® C18 C Compiler User’s Guide
(DS51288) for more information on the libraries and start-up modules.
Since most typical programs use the libraries and a start-up module, it
is recommended that this component be installed.

Examples The sample applications to assist users in getting started with MPLAB
C18, including the examples described in this document.

Library source code The source code for the standard C library and the processor-specific
libraries. Install this component to view the source code and to modify
and rebuild the libraries.

Preprocessor source
code

The source code for the preprocessor. It is provided for general
interest.
DS51295F-page 20 © 2005 Microchip Technology Inc.

Installation
2.2.6 Configuration Options

In the Configuration Options dialog (Figure 2-6), select the desired options to configure
MPLAB C18 C compiler.

FIGURE 2-6: INSTALLATION: CONFIGURATION OPTIONS

A detailed description of the available configuration options is shown in Table 2-2. Click
Next> to continue.
© 2005 Microchip Technology Inc. DS51295F-page 21

MPLAB® C18 C Compiler Getting Started
TABLE 2-2: MPLAB® C18 CONFIGURATION OPTIONS

Configuration Description

Add MPLAB C18 to PATH
environment variable

Adds the path of the MPLAB C18 executable (mcc18.exe)
and the MPLINK linker executable (mplink.exe) to the
beginning of the PATH environment variable. Doing this
allows MPLAB C18 and the MPLINK linker to be launched at
the command shell prompt from any directory. This option will
prepend to the path regardless of whether the directory is
already included.

Add MPASM to PATH
environment variable

Adds the path of the MPASM executable (mpasmwin.exe) to
the beginning of the PATH environment variable. Doing this
allows the MPASM assembler to be launched at the com-
mand shell prompt from any directory. This option will
prepend to the path regardless of whether the directory is
already included.

Add header file path to
MCC_INCLUDE environment
variable

Adds the path of the MPLAB C18 header file directory to the
beginning of the MCC_INCLUDE environment variable.
MCC_INCLUDE is a list of semi-colon delimited directories
that MPLAB C18 will search for a header file if it cannot find
the file in the directory list specified with the -I
command-line option. Selecting this configuration option
means it will not be necessary to use the -I command-line
option when including a standard header file. If this variable
does not exist, it is created.

Modify PATH and
MCC_INCLUDE variables for all
users

Appears only if the current user is logged into a Windows
NT® or Windows® 2000 computer as an administrator.
Selecting this configuration will perform the modifications to
these variables as specified in the three previous options for
all users. Otherwise, only the current user’s variables will be
affected.

Update MPLAB IDE to use this
MPLAB C18

Appears only if the MPLAB IDE is installed. Selecting this
option configures the MPLAB IDE to use the newly installed
MPLAB C18. This includes using the MPLAB C18 library
directory as the default library path for MPLAB C18 projects
in the MPLAB IDE.

Update MPLAB IDE to use this
MPLINK linker

Appears only if the MPLAB IDE is installed. Selecting this
option configures the MPLAB IDE to use the newly installed
MPLINK™ linker.
DS51295F-page 22 © 2005 Microchip Technology Inc.

Installation
2.2.7 Documentation Notice

If documentation is not included with the executables, a notification similar to
Figure 2-7 will be displayed. Documentation is available on the MPLAB C18 Installation
CD-ROM and the Microchip web site.

FIGURE 2-7: INSTALLATION: UPDATE DOCUMENTATION REMINDER

2.2.8 Start Installation

At the Start Installation screen (Figure 2-8), click Next> to install the files.

Note: To install documentation automatically using either the MPLAB C18
CD-ROM or an upgrade (with documentation) from the web site, select the
Documentation option on the Select Components dialog (see Figure 2-5).

Note: Any files in the installation directory and its subdirectories will be
overwritten or removed.
© 2005 Microchip Technology Inc. DS51295F-page 23

MPLAB® C18 C Compiler Getting Started
FIGURE 2-8: INSTALLATION: START INSTALLATION

2.2.9 Complete Installation

At the Installation Complete screen, click Finish. MPLAB C18 has been successfully
installed.

It may be necessary to restart the computer for MPLAB C18 to operate properly. If the
Restart Computer dialog displays, select Yes to restart immediately, or No to restart the
computer at a later time.

2.3 UNINSTALLING MPLAB C18

To uninstall MPLAB C18, open the Windows control panel and launch Add/Remove
Programs. Select the MPLAB C18 installation in the list of programs and follow the
directions to remove the program. This will remove the MPLAB C18 directory and its
contents from the computer.

Note: If uninstalling an upgraded version of MPLAB C18, the entire installation
will be removed. MPLAB C18 cannot be downgraded to a previously
installed version. Make sure that the original installation CD is available
before choosing to remove an upgraded version so that MPLAB C18 may
be re-installed at a later time.
DS51295F-page 24 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Chapter 3. Project Basics and MPLAB IDE Configuration
3.1 INTRODUCTION

This section covers the basics of MPLAB projects and configuration options for testing
the examples and applications in this guide with MPLAB SIM. This is intended as an
overview and covers a generic application. Details on such things as device selection
and linker scripts will vary with applications. This chapter can be skipped if these basic
operations are known.

Topics covered in this chapter are:

• Project Overview
• Creating a File
• Creating Projects
• Using the Project Window
• Configuring Language Tool Locations
• Verify Installation and Build Options
• Building and Testing

3.2 PROJECT OVERVIEW

Projects are groups of files associated with language tools, such as MPLAB C18, in the
MPLAB IDE. A project consists of source files, header files, object files, library files and
a linker script. Every project should have one or more source files and one linker script.

Typically, at least one header file is required to identify the register names of the target
microcontroller. Header files are typically included by source files and are not explicitly
added to the project.

The project’s output files consist of executable code to be loaded into the target micro-
controller as firmware. Debugging files are generated to help MPLAB IDE correlate the
symbols and function names from the source files with the executable code and
memory used for variable storage.

Most examples and applications in this guide consist of a project with only one source
file and one linker script.

For additional information, refer to the MPLAB® IDE Quick Start Guide (DS51281).

Note: This is not a step-by-step procedure to create and build a project, but an
overview and a checklist to ensure that MPLAB IDE is set up correctly. The
MPLAB IDE User’s Guide has a tutorial for creating projects.
© 2005 Microchip Technology Inc. DS51295F-page 25

MPLAB® C18 C Compiler Getting Started
3.3 CREATING A FILE

Start MPLAB IDE and select File>New to bring up a new empty source file. The
examples and applications in this guide list source code that can be typed in, or copied
and pasted into a text file using the MPLAB editor. Find example source in
mcc18\example\getting started.

Type or copy the source text (as listed in each example in this manual) into this new
file. (Text copied from examples in this document may not preserve white space.) Use
File>Save As to save this file. Browse to or create a new folder location to store
projects. Click Save.

3.4 CREATING PROJECTS

1. Select Project>Project Wizard to create a new project. When the Welcome
screen displays, click Next> to continue.

2. At “Step One: Select a device”, use the pull-down menu to select the device.

FIGURE 3-1: PROJECT WIZARD – SELECT DEVICE

Click Next> to continue.

Note: Creating a new source file can be done either before or after creating a new
project. The order is not important. Creating a new file does not
automatically add that file to the currently open project.
DS51295F-page 26 © 2005 Microchip Technology Inc.

Project Basics and MPLAB IDE Configuration
3. At “Step Two: Select a language toolsuite”, choose “Microchip C18 Toolsuite” as
the “Active Toolsuite”. Then click on each language tool in the toolsuite (under
“Toolsuite Contents”) and check or set up its associated executable location
(Figure 3-2).

FIGURE 3-2: PROJECT WIZARD – SELECT LANGUAGE TOOLSUITE

MPASM Assembler should point to the assembler executable, MPASMWIN.exe,
under “Location”. If it does not, enter or browse to the executable location, which
is by default:
C:\mcc18\mpasm\MPASMWIN.exe

MPLAB C18 C Compiler should point to the compiler executable, mcc18.exe,
under “Location”. If it does not, enter or browse to the executable location, which
is by default:
C:\mcc18\bin\mcc18.exe

MPLINK Object Linker should point to the linker executable, MPLink.exe, under
“Location”. If it does not, enter or browse to the executable location, which is by
default:
C:\mcc18\bin\MPLink.exe

MPLIB Librarian should point to the library executable, MPLib.exe, under
“Location”. If it does not, enter or browse to the executable location, which is by
default:
C:\mcc18\bin\MPLib.exe

Click Next> to continue.
© 2005 Microchip Technology Inc. DS51295F-page 27

MPLAB® C18 C Compiler Getting Started
4. At “Step Three: Name your project” (Figure 3-3), enter the name of the project
and use Browse to select the folder where the project will be saved. Then click
Next> to continue.

FIGURE 3-3: PROJECT WIZARD – PROJECT NAME AND DIRECTORY

5. At “Step Four: Add any existing files to your project”, navigate to the source file
to be added to the project.

First, select the source file created earlier. If source files have not yet been
created, they can be added later (see Figure 3-4). Click ADD>> to add it to the
list of files to be used for this project (on the right).

FIGURE 3-4: PROJECT WIZARD – ADD C SOURCE FILE
DS51295F-page 28 © 2005 Microchip Technology Inc.

Project Basics and MPLAB IDE Configuration
Second, a linker script file must be added to tell the linker about the memory
organization of the selected device. Linker scripts are located in the lkr
subfolder of the installation directory for MPLAB C18. Scroll down to the .lkr
file for the selected device, click on it to highlight and click ADD>> to add the file
to the project. See example in Figure 3-5. Select Next> to continue.

FIGURE 3-5: PROJECT WIZARD – ADD LINKER SCRIPT

6. At the Summary screen, review the “Project Parameters” to verify that the device,
toolsuite and project file location are correct. Use <Back to return to a previous
wizard dialog. Click Finish to create the new project and workspace. Click OK to
exit.

Note: There are also linker scripts delivered with MPASM when it is installed with
MPLAB IDE. Make sure to use the linker scripts in the \mcc18\lkr folder.
© 2005 Microchip Technology Inc. DS51295F-page 29

MPLAB® C18 C Compiler Getting Started
3.5 USING THE PROJECT WINDOW

Locate the project window on the MPLAB IDE workspace. The file name of the work-
space should appear in the top title bar of the project window with the file name as the
top node in the project. The project should look similar to Figure 3-6.

FIGURE 3-6: PROJECT WINDOW

3.6 CONFIGURING LANGUAGE TOOL LOCATIONS

This section shows how to set default locations for MPLAB projects. Creating defaults
enables them to be easily applied to new projects. These defaults can also be selected
or changed once a project is created.

Selecting the language tool locations is done through the MPLAB IDE program. Launch
MPLAB IDE to begin.

Select Project>Set Language Tool Locations to open the Set Language Tool Locations
dialog. Click the “plus” sign next to the Microchip C18 Toolsuite to expand it, then
scroll down and expand the executables. Click on each of the executables in the
expanded list to verify that it is properly installed as shown in the Location box.

Note: If an error was made, highlight a file name and press the Delete key or use
the right mouse menu to delete a file. Place the cursor over “Source Files”
or “Linker Scripts” and use the right mouse menu to add the proper files to
the project.
DS51295F-page 30 © 2005 Microchip Technology Inc.

Project Basics and MPLAB IDE Configuration
For MPASM Assembler, verify its location is C:\mcc18\mpasm\MPASMWIN.exe
as shown in Figure 3-7.

FIGURE 3-7: SET LANGUAGE TOOL LOCATIONS: MPASM™ ASSEMBLER

For MPLAB C18 compiler executable, verify its location is
C:\mcc18\bin\mcc18.exe as shown in Figure 3-8.

FIGURE 3-8: SET LANGUAGE TOOL LOCATIONS: MPLAB® C18
© 2005 Microchip Technology Inc. DS51295F-page 31

MPLAB® C18 C Compiler Getting Started
For MPLIB Librarian (part of the compiler package executables), verify its location is
C:\mcc18\bin\MPLib.exe as shown in Figure 3-9.

FIGURE 3-9: SET LANGUAGE TOOL LOCATIONS: MPLIB™ LIBRARIAN

And for the MPLINK Linker, ensure that its location is C:\mcc18\bin\MPLink.exe
as shown in Figure 3-10.

FIGURE 3-10: SET LANGUAGE TOOL LOCATIONS: MPLINK™ LINKER

Click OK to save these settings and close this dialog.
DS51295F-page 32 © 2005 Microchip Technology Inc.

Project Basics and MPLAB IDE Configuration
3.7 VERIFY INSTALLATION AND BUILD OPTIONS

Before proceeding with compiling and testing programs, the installation and project
settings should be verified.

The language tools should be installed correctly and the settings should be appropriate
for these first examples of code, otherwise errors may result. Follow through with these
checks:

1. Select the Project>Build Options...>Project, and click on the General tab. If the
Include Path and the Library Path are not set as shown in Figure 3-11, use the
Browse button to locate these folders in the MPLAB C18 installation folder.

FIGURE 3-11: BUILD OPTIONS: GENERAL

Note: Multiple paths can be entered for a single include or library search path by
separating them with a semicolon:
c:\myprojects\h;c:\mcc18\h.
© 2005 Microchip Technology Inc. DS51295F-page 33

MPLAB® C18 C Compiler Getting Started
2. One option may need to be changed from the default. Click on the MPLINK
Linker tab. If it is not checked, click on the box labeled Suppress COD-file
generation:

FIGURE 3-12: BUILD OPTIONS: MPLINK™ LINKER

Click OK to close this dialog.

Note: If this box is not checked, the linker will also generate an older .cod file
type, which is no longer used by MPLAB IDE. This file format has a file/path
length limitation of 62 characters which will cause this error: “name
exceeds file format maximum of 62 characters”.
DS51295F-page 34 © 2005 Microchip Technology Inc.

Project Basics and MPLAB IDE Configuration
3.8 BUILDING AND TESTING

3.8.1 Build Project

If everything is installed as instructed, the project can be built using the menu selection
Project>Build All or Project>Make.

Shortcut keys, Ctrl+F10 and F10, can be used instead of selecting items from the
menu. There are icons on the toolbar for these functions as well, so either one function
key or one mouse click will build the project:

FIGURE 3-13: BUILD ALL AND MAKE ICONS

The project should build correctly as seen in the Output window:

FIGURE 3-14: OUTPUT WINDOW AFTER SUCCESSFUL BUILD

If the message “Errors : 0” is not shown from both MPLINK (the Linker) and
MP2HEX (the .hex file converter), something may have been mistyped. Expand the
Output window and look for the first error. If it was a mistype, then double click on that
error line in the Output window to edit the error in the file main.c. If there was some
other error, see Chapter 7. “Troubleshooting”.

Note: Compiling and linking all the files in a project is called a “make” or a “build”.
Build All will recompile all source files in a project, while Make will only
recompile those that have changed since the last build, usually resulting in
a faster build, especially if projects have many source files.

Note: By moving the cursor over these icons, a pop-up will identify their function.
© 2005 Microchip Technology Inc. DS51295F-page 35

MPLAB® C18 C Compiler Getting Started
3.8.2 Testing with MPLAB® SIM

To test these programs in MPLAB IDE, use the built-in simulator, MPLAB SIM.

1. To enable the simulator, select Debugger>Select Tool>MPLAB SIM.

The project should be rebuilt when a debug tool is changed because program
memory may be cleared.

2. Select Debugger>Settings and click on the Uart1 IO tab. The box marked
Enable Uart1 IO should be checked, and the Output should be set to Window
as shown in Figure 3-15:

FIGURE 3-15: SIMULATOR SETTINGS: UART1

Note: This dialog box allows the text from the printf() function to go to the
simulator’s UART (a serial I/O peripheral), and then to the MPLAB IDE
Output window.
DS51295F-page 36 © 2005 Microchip Technology Inc.

Project Basics and MPLAB IDE Configuration
After the simulator is selected, the Debug Toolbar (Figure 3-16) appears under
the MPLAB menus.

FIGURE 3-16: DEBUG TOOLBAR

See the MPLAB® IDE User’s Guide for more information on projects, MPLAB
configuration and extended debugging techniques.

Icon Function

Run Run program

Halt Halt program execution

Animate Continually step into instructions. To Halt, use
Debugger>Halt or press the Halt icon.

