
University of Pennsylvania

SysML
OODA approach to Systems Engineering

University of Pennsylvania

Goals

• Appreciating the science of Architecture
• Issues involved with RT System Arch.
• Take a Look at a modeling language
• Peek into the future for the trends in Indus.
• Get a feel for the role that an architect

plays in the development process

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

Some Definition ….

Software Architecture of a program or computing system
is the structure/structures of a system which comprises of
software components, the externally visible properties of
those components and the relationships among them.

Requirement CodeArchitecture

University of Pennsylvania

Features that you can attach to a Software Architecture -

• Organization of system as a composition of components
• Identifies global control structures
• Provides protocols for communication
• Provides synchronization & data access
• Is a composition of design elements
• Provides physical distribution
• Adds dimension towards evolution

University of Pennsylvania

Hmmm…..but what role does it play ?

- Understanding
- Reuse
- Construction
- Evolution
- Analysis
- Management
- Communication

System Consistency checking,
constraints, conformance to quality
,dependency analysis & domain
specific analysis

University of Pennsylvania

Three important advancements in the technology
basis of Architecture –

1) Development of Architecture description languages and tools .
2) Emergence of product line engineering and architecture

standards.
3) Codification and dissemination of architecture design expertise.

ADL has tools for parsing, displaying, compiling, analyzing
or simulating architectural descriptions.

Egs. Acme, Adage, Aesop, Darwin, Rapide ,SADL , Unicon, Meta-H, Wright

University of Pennsylvania

• Classes of views identified
– Code-oriented view
– Execution oriented view

• Execution-oriented views should have

1) Components – multiple interfaces to environment

2) Connectors – Interactions among components ; mediate
communications and coordinate activities among components

3) Systems – Graphs of components and connectors

4) Properties – Used to represent anticipated & required extra-
functional aspects of architecture designs

5) Styles – Vocabulary of design elements

University of Pennsylvania

OO Analysis

- Builds a model of a system that is composed of objects.

- Behavior of the system is achieved through collaboration between
these objects

- The state of the system is the combined state of all the objects in it.

- An analysis model will not take into account implementation
constraints.

OO Design

- System is modeled as a collection of cooperating objects

University of Pennsylvania

• Relationships between Architecture and OO methods.
Three perspectives proposed-

– OOD as Architectural Style
– OOD as implementation base
– OOD as modeling notation

Choose any one of these !!!!

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

Modeling Real time Systems – Joseph Sifakis (VERIMAG+CNRS)

Requirements related to development of real time Systems

- Cost effectiveness & time to market

- Fast evolving environment with rich dynamics

- Combination of Hard/Soft RT activities which implies –scheduling
policies respecting optimality criteria .Soft RT harder to visualize
‘cause of changing timing requirement.

- Behavior which is dynamically adaptive, reconfigurable, reflexive,
intelligent etc.

- Dependability covering in particular reliability, security, safety &
availability

University of Pennsylvania

Why do we need modeling ….

• Need of unified view of various lifecycle activities and
their interdependencies ,motivated model-based
approaches, which heavily rely on use of modeling tool &
methods to provide support & guidance for development
& validation.

University of Pennsylvania

Modeling RT systems

1) Component Based Modeling – models built
composing components which are model units fully
characterized by their interface.

2) Timed Modeling

University of Pennsylvania

Summary behind the discussion

• A dynamic model of RT system can be realized by
adequately restricting the behavior of its application
software with timing information

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

• Model Driven Architecture

Provides an open vendor neutral approach to the
challenges of business and technology change. It
separates business and application logic from
underlying platform technology.

University of Pennsylvania

During the development process of any system it is
necessary to support interoperability with
specifications that address integration through entire
lifetime of the system :

Evolution

System Design

Component construction

Assembly

Integration

Deployment

Management

University of Pennsylvania

MDA integrates through –

1) Embracing tech. like CORBA,J2EE,XML,.NET etc.

2) Improving the portability of applications by allowing
some model to be realized on multiple platforms
through mapping standards.

3) Improving integration based on models of relationships
across different domain applications & interfaces
allowing interoperability.

University of Pennsylvania

PIM – Platform Independent Models
- Provides formal specification of the structure and function of the

system that abstracts away technical details.

- Describes the computational components and their interactions in a
platform-independent manner.

Eg. CORBA

PSM – Platform Specific Models
- Functionality specified in PIM is realized in platform-specific way in

the PSM.

- Derived from the PIM via some transformation.

Eg RMI stub, skeleton

All OMG stds. are based on this approach of defining systems in terms
of PIM and one or more PSM. Eg. UML

University of Pennsylvania

PIM has OCL (Object Constraint language)

- It formalizes the vocabulary otherwise left imprecise in
interface Specification (JAVA & Microsoft IDL).

- Abstract yet precise model of state of object providing
interface and any parameter exchanged.

PIM to PSM mappings are maintained to provide the
mapping between logical component model to existing
commercial component model (eg EJB for J2EE)

University of Pennsylvania

Meta Model Example

EDOC - Enterprise Distributed Object Computing

University of Pennsylvania

• MDA Spec. Intuitive approach…

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

UML – Unified Modeling Language

The Unified Modeling Language (UML) is a
standard language for specifying, visualizing,
constructing and documenting the artifacts of software
systems, as well as for business modeling and other non-
software systems.

The UML represents a collection of best engineering
practices that have proven successful in the modeling of
large and complex systems.

University of Pennsylvania

UML – Unified Modeling Language

Historical stuff –

• Development of UML began in late 1994 when Grady Booch and
Jim Rumbaugh of Rational Software Corporation began their work
on unifying the Booch and OMT (Object Modeling Technique)
methods.