Step Into Step into the next instruction

Step Over Step over the next instruction

Step Out Step out of the subroutine

Reset Perform a MCLR Reset
© 2005 Microchip Technology Inc. DS51295F-page 37

MPLAB® C18 C Compiler Getting Started
NOTES:
DS51295F-page 38 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Chapter 4. Beginning Programs
4.1 INTRODUCTION

It is assumed that the reader is familiar with MPLAB projects. A quick overview is
available in Chapter 3. “Project Basics and MPLAB IDE Configuration”. A more
thorough description is in the MPLAB® IDE User’s Guide.

The following sections present three beginning programs to familiarize the engineer or
student with MPLAB C18 C Compiler using the MPLAB Integrated Development
Environment.

• Program 1: “Hello, world!” – prints the text “Hello, world!”
• Program 2: Light LED Using Simulator – writes to an I/O pin on a simulated PIC18

device to turn on an indicator light.
• Program 3: Flash LED Using Simulator – extends the second program to flash the

light on and off.
• Using the Demo Board – demonstrates how to test using a demo board.

If MPLAB ICD 2 and development hardware are available, the previous program
will be compiled to be debugged under MPLAB ICD 2 with the development board
to flash real LEDs.

4.2 PROGRAM 1: “HELLO, WORLD!”

4.2.1 Write the Source Code

The typical “Hello, world!” function contains this C statement to print out a message:

 printf ("Hello, world!\n");

The function main() is written like Example 4-1:

EXAMPLE 4-1: HELLO, WORLD! main() CODE
void main (void)
{
 printf ("Hello, world!\n");

 while (1)
 ;
}

Note: Often, the final “while (1)” statement is not used for the “Hello, world!”
program because the example compiles on a PC, executes, then returns
back to the operating system and to other tasks. In the case of an embed-
ded controller, however, the target microcontroller continues running and
must do something, so in this example, an infinite loop keeps the
microcontroller busy after doing its single task of printing out “Hello, world!”.
© 2005 Microchip Technology Inc. DS51295F-page 39

MPLAB® C18 C Compiler Getting Started
For this to compile using MPLAB C18, the code is shown in Example 4-2.

EXAMPLE 4-2: PROGRAM 1 CODE

The first line includes the header file, stdio.h, which has prototypes for the
printf() function. The #pragma statement is unique to MPLAB C18. The #pragma
statement controls the Watchdog Timer of the target microcontroller, disabling it so it
won’t interfere with these programs.

4.2.2 Make Program 1

Create a new project named gs1 in a new folder named first project. Create a
new file, type or copy and paste the code in Example 4-2 into it and save it as a file
named main.c. Then, add the file main.c as the source file in this folder and add the
18F452.lkr linker script.

The final project should look like Figure 4-1:

FIGURE 4-1: FINAL PROJECT WINDOW

#include <stdio.h>

#pragma config WDT = OFF

void main (void)
{
 printf ("Hello, world!\n");

 while (1)
 ;
}

Note: The Watchdog Timer is a peripheral on the PIC18 MCUs that is enabled by
default. When it is enabled, eventually the program will time-out and reset.
In a finished application, the Watchdog Timer can be enabled and used as
a check to ensure that the firmware is running correctly.

Note: Remember to select the PIC18F452 as the current device with
Configure>Select Device.
DS51295F-page 40 © 2005 Microchip Technology Inc.

Beginning Programs
4.2.3 Set Memory Model

When using the standard libraries by including stdio.h, the large code model should
be selected for the project.

Go to Project>Build Options>Project and select the MPLAB C18 tab, then select
Categories: Memory Model and check the Large code model (> 64K bytes).

FIGURE 4-2: SELECT LARGE CODE MODEL

Note: The standard libraries are built with the large code model, and if the large
code model is not checked, a warning will be issued about a type qualifier
mismatch. See Chapter 7. “Troubleshooting”, FAQ-4 “Why is “Warning
[2066] type qualifier mismatch in assignment” being issued?”.
© 2005 Microchip Technology Inc. DS51295F-page 41

MPLAB® C18 C Compiler Getting Started
4.2.4 Test Program 1

Use Project>Build All or the equivalent icon to build the project.

After a successful build, the Run icon becomes blue, indicating that the program is
halted and ready to run. Select the Run icon and it turns gray, indicating it is running.
The Halt icon turns blue, indicating the program is running and can be halted. In addi-
tion, on the status bar at the bottom is a “Running...” indicator. Select the Halt icon and
open the Output window if it is not already open (Figure 4-3).

FIGURE 4-3: OUTPUT WINDOW: “HELLO, WORLD!”

The text, “Hello, world!”, should appear in the SIM Uart1 tab of the Output window.

Select the Reset icon to reset the program, and then select the Run icon again to print
the message a second time in the Output window.

Note: After “Hello, world!” prints out, the program continues executing, running in
an endless while (1) loop until it is halted. If Run is executed immedi-
ately after halting, the endless loop resumes running. In order to re-execute
the program from the beginning, select the Reset icon after the program is
halted.
DS51295F-page 42 © 2005 Microchip Technology Inc.

Beginning Programs
4.2.5 Resolve Problems

If a mistype caused an error when building the project, the last lines in the Output
window may look like Figure 4-4:

FIGURE 4-4: OUTPUT WINDOW SYNTAX ERROR

Double click on the line with “syntax error” to bring up the MPLAB Editor window
with the cursor on the line with the syntax error (Figure 4-4).

An error that reads “could not find stdio.h” usually means that the include path
is not set up. Refer to Section 3.7 “Verify Installation and Build Options” for
information on setting up the include path.

A warning that reads “type qualifier mismatch in assignment” may mean
that the large memory model is not selected when using standard I/O. Refer to
Section 4.2.3 “Set Memory Model”.

An error that “c018i.o is not found” could mean that the library path is not set
up correctly. Refer to Section 3.7 “Verify Installation and Build Options” for
information on setting up the library path

If a message says it can not find a definition of “main” in c018i.o, make sure “main”
is spelled all lower case since C is case-sensitive.

An error that reads “could not find definition of symbol...” is usually
caused by using the wrong linker script:

Make sure that the 18F452.lkr file in the mcc18\lkr directory is used. MPLAB IDE
also has a linker script for assembler-only projects in one of its subdirectories. Always
use the mcc18\lkr linker scripts for all projects using the MPLAB C18 compiler.

If “Hello, world!” does not appear in the Output window, try these steps:

1. Make sure that the simulator is selected (Debugger>Select Tool>MPLAB SIM).
2. Make sure the Uart1 is enabled to send printf() text to the MPLAB IDE

Output window as shown in Figure 3-15.
3. Select the Halt icon (Figure 3-16).
4. Build All again. There should be no errors in the Output window, and the

message “Build Succeeded” should appear as the last line (Figure 3-13).
5. Select the Reset icon on the Debug Toolbar (Figure 3-16).
6. Select the Run icon on the Debug Toolbar (Figure 3-16).

Note: To clear the Output window, right click the mouse button and select the
Clear Page option.
© 2005 Microchip Technology Inc. DS51295F-page 43

MPLAB® C18 C Compiler Getting Started
4.2.6 Summary for Program 1 “Hello, world!”

This completes the first program example. These topics were covered:

• Writing MPLAB C18 code
• Building (compiling and linking) the project
• Testing the project with MPLAB SIM
• Troubleshooting beginner errors

4.3 PROGRAM 2: LIGHT LED USING SIMULATOR

The first example demonstrated the basics of creating, building and testing a project
using MPLAB C18 with the MPLAB IDE. It did not go into the details of what the target
processor would do with that code. In this next program, code will be generated to
simulate turning on a Light Emitting Diode (LED) connected to a pin of the PIC18F452.

4.3.1 Create a New Project

Create a new project named “GS2” in a new folder named “Second Project.”

Make sure the language tools are set up and the Build Options properly configured as
shown in Section 3.7 “Verify Installation and Build Options”.

4.3.2 Write the Source Code

Create a new file and type in the code shown in Example 4-3. Save it with the name
main.c in the “Second Project” folder:

EXAMPLE 4-3: PROGRAM 2 CODE: main.c

The first line in this code includes the generic processor header file for all PIC18XXXX
devices, named p18cxxx.h. This file chooses the appropriate header file as selected
in MPLAB IDE; in this case, the file named p18f542.h (which could have been
included explicitly instead). This file contains the definitions for the Special Function
Registers in these devices.

“#pragma config WDT = OFF” is the same as in the first program.

#include <p18cxxx.h>

#pragma config WDT = OFF

void main (void)
{
 TRISB = 0;

 /* Reset the LEDs */
 PORTB = 0;

 /* Light the LEDs */
 PORTB = 0x5A;

 while (1)
 ;
}

Note: In MPLAB C18, the main function is declared as returning void, since
embedded applications do not return to another operating system or
function.
DS51295F-page 44 © 2005 Microchip Technology Inc.

Beginning Programs
This example will use four pins on the 8-bit I/O port with the register name PORTB.

“TRISB = 0” sets the PIC18F452 register named TRISB to a value of zero. The TRIS
registers control the direction of the I/O pins on the ports. Port pins can be either inputs
or outputs. Setting them all to zero will make all eight pins function as outputs.

“PORTB = 0” sets all eight pins of the PORTB register to ‘0’ or to a low voltage.

“PORTB = 0x5A” sets four pins on PORTB to ‘1’ or to a high voltage
(0x5A = 0b01011010).

When this program is executed on a PIC18F452, an LED properly connected to one of
the pins that went high will turn on.

Add main.c as a source file to the project. Select the 18F452.lkr file as the linker
script for the project. The project window should look like Figure 4-5:

FIGURE 4-5: GS2 PROJECT

4.3.3 Build Program 2

Build the project with Project>Build All. If there are errors, check language tool
locations and build options, or see Section 4.2.5 “Resolve Problems” or
Chapter 7. “Troubleshooting”.

Note: A simple way to remember how to configure the TRIS registers is that a bit
set to ‘0’ will be an output. Zero (‘0’) is like the letter “O” (O = 0). Bits set to
a ‘1’ will be inputs. The number one (‘1’) is like the letter “I” (I = 1).
© 2005 Microchip Technology Inc. DS51295F-page 45

MPLAB® C18 C Compiler Getting Started
4.3.4 Test Program 2

Like in the first program, the simulator in MPLAB IDE will be used to test this code.
Make sure that the simulator is enabled. The project may need to be built again if the
simulator was not already selected.

To test the code, the state of the pins on PORTB must be monitored. In MPLAB IDE,
there are a two ways to do this.

4.3.4.1 USING THE MOUSE OVER VARIABLE

After the project is successfully built, use the mouse to place the text editor cursor over
a variable name in the editor window to show the current value of that variable. Before
this program is run, a mouse over PORTB should show its value of zero (see
Figure 4-6):

FIGURE 4-6: MOUSE OVER PORTB BEFORE PROGRAM EXECUTION

Click the Run icon (or select Debug>Run), then click the Halt icon and do the mouse
over again. The value should now be 0x5A (Figure 4-7):

FIGURE 4-7: MOUSE OVER PORTB AFTER PROGRAM EXECUTION
DS51295F-page 46 © 2005 Microchip Technology Inc.

Beginning Programs
4.3.4.2 USING THE WATCH WINDOW

The second way to check the value of a variable is to put it into a Watch window. Select
View>Watch to bring up a new Watch window (Figure 4-8).

FIGURE 4-8: NEW WATCH WINDOW

Now drag this Watch window away from the source file window so that it is not on top
of any part of it. Highlight the word PORTB in main.c. When the word is highlighted,
drag it to the empty area of the Watch window. The Watch window now looks like
Figure 4-9.

FIGURE 4-9: WATCH WINDOW FOR PORTB

Note: If the value of PORTB shows 0x5A, the program was executed previously.
Double click on the value in the Watch window and type zero to clear it.
© 2005 Microchip Technology Inc. DS51295F-page 47

MPLAB® C18 C Compiler Getting Started
Select the Run icon, then after a few seconds, select the Halt icon. The Watch window
should show a value of 0x5A in PORTB (see Figure 4-10).

FIGURE 4-10: WATCH WINDOW AFTER PROGRAM EXECUTION

Double click on the 0x5A value of PORTB in the Watch window to highlight it, then type
any other 8-bit value. Select Reset, Run, wait a few seconds and then press Halt to
see the value return to 0x5A.

4.3.5 Summary of Program 2

This completes the second program. This example demonstrated these topics:

• Using include files with processor-specific register definitions
• Writing code to set bits on the PORTB register of the PIC18F452
• Using mouse over to see the values in a register
• Using drag-and-drop to add a variable or register to a Watch window
• Using Watch windows to view the contents of a variable or register
• Changing the values of a variable or register in a Watch window
DS51295F-page 48 © 2005 Microchip Technology Inc.

Beginning Programs
4.4 PROGRAM 3: FLASH LED USING SIMULATOR

4.4.1 Modify the Source Code

This program will build upon the last program to flash the LEDs on PORTB. The pro-
gram will be modified to run in a loop to set the pins high and low, alternately. Modify
the code from Program 2 to look like Example 4-4:

EXAMPLE 4-4: PROGRAM 3 CODE

Now the code within the infinite while() loop sets and resets the pins of PORTB
continually.

Will this produce the effect of flashing LEDs?

PIC18F452 instructions execute very fast, typically in less than a microsecond,
depending upon the clock speed. The LEDs are probably turning off and on, but very,
very fast – maybe too fast for the human eye to perceive them as flashing. The simu-
lator has control over the processor’s clock frequency. Select Debugger>Settings to
display the Simulator Settings dialog (Figure 4-11):

FIGURE 4-11: SIMULATOR SETTINGS

#include <p18cxxx.h>
#pragma config WDT = OFF

void main (void)
{
 TRISB = 0;

 while (1)
 {
 /* Reset the LEDs */
 PORTB = 0;

 /* Light the LEDs */
 PORTB = 0x5A;
 }
}

© 2005 Microchip Technology Inc. DS51295F-page 49

MPLAB® C18 C Compiler Getting Started
4.4.2 Select the Stopwatch

On the Osc/Trace tab, the default setting for the Processor Frequency is 20 MHz. If it
does not show 20 MHz, change it to match the settings in Figure 4-11. Then click OK.

The time between the pins going high and low can be measured with the MPLAB
Stopwatch. Select Debugger>Stopwatch to view the MPLAB Stopwatch (Figure 4-12).

FIGURE 4-12: STOPWATCH

The Stopwatch also shows the current processor frequency setting of 20 MHz. To
measure the time between the LEDs flashing off and on, breakpoints will be set at the
appropriate places in the code. Use the right mouse button to set breakpoints.

Click on line 12 in the word PORTB and press the right mouse button. The debug menu
will appear as shown in Figure 4-13.

FIGURE 4-13: RIGHT MOUSE MENU

Note: If the Stopwatch cannot be selected from the pull down menu, the simulator
may not be set up (Debugger>Select Tool>MPLAB SIM).
DS51295F-page 50 © 2005 Microchip Technology Inc.

Beginning Programs
4.4.3 Set Breakpoints

Select “Set Breakpoint” from the menu, and the screen should now show a breakpoint
on this line, signified by a red icon with a “B” in the left gutter (see Figure 4-14).

FIGURE 4-14: BREAKPOINT

Put a second breakpoint on line 15, the line to send a value of 0x5A to PORTB. The
Editor window should have two breakpoints and look similar to Figure 4-15:

FIGURE 4-15: SECOND BREAKPOINT

Note: If a breakpoint cannot be set, it may be because the project has not been
built. Select Project>Build All and try to set the breakpoint again.
© 2005 Microchip Technology Inc. DS51295F-page 51

MPLAB® C18 C Compiler Getting Started
4.4.4 Run Program 3

Select the Run icon and the program should execute, then will stop at a breakpoint indi-
cated by a green arrow on the first breakpoint. Note that the Stopwatch has measured
how much time it has taken to get to this point (see Figure 4-16).

FIGURE 4-16: RUN TO FIRST BREAKPOINT

The Stopwatch reading is 7.000000 microseconds, indicating it took seven
microseconds to start from reset to run to this point in the program.

Select Run again to run to the second breakpoint (Figure 4-17):

FIGURE 4-17: RUN TO SECOND BREAKPOINT

The Stopwatch now reads 7.200000 microseconds, indicating it took 0.2 microseconds
to get here from the last breakpoint. Select Run again to go around the loop back to
the first breakpoint (Figure 4-18):

FIGURE 4-18: LOOP BACK TO FIRST BREAKPOINT
DS51295F-page 52 © 2005 Microchip Technology Inc.

Beginning Programs
4.4.5 Analyze Program 3

We can answer the question posed earlier. The Stopwatch is reading 8.000000 micro-
seconds, so it took 8.0 – 7.2 = 0.8 microseconds to get around the loop. If the LEDs are
flashing on and off faster than once per microsecond, that’s too fast for the human eye
to see. To make the LEDs flash at a perceptible rate, either the processor frequency
must be decreased or some time delays must be added.

If all the application needed to do is flash these LEDs, the processor frequency could
be reduced. Doing that would make all code run very slowly, and any code added to do
anything more than flash the LEDs would also run slowly. A better solution is to add a
delay.

4.4.6 Add a Delay

A delay can be a simple routine that decrements a variable many times. For this
program, a delay can be written as in Example 4-5:

EXAMPLE 4-5: DELAY ROUTINE

Add this to the code in main.c and insert a call to this function after the LEDs are
turned off and again after they are turned on (see Example 4-6):

EXAMPLE 4-6: PROGRAM 3 CODE WITH DELAYS

void delay (void)
{
 int i;
 for (i = 0; i < 10000; i++)
 ;
}

#include <p18cxxx.h>
#pragma config WDT = OFF

void delay (void)
{
 unsigned int i;
 for (i = 0; i < 10000 ; i++)
 ;
}

void main (void)
{
 TRISB = 0;

 while (1)
 {
 /* Reset the LEDs */
 PORTB = 0;
 /* Delay so human eye can see change */
 delay ();

 /* Light the LEDs */
 PORTB = 0x5A;
 /* Delay so human eye can see change */
 delay ();
 }
}

© 2005 Microchip Technology Inc. DS51295F-page 53

MPLAB® C18 C Compiler Getting Started
4.4.7 Build Program 3

Once again, select Project>Build All to rebuild everything after these changes are
made to the source code, and add breakpoints on lines 18 and 23 where PORTB is
written. Use the Stopwatch to measure the code.

The previously set breakpoints may also show up at different places in the code. Use
the right mouse menu to Remove Breakpoint, leaving just the two desired breakpoints
at lines 18 and 23.

Measure the time between breakpoints again. After stopping at the first breakpoint,
press the Zero button on the Stopwatch to start measuring from this breakpoint.

With the variable i counting down from 10000, the measured time is about 36 millisec-
onds. Remember that i is defined as an int, which has a range of -32768 to 32767
(MPLAB® C18 C Compiler User’s Guide). The largest value (32767) will make the
delay about 3 times longer. If i is declared as unsigned int, its range can be
extended to 65535 as shown in Figure 4-19. When set to this value, the measured
delay is about 301 milliseconds, meaning that with both delays, it takes about 602 milli-
seconds to go around the loop. This is just over a half second, so the lights will be
flashing about twice a second. Refer to Figure 4-19.

FIGURE 4-19: FINAL CODE WITH 0.6 SECOND LED FLASH

4.4.8 Summary of Program 3

This completes the third program. In this example these topics were covered:

• Using processor-specific include files
• Setting simulator processor frequency
• Setting breakpoints
• Using the MPLAB Stopwatch to measure time
DS51295F-page 54 © 2005 Microchip Technology Inc.

Beginning Programs
4.5 USING THE DEMO BOARD

This section demonstrates the previous program using hardware rather than simula-
tion. If appropriate hardware is not available, skip this section. These hardware items
are required in this section:

• MPLAB ICD 2 In-Circuit Debugger
• PICDEM 2 Plus Demo Board with jumper J6 installed

4.5.1 Select MPLAB ICD 2

Install the MPLAB ICD 2 as instructed in the MPLAB IDE installation wizard. Connect
the PICDEM 2 Plus board to a power supply and connect the ICD cable from MPLAB
ICD 2 to the demo board.

Select MPLAB ICD 2 as the hardware debugger using Debugger>Select Tool>MPLAB
ICD 2. Select Debugger>Connect to ensure that MPLAB ICD 2 has established
communications with MPLAB IDE.

If everything is installed and connected properly, the Output window should look like
Figure 4-20:

FIGURE 4-20: OUTPUT WINDOW FOR MPLAB® ICD 2

4.5.2 Program Code for Testing with MPLAB ICD 2

When debuggers are changed, the project must be rebuilt. Click the Build All icon.

Select Debugger>Program to download the program into the PICDEM 2 Plus demo
board.

Note: If this operation failed because the MPLAB ICD 2 was not found or the USB
port could not be opened, check the MPLAB IDE Document Viewer (in the
Utilities folder in the MPLAB installed directory). It contains information on
installing the USB drivers for MPLAB ICD 2.

Note: When using MPLAB ICD 2, special linker scripts are provided so that appli-
cation code will not use the small areas in memory required for MPLAB
ICD 2 debugging. The names of these linker scripts end in an “i” character.
For the current project, use the linker script named 18f452i.lkr. Always
use the “i” named linker scripts when debugging with MPLAB ICD 2.
© 2005 Microchip Technology Inc. DS51295F-page 55

MPLAB® C18 C Compiler Getting Started
The Output window should display text similar to Figure 4-21:

FIGURE 4-21: MPLAB® ICD 2 OUTPUT AFTER PROGRAMMING

4.5.3 Test Program 3 on the Demo Board

Select the Run icon. The LEDs labeled RB3 and RB1 should start blinking
(Figure 4-22).

FIGURE 4-22: TOP OF PICDEM™ 2 PLUS DEMO BOARD

Since a value of 0x5A is being alternated with a value of 0x00 on PORTB to control the
four LEDs, RB1 and RB3 should be flashing, representing the lower nibble of 0x5A, or
a value of 0xA (‘1010’ in binary).

Note: These LEDs are labeled RB0, RB1, RB2 and RB3 because they are con-
nected to the pins of PORTB when the jumper J6 is installed. The eight port
pins of PORTB are called RBn, where “n” is from zero to seven. Only four
of these pins are connected to LEDs.

Make sure
jumper J6
is installed
DS51295F-page 56 © 2005 Microchip Technology Inc.

Beginning Programs
They are probably blinking slower than was predicted when the Stopwatch in the
simulator was used in Program 3. This is because the PICDEM 2 Plus demo board is
shipped with a 4 MHz oscillator, and the simulator timings were done with a clock
frequency of 20 MHz. The value of the delay loop can be reduced back to 10000 to blink
faster.

4.5.4 Programming the Processor on the Demo Board

When MPLAB ICD 2 is operating as a debugger, the program can be single stepped,
variables can be put into watch windows, and the program can be run and halted as in
the simulator.

When the program is fully functional, it can be programmed into the target device so it
can run without being connected to MPLAB ICD 2 and the PC.

4.5.5 Deselect MPLAB ICD 2 as Debugger

To disable MPLAB ICD 2 as a debugger, select Debugger>Select Tool>None.

4.5.6 Set MPLAB ICD 2 as Programmer

Select Programmer>Select Programmer>MPLAB ICD 2 to enable MPLAB ICD 2 as a
programmer.

Note: The Stopwatch is a debugging function of the simulator. MPLAB ICD 2 does
not have an equivalent function.

Note: When using MPLAB ICD 2 as a debugger, special code is downloaded into
the target device and the device is put into the In-Circuit Debug mode. For
the final application, these MPLAB ICD 2 functions need to be turned off.
© 2005 Microchip Technology Inc. DS51295F-page 57

MPLAB® C18 C Compiler Getting Started
4.5.7 Program Device

To download and program the PIC18F452 with our code, select Programmer>Program.

The Output window should show the results (Figure 4-23):

FIGURE 4-23: MPLAB® ICD 2 OUTPUT AFTER PROGRAMMING

MPLAB ICD 2 can now be disconnected from the PICDEM 2 Plus. If the RESET button
on the PICDEM Plus board (S1) is pressed, the LEDs should start flashing as before,
with the firmware now successfully programmed into the final application.

4.5.8 Summary of Using the Demo Board

This completes the implementation of a short C program on a demo board. In this
program example, these topics were covered:

• Selecting MPLAB ICD 2 as a debugger
• Using MPLAB ICD 2 to debug the demo board
• Selecting MPLAB ICD 2 as a programmer
• Using MPLAB ICD 2 to program final firmware into an application

Note: Now that debugging is finished, the original linker script can be used,
18f452.lkr, instead of the MPLAB ICD 2 version, 18f452i.lkr.
DS51295F-page 58 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Chapter 5. Features
5.1 OVERVIEW

This chapter presents a description of many of the features of MPLAB C18 as
controlled from the MPLAB user interface. Demonstration projects will show some of
the features of MPLAB C18 and the MPLAB debugger. All of these projects can be built
with source code copied from these demonstrations and pasted into the MPLAB editor.

This chapter covers these topics:

• MPLAB Project Build Options
- General Options
- Memory Model Options
- Optimization Options

• Demonstration: Code Optimization
• Demonstration: Displaying Data in Watch Windows

- Basic Data Types
- Arrays
- Structures
- Pointers
- Map Files

5.2 MPLAB PROJECT BUILD OPTIONS

The MPLAB Project Manager has settings that control the MPLAB C18 compiler, the
MPASM assembler, and MPLINK linker. Project options can be set for the entire project
and can be separately adjusted for each source file.

The project build options has these tabs to control the language tool options for the
project:

• General – Set paths for the project.
• MPASM/C17/C18 Suite – Sets normal or library as build target.
• MPASM Assembler – Control MPASM switches, such as case sensitivity,

enabling the PIC18XXXX Extended mode, hex file format and warning and error
messages.

• MPLINK Linker – Determine hex file format, map file and debugging output file
generation.

• MPLAB C18 – Set general, memory model and optimization options.

Note: The build settings can be customized separately for each file. Select
Project>Build Options...><file name> to display the options for each
individual file in the project.
© 2005 Microchip Technology Inc. DS51295F-page 59

MPLAB® C18 C Compiler Getting Started
This MPLAB C18 dialog has three categories that are selected from the Categories
pull-down menu:

• General Options
• Memory Model Options
• Optimization Options

5.2.1 General Options

Select Project>Build Options...>Project to display the dialog tabs that control the
options for the entire project. The MPLAB C18 tab has these settings (Figure 5-1):

FIGURE 5-1: GENERAL PROJECT OPTIONS DIALOG

Diagnostic level – Controls diagnostic output with three settings:

- Errors only
- Errors and warnings
- Errors, warnings and messages

Default storage class – This sets the default storage class for local variables. It can
be overridden by declaring the desired class when each variable is defined:

- Auto – This is the default and allows reentrant code. This is the only storage
class allowed in the Extended mode.

- Static – Local variables and parameters will be statically allocated, resulting in
smaller code when accessing them. Only allowed for Non-Extended mode.

- Overlay – Local variables and parameters will be statically allocated. In
addition, where possible, local variables will be overlaid with local variables
from other functions. Only allowed in the Non-Extended mode.
DS51295F-page 60 © 2005 Microchip Technology Inc.

Features
Enable integer promotions – The ANSI C standard requires that arithmetic
operations be performed at the int precision level (16-bit) or higher. When this option
is not enabled, the application may benefit from code size savings. This box should be
checked if ANSI C compatibility is desired.

Treat ‘char’ as unsigned – Since the PIC18XXXX has a data path of 8 bits, often
values from 0 to 255 (0xFF) are used in computation. Normally, char defines a variable
that has a range from -128 to 127. Treating a plain char as unsigned allows only
positive values from 0 to 255, and in some applications may be more suitable for
computations when dealing with small variables in this 8-bit microcontroller.

Extended mode – Allows compilation for the PIC18XXXX Extended mode. When
using PIC18XXXX devices that support the Extended mode, the appropriate linker
script must be used. Extended mode linker scripts have names ending in ‘_e’, for
example, 18f2520_e.lkr.

Macro Definitions – Macros can be added to the Macro Definitions section using the
Add button. This is equivalent to using the -D command-line option as described in the
“Introduction” of the MPLAB C18 C Compiler User’s Guide.

Inherit global settings – When this box is checked, the file will inherit all the settings
from the project.

Use Alternate Settings – When this box is checked, settings are applied to this file
only. This allows other compiler command-line options that are not supported by this
MPLAB dialog. See the MPLAB C18 C Compiler User’s Guide for more information on
compiler switches.
© 2005 Microchip Technology Inc. DS51295F-page 61

MPLAB® C18 C Compiler Getting Started
5.2.2 Memory Model Options

This dialog provides individual control over the compiler memory model (Figure 5-2).

FIGURE 5-2: MEMORY MODEL OPTIONS DIALOG

Code Model – This sets program memory pointer default size as 16 or 24 bits. This
can be overridden for each variable by declaring the pointer as near (16 bits) or far
(24 bits). Using 16-bit pointers (small code model) results in more efficient code, but if
pointers are used for program memory data (romdata) in devices with more than
64 Kbytes of program data, 24-bit pointers (large code model) should be employed.

Data Model – Default data sections (idata and udata) are located in Access RAM
(small data model) or banked RAM (large data model). The location of a particular
variable can be overridden on each variable by declaring it near or far and creating
a section in the correct memory region.

Stack Model – This sets the ability of the data stack to extend beyond one bank. The
size and location of the stack is set in the linker script. If the linker script defines the
stack as extending beyond a single bank, then the stack should be set to the
“Multi-bank model.” If a larger stack is used, a slight performance penalty will result
since the data Stack Pointer needs to be handled by 16-bit rather than 8-bit arithmetic.

Note: The small data model can only be used in the Non-Extended mode.
DS51295F-page 62 © 2005 Microchip Technology Inc.

Features
5.2.3 Optimization Options

This dialog provides individual control over each of the compiler optimizations
(Figure 5-3). For details on each optimization, see the MPLAB® C18 C Compiler User’s
Guide chapter on “Optimizations.”

Generally, while debugging code, it is recommended to use the Debug setting.

FIGURE 5-3: OPTIMIZATION OPTIONS DIALOG

Optimizations can be controlled with the buttons under Generate Command Line. See
the MPLAB C18 C Compiler User’s Guide chapter on “Optimizations” for details on
individual optimizations. There are four settings:

Disable – This disables all optimizations.

Debug – This enables most optimizations but disables those that adversely affect
debugging, specifically, duplicate string merging, code straightening and WREG
tracking.

Enable all – Enable all debugging.

Custom – Enable selected optimizations.

Procedural-abstraction passes – The procedural abstraction optimization can be
performed more than once. By default, four passes are run. More passes can be used
to try to further reduce code size, but this can produce too many functions being
abstracted, resulting in an overflow of the return stack at run time. Fewer than four
passes can be set to minimize the impact to the return stack.
© 2005 Microchip Technology Inc. DS51295F-page 63

MPLAB® C18 C Compiler Getting Started
5.3 DEMONSTRATION: CODE OPTIMIZATION

This section will present an example of how code optimizations can affect project
debugging. Code will be created and built with no optimizations. Single stepping
through the code will demonstrate expected behavior of the code.

Then, the code will be optimized and it will be shown that single stepping yields correct
operation, but the code flow will be altered (optimized), making debugging more
difficult.

5.3.1 Create Optimization Project

To duplicate this demonstration, create a new project in MPLAB IDE with
Project>New... (see Figure 5-4). Name it “Optimizations” and create a new project
directory named “More Projects”.

FIGURE 5-4: CREATE OPTIMIZATION PROJECT
DS51295F-page 64 © 2005 Microchip Technology Inc.

Features
Use File>New to create a new file and copy or type in the following code (Example 5-1).
Use File>Save to save it in the More Projects directory with the file name,
optimizations.c.

EXAMPLE 5-1: OPTIMIZATIONS CODE
#include <stdio.h>

void main (void)
{
 int j = 0;
 int i;

 for (i = 0; i < 10; i++)
 {
 printf ("%d:\t", i);

 if (i % 2)
 {
 printf ("ODD");
 j += i;
 }
 else
 {
 printf ("EVEN");
 j += i;
 }

 printf ("\tj = %d\n", j);
 }

 while (1)
 ;
}

© 2005 Microchip Technology Inc. DS51295F-page 65

MPLAB® C18 C Compiler Getting Started
Right click on Source Files in the project window and add the source file,
optimizations.c, to the project. Right click on Linker Scripts in the project window
and add the linker script file, 18F452.lkr (Figure 5-5).

FIGURE 5-5: OPTIMIZATION PROJECT

5.3.2 Enable the Simulator

Do the following to set up the simulator:

• Go to Debugger>Select Tool>MPLAB SIM to set the simulator as the current
debugger.
DS51295F-page 66 © 2005 Microchip Technology Inc.

Features
5.3.3 Turn Off Optimizations

Set the build options for debugging by doing these steps:

• Select Project>Build Options>Project to bring up the build dialogs.
• Select the MPLAB C18 tab and select Categories: Optimizations to display the

dialog shown below.
• Select Debug as shown in Figure 5-6 to suppress optimizations that adversely

affect debugging.

FIGURE 5-6: BUILD OPTIONS: OPTIMIZATIONS FOR DEBUGGING
© 2005 Microchip Technology Inc. DS51295F-page 67

MPLAB® C18 C Compiler Getting Started
5.3.4 Check Settings

• Double check the General tab to see that the Include path and the Library path
are correctly set up as shown in Section 3.7 “Verify Installation and Build
Options”.

• Also, check Debugger>Settings and click on the Uart1 IO settings. Make sure that
the Enable Uart1 IO box is checked and that the Output is set to Window.

5.3.5 Build and Test the Project

Use Project>Build All or the Build All icon on the tool bar to build the project.

Click the Run icon and inspect the Output window to see that the code executed
properly. The Output window should show:

0: EVEN j = 0
1: ODD j = 1
2: EVEN j = 3
3: ODD j = 6
4: EVEN j = 10
5: ODD j = 15
6: EVEN j = 21
7: ODD j = 28
8: EVEN j = 36
9: ODD j = 45

5.3.6 Single Step Through the Code

Click the Halt icon and then the Reset icon to ensure that the code is ready to start from
the beginning.

Set a breakpoint on the “for” loop and click the Run icon to halt at the beginning of the
main program loop as shown in Figure 5-7:

FIGURE 5-7: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 1

Click the Step Over button to step through the code. Click Step Over again to get to
the “if” statement (Figure 5-8).

FIGURE 5-8: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 2
DS51295F-page 68 © 2005 Microchip Technology Inc.

Features
Click Step Over again to go to the “else” part of the statement. The modulus (%)
operation is false the first time through this loop, so as seen from the Output window,
the first line printed in the Output window is “Even” (Figure 5-9).

FIGURE 5-9: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 3

Continue clicking Step Over to get back to the “if” statement (Figure 5-10,
Figure 5-12, Figure 5-13 and Figure 5-14).

FIGURE 5-10: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 4
© 2005 Microchip Technology Inc. DS51295F-page 69

MPLAB® C18 C Compiler Getting Started
FIGURE 5-11: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 5

FIGURE 5-12: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 6

FIGURE 5-13: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 7

FIGURE 5-14: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 8
DS51295F-page 70 © 2005 Microchip Technology Inc.

Features
Continuing the Step Over of code to get to line 15, the “j += i” statement in the “if”
portion of the function (Figure 5-15 and Figure 5-16):

FIGURE 5-15: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 9

FIGURE 5-16: OPTIMIZATION EXAMPLE – OPTIMIZATION OFF STEP 10

This section was presented to show the code running without optimizations. Single
stepping through the code proceeded logically, as expected. The next section will show
how the code behaves after it has been optimized.
© 2005 Microchip Technology Inc. DS51295F-page 71

MPLAB® C18 C Compiler Getting Started
5.3.7 Enable Optimizations

Select the Project>Build Options>Project dialog, then select the MPLAB C18 tab
(Figure 5-17). Select the Categories: Optimization pull-down, then click the Enable
all button.

FIGURE 5-17: MPLAB® C18 BUILD OPTIONS: OPTIMIZATIONS ON
DS51295F-page 72 © 2005 Microchip Technology Inc.

Features
Rebuild the project with the Build All icon. Then, if not still set, set a breakpoint on the
“for” statement on line 8 and proceed using Step Over icon to step through the code
(Figure 5-18 through Figure 5-26).

FIGURE 5-18: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 1

Use the Step Over icon to step through the code as before:

FIGURE 5-19: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 2

FIGURE 5-20: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 3
© 2005 Microchip Technology Inc. DS51295F-page 73

MPLAB® C18 C Compiler Getting Started
FIGURE 5-21: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 4

FIGURE 5-22: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 5

FIGURE 5-23: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 6

FIGURE 5-24: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 7
DS51295F-page 74 © 2005 Microchip Technology Inc.

Features
FIGURE 5-25: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 8

FIGURE 5-26: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 9

The next Step Over yields something surprising. In the figure above, the program
counter arrow was in the “if” portion of the function. Now the program counter jumps
to the “else” part of the function (Figure 5-27):

FIGURE 5-27: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 10
© 2005 Microchip Technology Inc. DS51295F-page 75

MPLAB® C18 C Compiler Getting Started
One more Step Over shows the “j += i” statement in the “else” portion of the code
ready to be executed (Figure 5-28):

FIGURE 5-28: OPTIMIZATION EXAMPLE – OPTIMIZATION ON STEP 11

This section demonstrates that the code has been optimized using “tail merging”
techniques. The “j += i” statement that is in both the “if” and the “else” section of
the code has been optimized from two separate sets of code into one.

When single stepping, the code jumps to a portion of the “else” clause while actually
executing the “if” portion of the code. The first “j += i” statement on line 15 in the
figure above has been eliminated. This optimization can cause puzzling effects when
debugging. The code is executing as designed, but the compiler has reorganized it to
generate fewer instructions.

5.4 DEMONSTRATION: DISPLAYING DATA IN WATCH WINDOWS

5.4.1 Basic Data Types

Variables in MPLAB C18 can be added to Watch windows. MPLAB IDE can correctly
show the values with the formatting appropriate for each data type.

This demonstration can be done using a new project. Select Project>New Project, set
the project name to “Data Types” and set the project directory to the same directory
used in the previous demonstration (Figure 5-29):

FIGURE 5-29: DEMONSTRATION: DATA TYPES
DS51295F-page 76 © 2005 Microchip Technology Inc.

Features
This sample code (Example 5-2) uses the basic data types of MPLAB C18. Use
File>New to make the file, save it with the name “basic_types.c”, and add it along
with the 18F452.lkr linker script to the project.

EXAMPLE 5-2: DATA TYPES CODE
char gC;
unsigned char guC;
signed char gsC;

int gI;
unsigned int guI;

short int gSI;
unsigned short int guSI;

short long int gSLI;
unsigned short long int guSLI;

long int gLI;
unsigned long int guLI;

float gF;
unsigned float guF;

void main (void)
{
 gC = 'a';
 guC = 'b';
 gsC = 'c';

 gI = 10;
 guI = 0xA;

 gSI = 0b1010;
 guSI = 10u;

 gLI = 0x1234;
 guLI = 0xFA5A;

 gF = -1.395;
 guF = 3.14;

 while (1)
 ;
}

© 2005 Microchip Technology Inc. DS51295F-page 77

MPLAB® C18 C Compiler Getting Started
Select View>Watch to display the Watch window, and add the variables from the
source code by highlighting them and dragging them to the Watch window
(Figure 5-30).

FIGURE 5-30: DATA TYPES WATCH WINDOW

Build the project; select Run, then Halt. The variables will show the values as set in
basic_types.c. Those that changed will be highlighted in red as shown in
Figure 5-31.

FIGURE 5-31: DATA TYPES WATCH WINDOW AFTER RUN
DS51295F-page 78 © 2005 Microchip Technology Inc.

Features
5.4.2 Arrays

Arrays are displayed in MPLAB C18 Watch windows as collapsible items, allowing
them to be expanded to be examined, then collapsed to make more room when
watching other variables. To demonstrate, use the following code (Example 5-3) to
make a new source file named arrays.c and a new project, also named “Arrays”.

EXAMPLE 5-3: ARRAYS CODE

Put the file named array.c into a project with the 18F452.lkr linker script
(Figure 5-32).

FIGURE 5-32: ARRAYS PROJECT

Select View>Watch to open up a Watch window and drag the arrays named “x” and “i”
into the Watch window (Figure 5-33).

FIGURE 5-33: WATCH ARRAYS

char x[] = "abc";
int i[] = { 1, 2, 3, 4, 5};

void main (void)
{
 while (1);
 ;

}

© 2005 Microchip Technology Inc. DS51295F-page 79

MPLAB® C18 C Compiler Getting Started
Make sure the simulator is selected as the debugger, Build the project and Run it. After
clicking Halt, the arrays can be examined. In Figure 5-34, the “+” sign next to each
array was expanded. Note the values in the arrays after the program was executed.

FIGURE 5-34: ARRAYS EXPANDED

5.4.3 Structures

Like arrays, structures in MPLAB C18 show up on Watch windows as expandable/
collapsible elements.

Example 5-4 demonstration code will be used to show how structures appear in
MPLAB C18 Watch windows.

EXAMPLE 5-4: STRUCTURES CODE

struct {
 int x;
 char y[4];
} s1 = { 0x5A, “abc” };

struct {
 int x[5];
 int y;
} s2 = { { 10, 22, 30, 40, 50 }, 0xA5 };

void main (void)
{
 while (1)
 ;

}

DS51295F-page 80 © 2005 Microchip Technology Inc.

Features
Make a project (Figure 5-35) with this source file, add the 18F452.lkr linker script,
then set up the simulator as the debugger and build it.

FIGURE 5-35: STRUCTURES: PROJECT

Before running, the Watch window should look like Figure 5-36 when every element is
fully expanded:

FIGURE 5-36: STRUCTURES: WATCH WINDOW
© 2005 Microchip Technology Inc. DS51295F-page 81

MPLAB® C18 C Compiler Getting Started
After clicking Run, then Halt, the Watch window should show the values stored into the
structure (Figure 5-37):

FIGURE 5-37: STRUCTURES: WATCH WINDOW AFTER CODE
EXECUTIONS

5.4.4 Pointers

Pointers in MPLAB C18 can be used to point to data in ROM or RAM. This
demonstration uses three pointers, showing how they are used in the PIC18
architecture.

The source code is shown in Example 5-5. Enter this in a a new file in MPLAB IDE and
save it as “pointers.c” in the “More Projects” folder.

EXAMPLE 5-5: POINTERS CODE

ram char * ram_ptr;
near rom char * near_rom_ptr;
far rom char * far_rom_ptr;

char ram_array[] = "this is RAM";
rom char rom_array[] = "this is ROM";

void main (void)
{
 ram_ptr = &ram_array[0];
 near_rom_ptr = &rom_array[0];
 far_rom_ptr = (far rom char *)&rom_array[0];

 while (1)
 ;

}

DS51295F-page 82 © 2005 Microchip Technology Inc.

Features
Create a new project called “Pointers”, add the pointers.c file to the project as the
source file and add the 18F452.lkr linker script. The project should look like
Figure 5-38:

FIGURE 5-38: POINTERS: PROJECT

Select Project>Build All to build the project. Do not Run the project yet.

Select View>Watch to display an empty Watch window, then highlight the names of the
three pointers and the two arrays in the source code window and drag them to the
Watch window as shown in Figure 5-39.

FIGURE 5-39: POINTERS: WATCH WINDOW BEFORE RUN

Before this demonstration program is executed, it is of interest to look at program
memory. Note that the Watch window shows the array named “rom_array” at address
0x010E in program memory. Select View>Program Memory to display the Program
Memory window, then scroll down to see the addresses around 0x010E (Figure 5-40).

FIGURE 5-40: POINTERS: PROGRAM MEMORY

Note: Make sure the Opcode Hex tab is selected on the bottom of this display.
© 2005 Microchip Technology Inc. DS51295F-page 83

MPLAB® C18 C Compiler Getting Started
The text that was set in the ROM array named “rom_array” at 0x010E clearly has the
text “this is ROM” stored in program memory.

Click the Run icon to execute the program, then click the Halt icon. The Watch window
(Figure 5-41) should now show values for the three pointers, and the file register (RAM)
area contains the “this is RAM” string.

FIGURE 5-41: POINTERS: WATCH WINDOW AFTER RUN

Note: The text for the RAM array, “this is RAM”, is also seen immediately after
Figure 5-40. Why is this? This is an example of initialized data. The RAM
array is defined in the source code, but when the PIC18 device is initially
powered up, the contents of RAM are not set – they will have random
values. In order to initialize this RAM when the program is run, the MPLAB
C18 initialization code executes (c018i.o included as a precompiled
library from the linker script), moving this text from program memory into
RAM.
DS51295F-page 84 © 2005 Microchip Technology Inc.

Features
The arrays can be expanded to show the address of the individual elements
(Figure 5-42):

FIGURE 5-42: POINTERS: WATCH WINDOW ARRAY EXPANDED

Select View>File Registers and scroll down to address 0x0080 to see the contents of
the RAM array (see Figure 5-43).

FIGURE 5-43: POINTERS: FILE REGISTERS AFTER RUN
© 2005 Microchip Technology Inc. DS51295F-page 85

MPLAB® C18 C Compiler Getting Started
5.4.5 Map Files

Map files can be generated by the linker to provide a document that defines the
addresses of variables and code as established by the linker. To generate a map file,
select Project>Build Project>Project and select the MPLINK Linker tab (Figure 5-44).
Check the box labeled Generate Map File.

FIGURE 5-44: GENERATE MAP FILE
DS51295F-page 86 © 2005 Microchip Technology Inc.

Features
Rebuild the project with Project>Build All and then use File>Open, sorting the files with
the bottom pull-down menu, labeled Files of Type, to view only Map Files (*.map).
Refer to Figure 5-45. A map file named pointers.map will have now been generated.

FIGURE 5-45: OPEN MAP FILE

Select it and click Open to view the file in the MPLAB Editor. The file is fairly long and
the top part should look like Figure 5-46:

FIGURE 5-46: pointers.c MAP FILE
© 2005 Microchip Technology Inc. DS51295F-page 87

MPLAB® C18 C Compiler Getting Started
Scroll down through the file and the variable defined in the pointers.c program can
be seen (Figure 5-47). The map file shows the addresses of these variables in memory,
as well as the source files where they were defined.

FIGURE 5-47: VARIABLES FROM pointers.c
DS51295F-page 88 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Chapter 6. Architecture
6.1 INTRODUCTION

Every implementation of a C compiler must support specific features of the target
processor. In the case of MPLAB C18, the unique characteristics of the PIC18XXXX
require that consideration be given to the memory structure, interrupts, Special
Function Registers and other details of the microcontroller core that are outside the
scope of the standard C language. This chapter provides an overview of some of these
PIC18XXXX specific issues that are covered in complete detail in the data sheets:

• PIC18XXXX Architecture
• MPLAB C18 Start-up Code
• #pragma Directive
• Sections
• SFRS, Timers SW/HW
• Interrupts
• Math and I/O Libraries
© 2005 Microchip Technology Inc. DS51295F-page 89

MPLAB® C18 C Compiler Getting Started
6.2 PIC18XXXX ARCHITECTURE

The PIC18XXXX MCUs are “Harvard architecture” microprocessors, meaning that
program memory and data memory are in separate spaces. The return stack has its
own dedicated memory and there is another nonvolatile memory space if the particular
device has on-board data EEPROM memory.

6.2.1 Program Memory

The program memory space is addressed by a 21-bit Program Counter, allowing a
2 Mb program memory space (Figure 6-1). Typically, PIC18XXXX MCUs have on-chip
program memory in the range of 16K to 128K. Some devices allow external memory
expansion.

At Reset, the Program Counter is set to zero and the first instruction is fetched. Interrupt
vectors are at locations 0x000008 and 0x000018, so a GOTO instruction is usually
placed at address zero to jump over the interrupt vectors.

FIGURE 6-1: PIC18F452 PROGRAM MEMORY

Program memory contains 16-bit words. Most instructions are 16 bits, but some are
double word 32-bit instructions. Instructions cannot be executed on odd numbered
bytes.

PIC18F devices have Flash program memory and PIC18C devices have OTP
(One-Time-Programmable) memory (or in some cases, UV erasable windowed
devices). Usually, the OTP memory is written only when the firmware is programmed
into the device. Flash memory can be erased and rewritten by the running program.
Both OTP and Flash devices are programmed by a few interconnections to the device,
allowing them to be programmed after they are soldered on to the target PC board.

PC<20:0>

Stack Level 1
•

Stack Level 31

RESET Vector

Low Priority Interrupt Vector

•
•

CALL,RCALL,RETURN
RETFIE,RETLW

21

0000h

0018h

8000h

7FFFh

On-Chip
Program Memory

High Priority Interrupt Vector 0008h

U
se

r
M

em
or

y
S

pa
ce

Read ‘0’

1FFFFFh
200000h
DS51295F-page 90 © 2005 Microchip Technology Inc.

Architecture
These are some important characteristics of the PIC18 architecture and MPLAB C18
capabilities with reference to program memory:

MPLAB C18 Implementation

Refer to the MPLAB C18 C Compiler User’s Guide for more information on these
features.

• Instructions are typically stored in program memory with the section attribute
code.

• Data can be stored in program memory with the section attribute romdata in
conjunction with the rom keyword.

• MPLAB C18 can be configured to generate code for two memory models, small
and large. When using the small memory model, pointers to program memory use
16 bits. The large model uses 24-bit pointers.

PIC18 Architecture

• The GOTO instruction and the CALL instruction are double word (32-bit)
instructions and can jump anywhere in program memory.

• If the second word of a double word instruction is executed (by branching or
jumping into the middle of the instruction with a GOTO instruction), it will always
execute as a NOP.

• All instructions are aligned on even word boundaries.
• In some PIC18XXXX devices, program memory or portions of program memory

can be code-protected. Code will execute properly but it cannot be read out or
copied.

• Program memory can be read using table read instructions, and can be written
through a special code sequence using the table write instruction.
© 2005 Microchip Technology Inc. DS51295F-page 91

MPLAB® C18 C Compiler Getting Started
6.2.2 Data Memory

Data memory is called “file register” memory in the PIC18XXXX family. It consists of up
to 4096 bytes of 8-bit RAM. Upon power-up, the values in data memory are random.
Data is organized in banks of 256 bytes. The PIC18 instructions read and write file
registers using only 8 bits for the register address, requiring that a bank (the upper
4 bits of the register address) be selected with the Bank Select Register (BSR).
Twelve-bit pointers allow indirect access to the full RAM space without banking. In
addition, special areas in Bank 0 and in Bank 15 can be accessed directly without
concern for banking and the contents of the BSR register. These special data areas are
called Access RAM. The high Access RAM area is where most of the Special Function
Registers are located (see Figure 6-2). This description applies to the Non-Extended
mode only.

FIGURE 6-2: PIC18F452 DATA MEMORY

Uninitialized data memory variables, arrays and structures are usually stored in
memory with the section attribute, udata.

Initialized data can be defined in MPLAB C18 so that variables will have correct values
when the compiler initialization executes. This means that the values are stored in
program memory, then moved to data memory on start-up. Depending upon how much
initialized memory is required for the application, the use of initialized data (rather than
simply setting the data values at run time) may adversely affect the efficient use of
program memory.

Since file registers are 8 bits, when using variables, consideration should be made
whether to define them as int or char. When a variable value is not expected to
exceed 255, defining it as an unsigned char will result in smaller, faster code.

Bank 0

Bank 1

Bank 14

Bank 15

Data Memory Map

080h
07Fh

F80h
FFFh

00h

7Fh
80h

FFh

Access BankBank 4

Bank 3

Bank 2

F7Fh
F00h
EFFh

3FFh

300h
2FFh

200h
1FFh

100h
0FFh

000hAccess RAM

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

GPR

GPR

GPR

GPR

SFR

Unused

Access RAM high

Access RAM low
Bank 5

GPR

GPR

Bank 6
to

4FFh

400h

5FFh

500h

600h

Unused
Read ‘00h’

(SFRs)
DS51295F-page 92 © 2005 Microchip Technology Inc.

Architecture
6.2.3 Special Function Registers

Special Function Registers (SFRs) are CPU core registers (such as the Stack Pointer,
STATUS register and Program Counter) and include the registers for the peripheral
modules on the microprocessor (refer to Figure 6-3). Most SFRs are located in
Bank 15 and can be accessed directly without the use of the BSR unless the device
has more peripheral registers than can fit in the 128-byte area of Bank 15. In that case,
the BSR must be used to read and write those Special Function Registers.

FIGURE 6-3: PIC18F452 SPECIAL FUNCTION REGISTERS

6.2.4 Return Address Stack
CALL and RETURN instructions push and pop the Program Counter on the return address
stack. The return stack is a separate area of memory, allowing 31 levels of subroutines.

Note: Some PIC18 devices reduce the amount of Access RAM in Bank 0 and
increase the access area in Bank 15 if there are more than 128 bytes of
Special Function Registers.

Address Name Address Name Address Name Address Name

FFFh TOSU FDFh INDF2(3) FBFh CCPR1H F9Fh IPR1

FFEh TOSH FDEh POSTINC2(3) FBEh CCPR1L F9Eh PIR1

FFDh TOSL FDDh POSTDEC2(3) FBDh CCP1CON F9Dh PIE1

FFCh STKPTR FDCh PREINC2(3) FBCh CCPR2H F9Ch —

FFBh PCLATU FDBh PLUSW2(3) FBBh CCPR2L F9Bh —

FFAh PCLATH FDAh FSR2H FBAh CCP2CON F9Ah —

FF9h PCL FD9h FSR2L FB9h — F99h —

FF8h TBLPTRU FD8h STATUS FB8h — F98h —

FF7h TBLPTRH FD7h TMR0H FB7h — F97h —

FF6h TBLPTRL FD6h TMR0L FB6h — F96h TRISE(2)

FF5h TABLAT FD5h T0CON FB5h — F95h TRISD(2)

FF4h PRODH FD4h — FB4h — F94h TRISC

FF3h PRODL FD3h OSCCON FB3h TMR3H F93h TRISB

FF2h INTCON FD2h LVDCON FB2h TMR3L F92h TRISA

FF1h INTCON2 FD1h WDTCON FB1h T3CON F91h —

FF0h INTCON3 FD0h RCON FB0h — F90h —

FEFh INDF0(3) FCFh TMR1H FAFh SPBRG F8Fh —

FEEh POSTINC0(3) FCEh TMR1L FAEh RCREG F8Eh —

FEDh POSTDEC0(3) FCDh T1CON FADh TXREG F8Dh LATE(2)

FECh PREINC0(3) FCCh TMR2 FACh TXSTA F8Ch LATD(2)

FEBh PLUSW0(3) FCBh PR2 FABh RCSTA F8Bh LATC

FEAh FSR0H FCAh T2CON FAAh — F8Ah LATB

FE9h FSR0L FC9h SSPBUF FA9h EEADR F89h LATA

FE8h WREG FC8h SSPADD FA8h EEDATA F88h —

FE7h INDF1(3) FC7h SSPSTAT FA7h EECON2 F87h —

FE6h POSTINC1(3) FC6h SSPCON1 FA6h EECON1 F86h —

FE5h POSTDEC1(3) FC5h SSPCON2 FA5h — F85h —

FE4h PREINC1(3) FC4h ADRESH FA4h — F84h PORTE(2)

FE3h PLUSW1(3) FC3h ADRESL FA3h — F83h PORTD(2)

FE2h FSR1H FC2h ADCON0 FA2h IPR2 F82h PORTC

FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB

FE0h BSR FC0h — FA0h PIE2 F80h PORTA

Note 1: Unimplemented registers are read as ’0’.
2: This register is not available on PIC18F2X2 devices.
3: This is not a physical register.

Note: When using MPLAB C18, this banking is usually transparent, but the use of
the #pragma varlocate directive tells the compiler where variables are
stored, resulting in more efficient code.

Note: The CALL/RETURN stack is distinct from the software stack maintained by
MPLAB C18. The software stack is used for automatic parameters and local
variables and resides in file register memory as defined in the linker script.
© 2005 Microchip Technology Inc. DS51295F-page 93

MPLAB® C18 C Compiler Getting Started
6.2.5 Data EEPROM Memory

Data EEPROM is nonvolatile memory in its own memory space. It can be used to store
data while the chip is powered down. It is accessed through four Special Function
Registers and requires special write sequences. In many PIC18XXXX devices, this
area can also be protected so that data cannot be read out or copied. Refer to
MPLAB® C18 C Compiler User’s Guide for an example of code to read and write data
EEPROM memory.

6.2.6 Configuration Memory

Configuration bits control the various modes of the PIC18XXXX devices, including
oscillator type, Watchdog Timers, code protection and other features. This memory is
above the 21-bit address range of program memory, but can be accessed using table
read and write instructions. Most Configuration bits are set to the desired state when
the device is programmed (using MPLAB PM3, PICSTART Plus, MPLAB ICD 2 or other
programming hardware). The MPLAB C18 #pragma config directive is used to set
these bits for initial programming, and usually applications do not need to access this
area of memory.

6.2.7 Extended Mode

Some PIC18XXXX devices have an alternate operating mode designed for improved
re-entrant code efficiency. When these devices are programmed to use the Extended
mode, Access RAM addressing is affected, some instructions act differently, and new
instructions and addressing modes are available. Additionally, special linker scripts
distributed with MPLAB C18, with a name ending in “_e”, are required for applications
using the Extended mode.

See the relevant PIC18XXXX data sheet for information in this mode, especially if
assembly language code is used in the application.

6.3 MPLAB C18 START-UP CODE

A precompiled block of code must be linked into every MPLAB C18 program to initialize
registers and to set up the data stack for the compiler. This code executes when the
application starts up, then jumps to main() in the application. There are different sets
of start-up code to choose from, depending upon whether variables are required to be
initialized to zero at start-up and whether the Extended mode is enabled. Refer to the
MPLAB® C18 C Compiler User’s Guide section on start-up code.

6.4 #pragma DIRECTIVE

The ANSI C standard provides each C implementation a method for defining unique
constructs, as required by the architecture of the target processor. This is done using
the #pragma directive. The most common #pragma directive in the MPLAB C18
compiler identifies the section of memory to be used in the PIC18XXXX. For instance,

#pragma code

tells MPLAB 18 to compile the C language code following this directive into the “code”
section of program memory. The code section is defined in the associated linker script
for each PIC18XXXX device, specifying the program memory areas where instructions
can be executed. This directive can be inserted as shown, or it can also be followed by
an address in the code areas of the target processor, allowing full control over the
location of code in memory. Usually, it doesn’t matter, but in some applications, such
as bootloader, it is very important to have strict control over where certain blocks of
code will be executed in the application.
DS51295F-page 94 © 2005 Microchip Technology Inc.

Architecture
When porting code from another compiler, the operation of its own #pragma directives
must be identified and converted into similar directives for MPLAB C18. #pragma
directives that MPLAB C18 does not understand will be ignored, allowing code to be
ported from one architecture to another without encountering compilation errors. It is
incumbent on the engineer to understand the function of the #pragma directives in the
original, as well as the new target architecture, to effectively port code between
different microcontrollers.

When allocating memory for variables, the other most common #pragma directive is

#pragma udata

Uninitialized variables defined after this declaration will use the General Purpose
Registers for storage.

This differs from writing a C program on a device where variables and instructions exist
within the same memory space. On a PIC18XXXX, program memory is very different
from file register memory, and as a result, memory areas for data and program memory
must be identified explicitly.

#pragma directives in MPLAB C18 are shown in Table 6-1:

TABLE 6-1: MPLAB® C18 #pragma DIRECTIVES

For full information on these #pragma directives and others, refer to the MPLAB® C18
C Compiler User’s Guide.

Directive Use

code Program memory instructions. Compile all subsequent instructions into
the program memory section of the target PIC18XXXX.

romdata Data stored in program memory. Compile the subsequent static data
into the program memory section of the target PIC18XXXX.

udata Uninitialized data. Use the file register (data) space of the PIC18XXXX
for the uninitialized static variables required in the following source
code. The values for these locations are uninitialized. For more
information, see the section on “Start-up Code” in the MPLAB® C18
C Compiler User’s Guide.

idata Initialized data. Use the file register (data) space of the PIC18XXXX for
the uninitialized variables required in the following source code. Unlike
udata, however, these locations will be set to values defined in the
source code. Note that this implies that these values will be placed
somewhere in program memory, then moved by the compiler
inititialization code into the file registers before the application begins
execution.

config Define the state of the PIC18XXXX Configuration bits. These will be
generated in the .HEX file output by the linker and will be programmed
into the device along with the application firmware.

interrupt Compile the code from the named C function as a high priority Interrupt
Service Routine. See the MPLAB® C18 C Compiler User’s Guide
section on “Interrupt Service Routines”.

interruptlow Compile the code from the named C function as a low priority Interrupt
Service Routine. See the MPLAB® C18 C Compiler User’s Guide
section on “Interrupt Service Routines”.

varlocate Specify where variables will be located so the compiler won’t generate
extraneous instructions to set the bank when accessing the variables.
See the MPLAB® C18 C Compiler User’s Guide section on “#pragma
varlocate”.
© 2005 Microchip Technology Inc. DS51295F-page 95

MPLAB® C18 C Compiler Getting Started
6.5 SECTIONS

As described above, sections are the various areas in PIC18XXXX memory, including
program memory, file register (data) memory, EEDATA nonvolatile memory and data
stack memory, among others.

Usually sections are needed for program memory and data memory. As the design
becomes more sophisticated, other section types may be required.

Sections are defined in the linker scripts. Here is the linker script for the PIC18F452:

EXAMPLE 6-1: PIC18F452 SAMPLE LINKER SCRIPT

This linker script defines the main program memory with the name page extending
from address 0x002A to 0x7FFF. When a #pragma code directive is encountered,
the compiler will generate machine code instructions to be placed in this area.

Data memory is defined for the six file register banks (gpr = General Purpose Register
bank) of the PIC18F452. Due to the nature of banked memory on the PIC18XXXX,
these six regions are defined as separate sections. When #pragma udata and
#pragma idata directives are encountered, the compiler will reserve areas in these
file register banks for storage of the variables subsequently defined.

The accessram and accesssfr sections define the Access RAM areas in data
memory.

Note that some areas are marked “PROTECTED”. This means that the linker will not put
code or data into those areas unless specifically directed. To put code or data into a
protected area, use the #pragma directive as shown here:

#pragma code page

This will cause the subsequent instructions to be compiled in the page section, usually
the main program memory area as defined in the linker script.

// Sample linker script for the PIC18F452 processor

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f452.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x7FFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF000FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x7F
DATABANK NAME=gpr0 START=0x80 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config

STACK SIZE=0x100 RAM=gpr5
DS51295F-page 96 © 2005 Microchip Technology Inc.

Architecture
6.6 SFRS, TIMERS SW/HW

The PIC18XXXX Special Function Registers (SFRs) are special registers in the file
register area of the microcontroller. These include the core registers, such as the Stack
Pointer, STATUS register and Program Counter of the microprocessor core, as well as
the registers to control the various peripherals. The peripherals include such things as
input and output pins, timers, USARTs and registers to read and write the EEDATA
areas of the device. MPLAB C18 can access these registers by name, and they can be
read and written like a variable defined in the application. Use caution, though, because
some of the Special Function Registers have characteristics different from variables.
Some have only certain bits available, some are read-only and some may affect other
registers or device operation when accessed.

6.6.1 I/O Registers

Input and output on the PIC18XXXX pins is accomplished by reading and writing the
registers associated with the port pins on the device. Check the data sheet for available
ports on the device. There are three Special Function Registers associated with each
port. One called a TRIS register defines the direction of the port pin: input or output. A
second register, called the PORT register, is used to read and write values to the port
pin, and a third, named LAT, is a latch which allows reading and writing the values on
the port without actually reading the current state of the pins on the port. This is
important in the PIC18XXXX architecture because of read-modify-write considerations.
The contents of I/O port registers should not be treated like variable storage – they
operate quite differently. See the data sheets for more information.

Some pins are multiplexed and may need to be configured by other Special Function
Registers before they can be used as digital I/O. Specifically, PORTA on many
PIC18XXXX devices can also be used as analog inputs to the A/D converter.

To configure and use PORTB as 4 input pins and 4 output pins, the following code could
be written in MPLAB C18:

6.6.2 Hardware Timers

PIC18XXXX timers are also configured and accessed through Special Function
Registers. Most PIC18XXXX devices have at least three timers. For instance, Timer0
in the PIC18F452 is configured through the T0CON register, and its counter/timer
values can be read from, and written to, using the two 8-bit registers, TMR0L and
TMR0H. The INTCON register has bits which can be used to set Timer0 as an interrupt,
and controls whether the timer counts from the oscillator or from an external signal,
thereby acting as a counter.

6.6.3 Software Timers

As in any C program, delays and timing loops can be created in software.
Consideration of the design will affect how software and hardware timers are
employed. A typical software delay loop involves setting up a counter and
decrementing until it reaches zero. The disadvantages of a software timer is that if
interrupts are occurring, the delays of a software timer will be extended and possibly
become unpredictable. Additionally, the program can do nothing except respond to
interrupts while processing a software delay loop.

TRISB = 0xF0 /* configure PORTB as 4 input pins, bits 4-7
and 4 output pins, bits 0-3 */

PORTB = 0x0C /* set pins 0 and 1 low, pins 2 and 3 high */
© 2005 Microchip Technology Inc. DS51295F-page 97

MPLAB® C18 C Compiler Getting Started
6.7 INTERRUPTS

Interrupts are a feature of the PIC18XXXX core. Timers, I/O pins, USARTs, A/Ds and
other peripherals can cause interrupts. When an interrupt occurs, the code in the
application is suspended and code in the interrupt routine executes. When the
Interrupt Service Routine finishes, it executes a “return from interrupt” instruction and
the program returns to where it left off.

There are two kinds of interrupts in the PIC18XXXX, low priority and high priority. Which
kind of interrupt to use is one of the decisions that go into the design of the application.
MPLAB C18 can be used for both types of interrupts, but the designer must be aware
of the details of the particular interrupt operation in order to retain the contents of some
of the critical internal registers. Careful consideration of variable usage and libraries
(especially if used in the interrupt routine) is essential.

When an interrupt occurs, a low priority interrupt saves only the PC (Program Counter
register). For high priority interrupts, the PIC18XXXX core automatically saves the PC,
WREG, BSR and STATUS registers. See the MPLAB® C18 C Compiler User’s Guide
section on “ISR Context Saving” for information on saving application variables during
interrupts.

6.8 MATH AND I/O LIBRARIES

MPLAB C18 has libraries for control of peripherals, for software implementation of
peripherals, for general data handling and for mathematical functions. See MPLAB®
C18 C Compiler Libraries (DS51297) for a full description of these libraries.

The source code is provided for these libraries so they can be customized and rebuilt
with modifications required by the application.

The use of the peripheral libraries usually requires an understanding of the operation
of the peripherals as described in the device data sheets. Using C libraries results in
reduced complexity when initializing and using the peripherals.

The MPLAB C18 math libraries include floating-point operations, trigonometric
operations and other operations. When using floating-point and complex mathematical
functions on 8-bit embedded controllers, care should be taken to evaluate whether the
operations are an efficient choice for the particular design. Often, a table, a table with
an interpolation, or an approximation using other methods will provide enough
accuracy for the task. A 32-bit floating-point operation will typically take many hundreds
of cycles to execute and may consume significant portions of program memory space.
DS51295F-page 98 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Chapter 7. Troubleshooting
7.1 INTRODUCTION

This chapter covers common error messages that might be encountered when getting
started with MPLAB C18. It also provides answers to Frequently Asked Questions
(FAQs).

Error Messages

• EM-1 Linker error: “name exceeds file format maximum of 62 characters”
• EM-2 Linker error: “could not find file ‘c018i.o’”
• EM-3 Compiler error: “Error [1027] unable to locate ‘p18cxxx.h’”
• EM-4 Compiler error: “Error [1105] symbol ‘symbol-name’ has not been defined.”
• EM-5 MPLAB IDE error: “Skipping link step. The project contains no linker script.”
• EM-6 Compiler error: Syntax Error
• EM-7 Linker error: “Could not find definition of symbol...”

Frequently Asked Questions (FAQs)

• FAQ-1 Are the proper MPLAB IDE components installed to use MPLAB C18?
• FAQ-2 What needs to be set to show the printf() statements in the Output window?
• FAQ-3 How can a global structure/union be declared in one place so ‘extern’

declarations don’t need to be added in all of the .c files that reference it?
• FAQ-4 Why is “Warning [2066] type qualifier mismatch in assignment” being issued?
• FAQ-5 When I dereference a pointer to a string, the result is not the first character of

that string. Why?
• FAQ-6 Where are code examples on using a low priority interrupt?
• FAQ-7 Can a 16-bit variable be used to access the 16-bit Timer SFRs (e.g., TMR1L

and TMR1H)?
• FAQ-8 How do I fix “unable to fit section” error for data memory sections?
• FAQ-9 How do I fix “unable to fit section” error for program memory sections?
• FAQ-10 How do I create a large object in data memory (> 256 bytes)?
• FAQ-11 How do I put data tables into program memory?
• FAQ-12 How do I copy data from program memory to data memory?
• FAQ-13 How do I set Configuration bits in C?
• FAQ-14 What references exist for setting Configuration bits in C?
• FAQ-15 How do I use printf with string literals?
• FAQ-16 When I perform arithmetic on two characters and assign it to an integer, I do

not get the expected result. Why not?
© 2005 Microchip Technology Inc. DS51295F-page 99

MPLAB® C18 C Compiler Getting Started
7.2 ERROR MESSAGES

EM-1 Linker error: “name exceeds file format maximum of
62 characters”

Select Project>Build Options…>Project MPLINK tab and check the box, Suppress
Cod-file generation. The COD file is an older format and is no longer needed.

EM-2 Linker error: “could not find file ‘c018i.o’”

Enter the proper directory path in Project>Build Options…>Project General tab. Set
the Library Path box to “C:\mcc18\lib”. c018i.o is the start-up library for MPLAB
C18. It sets up the stack, initializes variables, then jumps to main() in the application.

EM-3 Compiler error: “Error [1027] unable to locate ‘p18cxxx.h’”

Enter the proper directory path in Project>Build Options…>Project General tab. Set
the Include Path box to “C:\mcc18\h”. p18cxxx.h is the generic header file that
includes the selected processor’s processor-specific header file.

EM-4 Compiler error: “Error [1105] symbol ‘symbol-name’ has not been
defined”

If the symbol-name is a Special Function Register (e.g., TRISB), make sure to include
the generic processor header file (#include <p18cxxx.h>) or the
processor-specific include file (e.g., #include <p18f452.h>). Special Function
Registers are declared in the processor-specific header file. Also, ensure that the
Special Function Register is in all capital letters (i.e., TRISB instead of trisb), as C
language is case-sensitive and the Special Function Registers are declared with all
capital letters.

If the symbol-name is not a Special Function Register, make sure to define the symbol
previous to its use and that the symbol name is correctly typed.

EM-5 MPLAB IDE error: “Skipping link step. The project contains no
linker script.”

Make sure a linker script is in the project. Linker scripts are in the lkr subdirectory of
the MPLAB C18 install.

EM-6 Compiler error: Syntax Error

This is usually a typographical error in the source code. Double click on this error line
in the Output window to bring up the MPLAB Editor with the cursor on the line that
caused the error. Usually the color coded syntax will display the error.

EM-7 Linker error: “Could not find definition of symbol...”

This can be caused by using the wrong linker script. Linker scripts for MPLAB C18
include other library files. Make sure to use the linker scripts in the lkr subdirectory of
the MPLAB C18 install.

The project builds OK but when the linker tries to link, the following error is displayed:

Error - could not find definition of symbol 'putsMYFILE' in file
'C:\My Projects\myfile.o'.
Errors : 1

It may be that a C file has the same name as an assembly file, even though they have
different extensions. Look carefully at the Output window to see if it’s trying to generate
two “.o” files with the same name. This is effectively like omitting the first file from the
project. Rename files so that they don’t share the same name.
DS51295F-page 100 © 2005 Microchip Technology Inc.

Troubleshooting
7.3 FREQUENTLY ASKED QUESTIONS (FAQS)

FAQ-1 Are the proper MPLAB IDE components installed to use MPLAB
C18?

Here is how to check installed components:

Go to the Windows Start menu and browse to the Microchip folder and choose
MPLAB>Set Up MPLAB Tools to verify the proper components are installed. See
Figure 1-1 for the minimum IDE installation selections required for the MPLAB C18.

FAQ-2 What needs to be set to show the printf() statements in the
Output window?

In the MPLAB IDE, select Debugger>Select Tool>MPLAB SIM to enable the simulator
and access the debugger menu. Then select Debugger>Settings and click on the
Uart1 I/O tab. Make sure that the “Enable Uart1 I/O” is selected and the Window option
is selected for Output (see Figure 3-15).

FAQ-3 How can a global structure/union be declared in one place so
‘extern’ declarations don’t need to be added in all of the .c files
that reference it?

Create a typedef in a header file:

typedef union {
 struct {
 unsigned char Outstanding_Comms_Req:1;
 };
 unsigned char All_Flags;
} RS485_t;

Then, in one of your .c files use:

RS485_t RS485_Flags;

to define your union, and in your other .c files you would use:

extern RS485_t RS485_Flags;

Additionally, you could place the extern in a header file, then include it in your .c files.

FAQ-4 Why is “Warning [2066] type qualifier mismatch in assignment”
being issued?

The libraries distributed with MPLAB C18 are compiled using the large code model
(-ml command-line option). By default, MPLAB IDE and the compiler compile applica-
tions for the small code model. For example, the printf function distributed with the
compiler expects to receive a “const far rom char *”, but the application is
actually sending a “const near rom char *” to the printf function when the large
code model is not selected for the application. This difference between far and near
is causing the “type qualifier mismatch in assignment” warning. To get rid of these
warnings, do one of three things:

1. Recompile the libraries distributed with MPLAB C18 using the small code model
(only recommended if all applications will be using the small code model);

2. Enable the large code model in the IDE for the particular application (may
increase code size); or

3. Cast the constant character string to a constant far rom character pointer, as in:
 printf ((const far rom char *)”This is a test\n\r”);
© 2005 Microchip Technology Inc. DS51295F-page 101

MPLAB® C18 C Compiler Getting Started
FAQ-5 When I dereference a pointer to a string, the result is not the first
character of that string. Why?

const char *path = "file.txt";
while(*path) // while end of string not found
{
 path++;
 length++;
}

MPLAB C18 stores constant literal strings in program memory. However, path is a
pointer to data memory. When path is dereferenced, it will access data memory
instead of program memory. Add the rom keyword to make the pointer point to a ROM
location instead of RAM.

const rom char *path = "file.txt";

FAQ-6 Where are code examples on using a low priority interrupt?

See the #pragma interruptlow and the “Examples” chapter in the MPLAB® C18
C Compiler User’s Guide.

FAQ-7 Can a 16-bit variable be used to access the 16-bit Timer SFRs
(e.g., TMR1L and TMR1H)?

Do not combine TMR1H and TMR1L in a 16-bit variable to access the timer. The order
in which the two Special Function Registers are read and written is critical because the
full 16-bit timer is only read/written when the TMR1L register is read/written. If the com-
piler happens to write TMR1L before TMR1H, the high byte of the timer will not be
loaded with the data written to TMR1H. Similarly, which byte the compiler reads first is
not controllable.

FAQ-8 How do I fix “unable to fit section” error for data memory
sections?

MPLAB C18 provides two different section types for data memory:

• udata – contains statically allocated uninitialized user variables
• idata – contains statically allocated initialized user variables

A default section exists for each section type in MPLAB C18 (e.g.,
.udata_foobar.o).

For example, given the following source code located in foobar.c:

 unsigned char foo[255];
 int bar;
 void main (void)
 {
 while (1)
 ;
 }

This code would result in the following error:

Error – section ‘.udata_foobar.o’ can not fit the section.
Section ‘.udata_foobar.o’ length = 0x00000101.
DS51295F-page 102 © 2005 Microchip Technology Inc.

Troubleshooting
There are two ways to resolve this error:

1. Split foobar.c into multiple files:
 foo.c
 unsigned char foo[255];
 void main (void)
 {
 while (1)
 ;
 }

 bar.c
 int bar;

2. Use the #pragma udata directive to create a separate section to contain the
variables foo and bar:

 foobar.c
 #pragma udata foo
 unsigned char foo[255];
 #pragma udata bar
 int bar;
 void main (void)
 {
 while (1)
 ;
 }

FAQ-9 How do I fix “unable to fit section” error for program memory
sections?

MPLAB C18 provides two different section types for program memory:

• code – contains executable instructions
• romdata – contains variables and constants

By default, MPLAB IDE only enables those optimizations that do not affect debugging.
To reduce the amount of program memory used by the code sections, enable all opti-
mizations. To enable in the MPLAB IDE, select Project>Build options…>Project, click
the MPLAB C18 tab and set Categories: Optimization to enable all.
© 2005 Microchip Technology Inc. DS51295F-page 103

MPLAB® C18 C Compiler Getting Started
FAQ-10 How do I create a large object in data memory (> 256 bytes)?

By default, MPLAB C18 assumes that an object will not cross a bank boundary. The
following steps are required to safely use an object that is larger than 256 bytes:

1. The object must be allocated into its own section using the #pragma idata or
#pragma udata directive:

 #pragma udata buffer_scn
 static char buffer[0x180];
 #pragma udata

2. Accesses to the object must be done via a pointer:
 char * buf_ptr = &buffer[0];
 ...
 // examples of use
 buf_ptr[5] = 10;
 if (buf_ptr[275] > 127)
 ...

3. A region that spans multiple banks must be created in the linker script:
- Linker script before modification:

 DATABANK NAME=gpr2 START=0x200 END=0x2FF
 DATABANK NAME=gpr3 START=0x300 END=0x3FF

- Linker script after modification:
 DATABANK NAME=big START=0x200 END=0x37F PROTECTED
 DATABANK NAME=gpr3 START=0x380 END=0x3FF

4. The object’s section (created in Step 1) must be assigned into the new region
(created in Step 3) by adding a SECTION directive to the linker script:

 SECTION NAME=buffer_scn RAM=big

FAQ-11 How do I put data tables into program memory?

By default, MPLAB C18 puts user variables in data memory. The rom qualifier is used
to denote that the object is located in program memory:

 rom int array_of_ints_in_rom[] =
 { 0, 1, 2, 3, 4, 5 };
 rom int * q = &array_of_ints_in_rom[0];

In the above example, array_of_ints_in_rom is an array of integers located in pro-
gram memory. The q is a pointer that can be used to loop through the elements of the
array.
DS51295F-page 104 © 2005 Microchip Technology Inc.

Troubleshooting
FAQ-12 How do I copy data from program memory to data memory?

For pointer types, use one of the following standard library functions:

For non-pointer types, a direct assignment can be made.

Examples:

 rom int rom_int = 0x1234;
 ram int ram_int;
 rom char * rom_ptr = “Hello, world!”;
 ram char ram_buffer[14];
 void main(void)
 {
 ram_int = rom_int;
 strcpypgm2ram (ram_buffer, rom_ptr);
 }

FAQ-13 How do I set Configuration bits in C?

MPLAB C18 provides the #pragma config directive for setting Configuration bits in C.

Examples of use:

 /* Oscillator Selection: HS */
 #pragma config OSC = HS
 /* Enable watchdog timer and set postscaler to 1:128 */
 #pragma config WDT = ON, WDTPS=128

FAQ-14 What references exist for setting Configuration bits in C?

• MPLAB® C18 C Compiler User’s Guide contains a general description of the
#pragma config directive.

• PIC18 Configuration Settings Addendum contains all available Configuration
settings and values for all PIC18 devices.

• MPLAB C18 --help-config command-line option lists the available
Configuration settings and values of standard output for a specific device.

Function Description

memcpypgm2ram Copy a buffer from ROM to RAM

memmovepgm2ram Copy a buffer from ROM to RAM

strcatpgm2ram Append a copy of the source string located in ROM to the end
of the destination string located in RAM

strcpypgm2ram Copy a string from RAM to ROM

strncatpgm2ram Append a specified number of characters from the source
string located in ROM to the end of the destination string
located in RAM

strncpypgm2ram Copy characters from the source string located in ROM to the
destination string located in RAM
© 2005 Microchip Technology Inc. DS51295F-page 105

MPLAB® C18 C Compiler Getting Started
FAQ-15 How do I use printf with string literals?

Since string literals are stored in program memory, an MPLAB C18 specific conversion
operator (%S) was added to handle output of characters from a program memory array
(rom char []):

#include <stdio.h>
rom char * foo = “Hello, world!”;
void main (void)
{
 printf (“%S\n”, foo);
 printf (“%S\n”, “Hello, world!”);
}

When outputting a far program memory array (far rom char []), make sure to use
the H size specifier (i.e., %HS):

#include <stdio.h>
far rom char * foo = “Hello, world!”;
void main (void)
{
 printf (“%HS\n”, foo);
}

FAQ-16 When I perform arithmetic on two characters and assign it to an
integer, I do not get the expected result. Why not?

Given the following example:

unsigned char a, b;
unsigned int i;
a = b = 0x80;
i = a + b;

ANSI/ISO expects i to be equal to 0x100, but MPLAB C18 sets i equal to 0x00.

By default, MPLAB C18 will perform arithmetic at the size of the largest operand, even
if both operands are smaller than an int. To enable the ISO mandated behavior that
all arithmetic be performed at int precision or greater, use the -Oi command-line
option. To enable in the MPLAB IDE, select Project>Build options…>Project, click the
MPLAB C18 tab and select Enable integer promotions.
DS51295F-page 106 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER

GETTING STARTED

Glossary
Absolute Section

A section with a fixed (absolute) address that cannot be changed by the linker.

Access Memory

Special registers on PIC18 devices that allow access regardless of the setting of the
Bank Select Register (BSR).

Address

Value that identifies a location in memory.

Alphabetic Character

Alphabetic characters are those characters that are letters of the arabic alphabet
(a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0, 1, …, 9).

Anonymous Structure

An unnamed structure that is a member of a C union. The members of an anonymous
structure may be accessed as if they were members of the enclosing union. For exam-
ple, in the following code, hi and lo are members of an anonymous structure inside the
union caster:

union castaway
 int intval;
 struct {
 char lo; //accessible as caster.lo
 char hi; //accessible as caster.hi
 };
} caster;

ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

Application

A set of software and hardware that may be controlled by a PICmicro microcontroller.

Archive

A collection of relocatable object modules. It is created by compiling/assembling multi-
ple source files to object files, and then using the archiver to combine the object files
into one library file. A library can be linked with object modules and other libraries to
create executable code.

Archiver

A tool that creates and manipulates libraries.
© 2005 Microchip Technology Inc. DS51295F-page 107

MPLAB® C18 C Compiler Getting Started
ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.

Assembler

A language tool that translates assembly language source code into machine code.

Assembly Language

A programming language that describes binary machine code in a symbolic form.

Assigned Section

A section which has been assigned to a target memory block in the linker command file.

Asynchronous Events

Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

Asynchronous Stimulus

Data generated to simulate external inputs to a simulator device.

Binary

The base two numbering system that uses the digits 0-1. The right-most digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

Breakpoint, Hardware

An event whose execution will cause a Halt.

Breakpoint, Software

An address where execution of the firmware will halt. Usually achieved by a special
break instruction.

Build

Compile and link all the source files for an application.

C

A general-purpose programming language which features economy of expression,
modern control flow, data structures and a rich set of operators.

Calibration Memory

A Special Function Register or Registers used to hold values for calibration of a
PICmicro microcontroller on-board RC oscillator or other device peripherals.

Central Processing Unit

The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction and then executing that instruction. When necessary, it works
in conjunction with the Arithmetic Logic Unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address bus
and accesses to the stack.

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.
DS51295F-page 108 © 2005 Microchip Technology Inc.

Glossary
Compiler

A program that translates a source file written in a high-level language into machine
code.

Conditional Compilation

The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

Configuration Bits

Special purpose bits programmed to set PICmicro microcontroller modes of operation.
A Configuration bit may or may not be preprogrammed.

Control Directives

Directives in assembly language code that cause code to be included or omitted based
on the assembly time value of a specified expression.

CPU

See Central Processing Unit.

Cross Reference File

A file that references a table of symbols and a list of files that references the symbol. If
the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

Data Directives

Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of General
Purpose Registers (GPRs) and Special Function Registers (SFRs). Some devices also
have EEPROM data memory.

Device Programmer

A tool used to program electrically programmable semiconductor devices, such as
microcontrollers.

Digital Signal Controller

A microcontroller device with digital signal processing capability (i.e., Microchip dsPIC®
devices).

Directives

Statements in source code that provide control of the language tool’s operation.

Download

Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.

DSC

See Digital Signal Controller.

EEPROM

Electrically Erasable Programmable Read-Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.

Emulation

The process of executing software loaded into emulation memory as if it were firmware
residing on a microcontroller device.
© 2005 Microchip Technology Inc. DS51295F-page 109

MPLAB® C18 C Compiler Getting Started
Emulation Memory

Program memory contained within the emulator.

Emulator

Hardware that performs emulation.

Emulator System

The MPLAB ICE 2000 and 4000 emulator systems include the pod, processor module,
device adapter, cables and MPLAB IDE software.

Endianess

Describes order of bytes in a multibyte object.

Environment – IDE

The particular layout of the desktop for application development.

Environment – MPLAB PM3

A folder containing files on how to program a device. This folder can be transferred to
a SD™/MMC card.

EPROM

Erasable Programmable Read-Only Memory. A programmable read-only memory that
can be erased, usually by exposure to ultraviolet radiation.

Error File

A file containing error messages and diagnostics generated by a language tool.

Event

A description of a bus cycle which may include address, data, pass count, external
input, cycle type (fetch, R/W) and time-stamp. Events are used to describe triggers,
breakpoints and interrupts.

Export

Send data out of the MPLAB IDE in a standardized format.

Extended Microcontroller Mode

In Extended Microcontroller mode, on-chip program memory, as well as external mem-
ory, is available. Execution automatically switches to external if the program memory
address is greater than the internal memory space of the PIC17 or PIC18 device.

Extended Mode

In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the Indexed
with Literal Offset Addressing mode.

External Label

A label that has external linkage.

External Linkage

A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.

External Symbol

A symbol for an identifier which has external linkage. This may be a reference or a
definition.
DS51295F-page 110 © 2005 Microchip Technology Inc.

Glossary
External Symbol Resolution

A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.

External Input Line

An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.

External RAM

Off-chip read/write memory.

Fatal Error

An error that will halt compilation immediately. No further messages will be produced.

File Registers

On-chip data memory, including General Purpose Registers (GPRs) and Special
Function Registers (SFRs).

Filter

Determined by selection what data is included/excluded in a trace display or data file.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle instruction.
Since the PICmicro microcontroller architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current instruction.
However, if the current instruction changes the Program Counter, this prefetched
instruction is explicitly ignored, causing a forced NOP cycle.

Frame Pointer

A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables. Provides a convenient base from
which to access local variables and other values for the current function.

Free-Standing

A C compiler implementation that accepts any strictly conforming program that does
not use complex types and in which the use of the features specified in the ISO library
clause is confined to the contents of the standard headers, <float.h>, <iso646.h>,
<limits.h>, <stddef.h> and <stdint.h>.

GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

Halt

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

Hex Code

Executable instructions stored in a hexadecimal format code. Hex code is contained in
a hex file.

Hex File

An ASCII file containing hexadecimal addresses and values (hex code) suitable for
programming a device.
© 2005 Microchip Technology Inc. DS51295F-page 111

MPLAB® C18 C Compiler Getting Started
Hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f). The
digits A-F represent hexadecimal digits with values of (decimal) 10 to 15. The
right-most digit counts ones, the next counts multiples of 16, then 162 = 256, etc.

High-Level Language

A language for writing programs that is further removed from the processor than
assembly.

ICD

In-Circuit Debugger. MPLAB ICD 2 is Microchip’s in-circuit debugger.

ICE

In-Circuit Emulator. MPLAB ICE 2000 and 4000 are Microchip’s in-circuit emulators.

IDE

Integrated Development Environment. MPLAB IDE is Microchip’s integrated
development environment.

IEEE

Institute of Electrical and Electronics Engineers.

Import

Bring data into the MPLAB IDE from an outside source, such as from a hex file.

Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instruction

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from outside the
module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications.

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed.

Interrupt Handler

A routine that processes special code when an interrupt occurs.

Interrupt Request

An event which causes the processor to temporarily suspend normal instruction
execution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine

User-generated code that is entered when an interrupt occurs. The location of the code
in program memory will usually depend on the type of interrupt that has occurred.

IRQ

See Interrupt Request.
DS51295F-page 112 © 2005 Microchip Technology Inc.

Glossary
ISO

See International Organization for Standardization.

ISR

See Interrupt Service Routine.

Latency

The time between an event and its response.

Librarian

See Archiver.

Library

See Archive.

Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.

Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for each C
source statement, assembly instruction, assembler directive or macro encountered in
a source file.

Little Endianess

A data ordering scheme for multibyte data, whereby the Least Significant Byte is stored
at the lower addresses.

Local Label

A local label is one that is defined inside a macro with the LOCAL directive. These labels
are particular to a given instance of a macro’s instantiation. In other words, the symbols
and labels that are declared as local are no longer accessible after the ENDM macro is
encountered.

Logic Probes

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.

Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.

Macro

Macro instruction. An instruction that represents a sequence of instructions in
abbreviated form.
© 2005 Microchip Technology Inc. DS51295F-page 113

MPLAB® C18 C Compiler Getting Started
Macro Directives

Directives that control the execution and data allocation within macro body definitions.

Make Project

A command that rebuilds an application, recompiling only those source files that have
changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller; also μC.

Memory Models

A description that specifies the size of pointers that point to program memory.

Message

Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.

Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and
timers.

Microcontroller Mode

One of the possible program memory configurations of PIC17 and PIC18 micro-
controllers. In Microcontroller mode, only internal execution is allowed. Thus, only the
on-chip program memory is available in Microcontroller mode.

Microprocessor Mode

One of the possible program memory configurations of PIC17 and PIC18 micro-
controllers. In Microprocessor mode, the on-chip program memory is not used. The
entire program memory is mapped externally.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
opcodes.

MPASM Assembler

Microchip Technology’s relocatable macro assembler for PICmicro microcontroller
devices, KEELOQ® devices and Microchip memory devices.

MPLAB ICD 2

Microchip’s in-circuit debugger that works with MPLAB IDE. The ICD supports Flash
devices with built-in debug circuitry. The main component of each ICD is the module.
A complete system consists of a module, header, demo board, cables and MPLAB IDE
software.

MPLAB ICE 2000/4000

Microchip’s in-circuit emulators that works with MPLAB IDE. MPLAB ICE 2000 sup-
ports PICmicro MCUs. MPLAB ICE 4000 supports PIC18F MCUs and dsPIC30F
DSCs. The main component of each ICE is the pod. A complete system consists of a
pod, processor module, cables and MPLAB IDE software.

MPLAB IDE

Microchip’s Integrated Development Environment.

MPLAB PM3

A device programmer from Microchip. Programs PIC18 microcontrollers and dsPIC®
digital signal controllers. Can be used with MPLAB IDE or stand-alone. Will obsolete
PRO MATE® II.
DS51295F-page 114 © 2005 Microchip Technology Inc.

Glossary
MPLAB SIM

Microchip’s simulator that works with MPLAB IDE in support of PICmicro MCU and
dsPIC DSC devices.

MPLIB Object Librarian

MPLIB librarian is an object librarian for use with COFF object modules created using
either MPASM assembler (mpasm or mpasmwin v2.0) or MPLAB C1X C compilers.

MPLINK Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the
Microchip MPLAB C17 or C18 C compilers. MPLINK linker also may be used with the
Microchip MPLIB librarian. MPLINK linker is designed to be used with MPLAB IDE,
though it does not have to be.

MRU

Most Recently Used. Refers to files and windows available to be selected from MPLAB
IDE main pull-down menus.

Nesting Depth

The maximum level to which macros can include other macros.

Node

MPLAB IDE project component.

Non-Extended Mode

In Non-Extended mode, the compiler will not utilize the extended instructions nor the
Indexed with Literal Offset Addressing mode; also referred to as “Traditional” mode.

Non Real Time

Refers to the processor at a breakpoint or executing single-step instructions or MPLAB
IDE being run in Simulator mode.

Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the
Program Counter.

Object Code

The machine code generated by an assembler or compiler.

Object File

A file containing machine code and possibly debug information. It may be immediately
executable or it may be relocatable, requiring linking with other object files
(e.g., libraries) to produce a complete executable program.

Object File Directives

Directives that are used only when creating an object file.

Octal

The base 8 number system that only uses the digits 0-7. The right-most digit counts
ones, the next digit counts multiples of 8, then 8^2 = 64, etc.

Off-Chip Memory

Off-chip memory refers to the memory selection option for the PIC17 or PIC18 device
where memory may reside on the target board, or where all program memory may be
supplied by the emulator.
© 2005 Microchip Technology Inc. DS51295F-page 115

MPLAB® C18 C Compiler Getting Started
Opcodes

Operational Codes. See Mnemonics.

Operators

Symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

OTP

One-Time-Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are
erasable.

Pass Counter

A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, and to any
sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any IBM® or compatible personal computer running a supported Windows operating
system.

PICmicro MCUs

PICmicro microcontrollers (MCUs) refers to all Microchip microcontroller families.

PICSTART Plus

A developmental device programmer from Microchip. Programs 8-, 14-, 28- and 40-pin
PICmicro microcontrollers. Must be used with MPLAB IDE Software.

Pod, Emulator

The external emulator box that contains emulation memory, trace memory, event and
cycle timers, and trace/breakpoint logic.

Power-on Reset Emulation

A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.

Pragma

A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler. MPLAB C30 uses attributes to
convey this information.

PRO MATE II

A device programmer from Microchip. Programs most PICmicro microcontrollers as
well as most memory and KEELOQ devices. Can be used with MPLAB IDE or
stand-alone.

Profile

For MPLAB SIM simulator, a summary listing of executed stimulus by register.

Program Counter

The location that contains the address of the instruction that is currently executing.

Program Memory

The memory area in a device where instructions are stored. Also, the memory in the
emulator or simulator containing the downloaded target application firmware.
DS51295F-page 116 © 2005 Microchip Technology Inc.

Glossary
Project

A set of source files and instructions to build the object and executable code for an
application.

Prototype System

A term referring to a user’s target application or target board.

PWM Signals

Pulse-Width Modulation Signals. Certain PICmicro MCU devices have a PWM
peripheral.

Qualifier

An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

Radix

The number base, hex or decimal, used in specifying an address.

RAM

Random Access Memory (data memory). Memory in which information can be
accessed in any order.

Raw Data

The binary representation of code or data associated with a section.

Real Time

When released from the Halt state in the Emulator or MPLAB ICD mode, the processor
runs in Real-Time mode and behaves exactly as the normal chip would behave. In
Real-Time mode, the real-time trace buffer of MPLAB ICE is enabled and constantly
captures all selected cycles, and all break logic is enabled. In the emulator or MPLAB
ICD, the processor executes in real time until a valid breakpoint causes a Halt, or until
the user halts the emulator. In the simulator, real time simply means execution of the
microcontroller instructions as fast as they can be simulated by the host CPU.

Recursive Calls

A function that calls itself, either directly or indirectly.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.

Reentrant

A function that may have multiple, simultaneously active instances. This may happen
due to either direct, or indirect recursion, or through execution during interrupt
processing.

Relocatable

An object file whose sections have not been assigned to a fixed location in memory.

ROM

Read-Only Memory (program memory). Memory that cannot be modified.

Run

The command that releases the emulator from Halt, allowing it to run the application
code and change or respond to I/O in real time.

Runtime Model

Describes the use of target architecture resources.
© 2005 Microchip Technology Inc. DS51295F-page 117

MPLAB® C18 C Compiler Getting Started
Scenario

For MPLAB SIM simulator, a particular setup for stimulus control.

Section

A named sequence of code or data.

Section Attribute

A characteristic ascribed to a section (e.g., an access section).

SFR

See Special Function Registers.

Simulator

A software program that models the operation of devices.

Single Step

This command steps though code, one instruction at a time. After each instruction,
MPLAB IDE updates register windows, watch variables and status displays, so you can
analyze and debug instruction execution. You can also single step C compiler source
code, but instead of executing single instructions, MPLAB IDE will execute all assembly
level instructions generated by the line of the high-level C statement.

Skew

The information associated with the execution of an instruction appears on the
processor bus at different times. For example, the executed opcodes appear on the bus
as a fetch during the execution of the previous instruction. The source data address
and value and the destination data address appear when the opcodes are actually exe-
cuted, and the destination data value appears when the next instruction is executed.
The trace buffer captures the information that is on the bus at one instance. Therefore,
one trace buffer entry will contain execution information for three instructions. The
number of captured cycles from one piece of information to another for a single
instruction execution is referred to as the skew.

Skid

When a hardware breakpoint is used to Halt the processor, one or more additional
instructions may be executed before the processor Halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.

Source Code

The form in which a computer program is written by the programmer. Source code is
written in some formal programming language which can be translated into machine
code or executed by an interpreter.

Source File

An ASCII text file containing source code.

Special Function Registers

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.

Stack, Hardware

Locations in PICmicro microcontroller where the return address is stored when a
function call is made.

Stack, Software

Memory used by an application for storing return addresses, function parameters and
local variables. This memory is typically managed by the compiler when developing
code in a high-level language.
DS51295F-page 118 © 2005 Microchip Technology Inc.

Glossary
Static RAM or SRAM

Static Random Access Memory. Program memory you can read/write on the target
board that does not need refreshing frequently.

Status Bar

The Status Bar is located on the bottom of the MPLAB IDE window and indicates such
current information as cursor position, Development mode and device, and active
toolbar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.

Step Over

Step Over allows you to step over subroutines. This command executes the code in the
subroutine and then stops execution at the return address to the subroutine.

When stepping over a CALL instruction, the next breakpoint will be set at the instruction
after the CALL. If for some reason the subroutine gets into an endless loop, or does not
return properly, the next breakpoint will never be reached. Select Halt to regain control
of program execution.

Step Out

Step Out allows you to step out of a subroutine which you are currently stepping
through. This command executes the rest of the code in the subroutine and then stops
execution at the return address to the subroutine.

Stimulus

Input to the simulator (i.e., data generated to exercise the response of simulation to
external signals). Often, the data is put into the form of a list of actions in a text file.
Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Storage Class

Determines the lifetime of an object.

Storage Qualifier

Indicates special properties of an object (e.g., volatile).

Symbol

A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB IDE refer
mainly to variable names, function names and assembly labels. The value of a symbol
after linking is its value in memory.

System Window Control

The system window control is located in the upper left corner of windows and some
dialogs. Clicking on this control usually pops up a menu that has the items “Minimize”,
“Maximize” and “Close”.

Target

Refers to user hardware.

Target Application

Software residing on the target board.
© 2005 Microchip Technology Inc. DS51295F-page 119

MPLAB® C18 C Compiler Getting Started
Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board.

Template

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB IDE functions.

Trace

An emulator or simulator function that logs program execution. The emulator logs
program execution into its trace buffer which is uploaded to the MPLAB IDE Trace
window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.

Uninitialized Data

Data which is defined without an initial value. In C,
int myVar;
defines a variable which will reside in an uninitialized data section.

Upload

The upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.

Vector

The memory locations from which an application starts execution when a specific event
occurs, such as a Reset or interrupt.

Warning

An alert that is provided to warn you of a situation that would cause physical damage
to a device, software file or equipment.

Watch Variable

A variable that you may monitor during a debugging session in a Watch window.

Watch Window

Watch windows contain a list of watch variables that are updated at each breakpoint.

Watchdog Timer

A timer on a PICmicro microcontroller that resets the processor after a selectable
length of time. The WDT is enabled or disabled and set up using Configuration bits.

WDT

See Watchdog Timer.

Workbook

For MPLAB SIM simulator, a setup for generation of SCL stimulus.
DS51295F-page 120 © 2005 Microchip Technology Inc.

MPLAB® C18 C COMPILER
GETTING STARTED
Index
Symbols
#pragma Directive.. 94
.HEX... 9
_mplink.exe ... 13

A
Add Files to Project .. 28
Application Notes ... 6
Arrays... 79

B
Breakpoints .. 51
Build ... 9
Build Options.. 33
Build Project ... 35

C
Configuration Bits... 105
Configuration Memory.. 94
Copy Data .. 105
Could not find definition of symbol 100
Could not find file 'c018i.o' 100
Customer Change Notification Service 7
Customer Support .. 7

D
Data EEPROM Memory... 94
Data Memory ... 92
Data Tables.. 104
Data Types... 76
Debug Toolbar ... 37
Default Storage Class .. 60
Demo Board... 55
Design Centers .. 6
Diagnostic Level... 60
Documentation Conventions...................................... 3

E
Enable Integer Promotions 61
Error Messages.. 99

Could not find definition of symbol 100
Could not find file 'c018i.o' 100
Name exceeds...62 characters 100
Symbol 'symbol-name' has not been defined . 100
Syntax Error ...43, 100
Unable to locate 'p18cxxx.h' 100

Examples ... 20
Executables ..12, 13, 20
Execution Flow... 14
Extended Mode...13, 61, 94

F
Frequently Asked Questions (FAQs) 99

G
General Options ... 60

H
Hardware Timers.. 97
Header Files

Assembly .. 12, 20
Standard C.. 12, 20

Hex... 13

I
I/O Registers .. 97
Inherit Global Settings.. 61
Installation Directory... 18
Installing MPLAB C18 .. 15
Internet Address... 7
Interrupts .. 98

L
Language Tool Locations... 30
Language Tool Setup... 27
Language Tools ... 13
Language Tools Execution

Flow .. 14
Libraries ..12, 20, 98
License Agreement .. 16
Linker Scripts ... 12, 20
Low Priority Interrupt .. 102

M
Macro Definitions ... 61
Make .. 9
Map Files.. 86
MCC_INCLUDE ... 22
mcc18.exe .. 13
Memory Model ... 62
Microchip Web Site .. 7
Mouse Over Variable ... 46
mp2hex.exe.. 13
MPASM Assembler .. 12
MPASM Cross-Assembler 10
mpasmwin.exe ... 13
MPLAB C18 Compiler Installation............................ 13
MPLAB ICD 2... 55
MPLAB IDE Components... 11
mplib.exe .. 13
MPLINK Linker ... 10, 13
mplink.exe.. 13
© 2005 Microchip Technology Inc. DS51295F-page 121

MPLAB® C18 C Compiler Getting Started
N
Name exceeds...maximum of 62 characters 100
Non-Extended Mode .. 13

O
Optimizations ... 63

P
PATH Environment Variable 22
PICDEM 2 Plus Demo Board 56
Pointers .. 82
printf .. 106
Procedural Abstraction Passes 63
Program Memory.. 90
Project .. 25
Project Build Options.. 59
Project Window .. 30
Project Wizard.. 26

R
Recommended Reading... 4
Requirements ... 11
Resolve Problems .. 43
Return Address Stack .. 93
Right Mouse Menu ... 50

S
Sections ... 96
Simulator Settings .. 49
Software Timers ... 97
Source Code .. 12

Processor-Specific Libraries 20
Standard C Libraries ... 20

Special Function Registers....................................... 93
Start-up Code... 94
Stopwatch .. 50
String.. 102
Structures... 80
Symbol 'symbol-name' has not been defined......... 100
Syntax Error ... 43, 100
System Requirements .. 11

T
Textbooks... 5
Treat ’char’ as Unsigned... 61
Type Qualifier Mismatch in Assignment 43, 101

U
Unable to locate 'p18cxxx.h' 100
Uninstalling MPLAB C18 .. 24
Use Alternate Settings.. 61

W
Warnings

Type Qualifier Mismatch in Assignment.... 43, 101
Watch Window ... 47
DS51295F-page 122 © 2005 Microchip Technology Inc.

Index
NOTES:
© 2005 Microchip Technology Inc. DS51295F-page 123

DS51295F-page 124 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 604-646-8870
Fax: 604-646-5086

Philippines - Manila
Tel: 632-634-9065
Fax: 632-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-352-30-52
Fax: 34-91-352-11-47

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

08/24/05

	Preface
	Introduction
	Document Layout
	Conventions Used in this Guide
	Recommended Reading
	PIC18 DEVELOPMENT REFERENCES
	C LANGUAGE AND OTHER TEXTBOOKS
	APPLICATION NOTES
	DESIGN CENTERS

	The Microchip Web Site
	Development Systems Customer Change Notification Service
	Customer Support

	Chapter 1. Overview
	1.1 Introduction
	1.2 Tools for Embedded Systems Programming
	1.2.1 MPLAB C18 C Compiler
	1.2.2 MPASM Cross-Assembler and MPLINK Linker
	1.2.3 Other Tools

	1.3 System Requirements
	Figure 1-1: MPLAB® IDE Installation Menu

	1.4 Directories
	Figure 1-2: MPLAB® C18 Directory Structure

	1.5 About the Language Tools
	1.6 Execution Flow
	Figure 1-3: Language Tools Execution Flow

	Chapter 2. Installation
	2.1 Introduction
	2.2 Installing MPLAB C18
	2.2.1 Welcome
	Figure 2-1: Installation: Welcome Screen

	2.2.2 License Agreement
	Figure 2-2: Installation: License Agreement

	2.2.3 Readme File
	Figure 2-3: Installation: Readme File

	2.2.4 Select Installation Directory
	Figure 2-4: Installation: Select Installation Directory

	2.2.5 Select Components
	Figure 2-5: Installation: Select Components

	2.2.6 Configuration Options
	Figure 2-6: Installation: Configuration Options

	2.2.7 Documentation Notice
	Figure 2-7: Installation: Update Documentation Reminder

	2.2.8 Start Installation
	Figure 2-8: Installation: Start Installation

	2.2.9 Complete Installation

	2.3 Uninstalling MPLAB C18

	Chapter 3. Project Basics and MPLAB IDE Configuration
	3.1 Introduction
	3.2 Project Overview
	3.3 Creating a File
	3.4 Creating Projects
	Figure 3-1: Project Wizard – Select Device
	Figure 3-2: Project Wizard – Select Language Toolsuite
	Figure 3-3: Project Wizard – Project Name and Directory
	Figure 3-4: Project Wizard – Add C Source File
	Figure 3-5: Project Wizard – Add Linker Script

	3.5 Using the Project Window
	Figure 3-6: Project Window

	3.6 Configuring Language Tool Loca�tions
	Figure 3-7: Set Language Tool Locations: MPASM™ Assembler
	Figure 3-8: Set Language Tool Locations: MPLAB® C18
	Figure 3-9: Set Language Tool Locations: MPLIB™ Librarian
	Figure 3-10: Set Language Tool Locations: MPLINK™ Linker

	3.7 Verify Installation and Build Options
	Figure 3-11: Build Options: General
	Figure 3-12: Build Options: MPLINK™ Linker

	3.8 Building and Testing
	3.8.1 Build Project
	Figure 3-13: Build All and Make Icons
	Figure 3-14: Output Window After Successful Build

	3.8.2 Testing with MPLAB® SIM
	Figure 3-15: Simulator Settings: Uart1
	Figure 3-16: Debug Toolbar

	Chapter 4. Beginning Programs
	4.1 Introduction
	4.2 Program 1: “Hello, world!”
	4.2.1 Write the Source Code
	4.2.2 Make Program 1
	Figure 4-1: Final Project Window

	4.2.3 Set Memory Model
	Figure 4-2: Select Large Code Model

	4.2.4 Test Program 1
	Figure 4-3: Output Window: “Hello, world!”

	4.2.5 Resolve Problems
	Figure 4-4: Output Window Syntax Error

	4.2.6 Summary for Program 1 “Hello, world!”

	4.3 Program 2: Light LED Using Simulator
	4.3.1 Create a New Project
	4.3.2 Write the Source Code
	Figure 4-5: GS2 Project

	4.3.3 Build Program 2
	4.3.4 Test Program 2
	Figure 4-6: MOuse Over PORTB Before Program Execution
	Figure 4-7: Mouse Over PORTB After Program Execution
	Figure 4-8: New Watch Window
	Figure 4-9: Watch Window for PORTB
	Figure 4-10: Watch Window After Program Execution

	4.3.5 Summary of Program 2

	4.4 Program 3: Flash LED Using Simulator
	4.4.1 Modify the Source Code
	Figure 4-11: Simulator Settings

	4.4.2 Select the Stopwatch
	Figure 4-12: Stopwatch
	Figure 4-13: Right Mouse Menu

	4.4.3 Set Breakpoints
	Figure 4-14: Breakpoint
	Figure 4-15: Second Breakpoint

	4.4.4 Run Program 3
	Figure 4-16: Run to First Breakpoint
	Figure 4-17: Run to Second Breakpoint
	Figure 4-18: Loop Back to First Breakpoint

	4.4.5 Analyze Program 3
	4.4.6 Add a Delay
	4.4.7 Build Program 3
	Figure 4-19: Final Code with 0.6 Second LED Flash

	4.4.8 Summary of Program 3

	4.5 Using the Demo Board
	4.5.1 Select MPLAB ICD 2
	Figure 4-20: Output Window for MPLAB® ICD 2

	4.5.2 Program Code for Testing with MPLAB ICD 2
	Figure 4-21: MPLAB® ICD 2 Output After Programming

	4.5.3 Test Program 3 on the Demo Board
	Figure 4-22: Top of PICDEM™ 2 Plus Demo Board

	4.5.4 Programming the Processor on the Demo Board
	4.5.5 Deselect MPLAB ICD 2 as Debugger
	4.5.6 Set MPLAB ICD 2 as Programmer
	4.5.7 Program Device
	Figure 4-23: MPLAB® ICD 2 Output After Programming

	4.5.8 Summary of Using the Demo Board

	Chapter 5. Features
	5.1 Overview
	5.2 MPLAB Project Build Options
	5.2.1 General Options
	Figure 5-1: General Project Options Dialog

	5.2.2 Memory Model Options
	Figure 5-2: Memory Model Options Dialog

	5.2.3 Optimization Options
	Figure 5-3: Optimization Options Dialog

	5.3 Demonstration: Code Optimization
	5.3.1 Create Optimization Project
	Figure 5-4: Create Optimization Project
	Figure 5-5: Optimization Project

	5.3.2 Enable the Simulator
	5.3.3 Turn Off Optimizations
	Figure 5-6: Build Options: Optimizations for Debugging

	5.3.4 Check Settings
	5.3.5 Build and Test the Project
	5.3.6 Single Step Through the Code
	Figure 5-7: Optimization Example – Optimization Off Step 1
	Figure 5-8: Optimization Example – Optimization Off Step 2
	Figure 5-9: Optimization Example – Optimization Off Step 3
	Figure 5-10: Optimization Example – Optimization Off Step 4
	Figure 5-11: Optimization Example – Optimization Off Step 5
	Figure 5-12: Optimization Example – Optimization Off Step 6
	Figure 5-13: Optimization Example – optimization Off Step 7
	Figure 5-14: Optimization Example – Optimization Off Step 8
	Figure 5-15: Optimization Example – Optimization Off Step 9
	Figure 5-16: Optimization Example – Optimization Off Step 10

	5.3.7 Enable Optimizations
	Figure 5-17: MPLAB® C18 Build Options: Optimizations On
	Figure 5-18: Optimization Example – Optimization On Step 1
	Figure 5-19: Optimization Example – Optimization On Step 2
	Figure 5-20: Optimization Example – Optimization On Step 3
	Figure 5-21: Optimization Example – Optimization On Step 4
	Figure 5-22: Optimization Example – Optimization On Step 5
	Figure 5-23: Optimization Example – Optimization On Step 6
	Figure 5-24: Optimization Example – Optimization On Step 7
	Figure 5-25: Optimization Example – Optimization On Step 8
	Figure 5-26: Optimization Example – Optimization On Step 9
	Figure 5-27: Optimization Example – Optimization On Step 10
	Figure 5-28: Optimization Example – Optimization On Step 11

	5.4 Demonstration: Displaying Data in Watch Windows
	5.4.1 Basic Data Types
	Figure 5-29: Demonstration: Data Types
	Figure 5-30: Data Types Watch Window
	Figure 5-31: Data Types Watch Window After Run

	5.4.2 Arrays
	Figure 5-32: Arrays Project
	Figure 5-33: Watch Arrays
	Figure 5-34: Arrays Expanded

	5.4.3 Structures
	Figure 5-35: Structures: Project
	Figure 5-36: Structures: Watch Window
	Figure 5-37: Structures: Watch Window After Code Executions

	5.4.4 Pointers
	Figure 5-38: Pointers: Project
	Figure 5-39: Pointers: Watch Window Before Run
	Figure 5-40: Pointers: Program Memory
	Figure 5-41: Pointers: Watch Window After Run
	Figure 5-42: Pointers: Watch Window Array Expanded
	Figure 5-43: Pointers: File Registers After Run

	5.4.5 Map Files
	Figure 5-44: Generate Map File
	Figure 5-45: Open Map File
	Figure 5-46: pointers.c Map File
	Figure 5-47: Variables From pointers.c

	Chapter 6. Architecture
	6.1 Introduction
	6.2 PIC18XXXX Architecture
	6.2.1 Program Memory
	Figure 6-1: PIC18F452 Program Memory

	6.2.2 Data Memory
	Figure 6-2: PIC18F452 Data Memory

	6.2.3 Special Function Registers
	Figure 6-3: PIC18F452 Special Function Registers

	6.2.4 Return Address Stack
	6.2.5 Data EEPROM Memory
	6.2.6 Configuration Memory
	6.2.7 Extended Mode

	6.3 MPLAB C18 Start-up Code
	6.4 #pragma Directive
	6.5 Sections
	6.6 SFRS, Timers SW/HW
	6.6.1 I/O Registers
	6.6.2 Hardware Timers
	6.6.3 Software Timers

	6.7 Interrupts
	6.8 Math and I/O Libraries

	Chapter 7. Troubleshooting
	7.1 Introduction
	Error Messages
	Frequently Asked Questions (FAQs)

	7.2 Error Messages
	7.3 Frequently Asked Questions (FAQs)

	Glossary
	Index
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