• In the Fall of 1995, Ivar Jacobson and his Objectory company
joined Rational and this unification effort, merging in the OOSE
(Object-Oriented Software Engineering) method.

• As the primary authors of the Booch, OMT, and OOSE methods,
Grady Booch, Jim Rumbaugh, and Ivar Jacobson were motivated
to create a unified modeling language as all were working on
common things.

University of Pennsylvania

Six diagram types represent static application structure;

three represent general types of behavior; and four represent

different aspects of interactions:

Structure Diagrams
- Class Diagram - Object Diagram
- Component Diagram - Composite Structure Diagram
- Package Diagram - Deployment Diagram.

Behavior Diagrams
- Use Case Diagram - Activity Diagram
- State Machine Diagram.

Interaction Diagrams,
- Sequence Diagram - Interaction Overview Diagram
- Communication Diagram - Timing Diagram

University of Pennsylvania

UML 2 Super Structure Spec.

University of Pennsylvania

Structure Diagrams
Class Diagram

Class diagram shows the relationships between the various classes in the
System .The Classes being identified using the OOD paradigm. It’s a static
diagram and hence does not show the way in which the interaction
happens.

association -- an instance of one class must know about the other in order
to perform its work. ()

aggregation -- an association in which one class belongs to a collection.
()

composition -- an association in which one class is composed of other
classes.()

generalization -- an inheritance link indicating one class is a superclass of
the other. ()

University of Pennsylvania

Structure Diagrams
Class Diagram

University of Pennsylvania

Structure Diagrams
Object Diagram

The relationships is shown in terms of the instances created of the objects
that we defined .The various objects instantiated are shown as well the
relationships between those objects.

University of Pennsylvania

Structure Diagrams
Package Diagram

Package diagram shows the hierarchy in which the system will be modeled
in the implementation. It gives a high level view for the distribution that can
be created within the specified project and specify the package visibility.

University of Pennsylvania

Structure Diagrams
Composite Structure Diagram

- Composite Structure diagram reflects the internal collaboration of classes,
interfaces or components to describe a functionality.

- Composite Structure diagrams are similar to Class diagrams, except that
they model a specific usage of the structure.

- Composite Structure diagram is used to express run-time architectures,
usage patterns, and the participating elements' relationships,
which might not be reflected by static diagrams.

University of Pennsylvania

Structure Diagrams
Composite Structure Diagram

University of Pennsylvania

Structure Diagrams
Deployment Diagram

Deployment diagram shows how and where the system will be deployed.

Physical machines and processors are reflected as nodes, and the internal
construction can be depicted by embedding nodes or artifacts.

University of Pennsylvania

Structure Diagrams
Component Diagram

Component diagram illustrates the pieces of software, embedded
controllers, etc. that will make up a system.

Component diagram has a higher level of abstraction than a Class diagram
- usually a component is implemented by one or more classes (or objects)
at runtime.

University of Pennsylvania

Behavior Diagrams
Use-Case Diagram

Use cases diagram basically are a substitute of the requirements being
Modeled into the architecture. The external viewpoint as to “what” the
System should do rather “how”.

University of Pennsylvania

Behavior Diagrams
Activity Diagram

Activity diagrams are used to model the behaviors of a system, and the
way in which these behaviors are related in an overall flow of the system.

The logical paths a process follows, based on various conditions,
concurrent processing, data access, interruptions and other logical path
distinctions, are all used to construct a process, system or procedure.

University of Pennsylvania

Activity Diagram

University of Pennsylvania

Behavior Diagrams
State Machine Diagram

A State Machine diagram illustrates how an element, often a class, can
move between states classifying its behavior, according to transition
triggers, constraining guards and other aspects of State Machine
diagrams that depict and explain movement and behavior.

University of Pennsylvania

Interaction Diagrams
Sequence Diagram

Sequence diagram is an interaction diagram that details how
operations are carried out -- what messages are sent and when.

Sequence diagrams are organized according to time expressed in the
sequential order along the vertical plane.

University of Pennsylvania

Interaction Diagrams
Sequence Diagram

University of Pennsylvania

Interaction Diagrams
Communication/Collaboration Diagram

Communication diagram shows the interactions between
elements at run-time in much the same manner as a
Sequence diagram.

Communication diagrams are used to visualize inter-object
relationships, while Sequence diagrams are more effective at
visualizing processing over time.

University of Pennsylvania

Interaction Diagrams
Communication/Collaboration Diagram

University of Pennsylvania

Interaction Diagrams
Timing Diagram

Timing diagram defines the behavior of different objects within a
time-scale.

Provides a visual representation of objects changing state and
interacting over time. Used for defining hardware-driven or
embedded software components.

University of Pennsylvania

Interaction Diagrams
Interaction Overview Diagram

Interaction Overview diagrams visualize the cooperation between other
interaction diagrams to illustrate a control flow serving an
encompassing purpose.

Interaction Overview diagrams are a variant of activity diagrams, most
of the diagram notation is similar, as is the process in constructing the
diagram.

Interaction elements display an inline Interaction diagram, which can
be a Sequence diagram, Communication diagram, Timing diagram, or
Interaction Overview diagrams.

University of Pennsylvania

Interaction Diagrams
Interaction Overview Diagram

University of Pennsylvania

RTUML- RT flavor to UML

UML was customized under one of the RFP to “define the
standard paradigms for modeling of time- ,schedule - and
performance-related aspects of RT systems”.

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

SysML was identified as the key modeling language that
could integrate the disparate tools sets that SE’s use for a
single project across various domains .

The idea behind it was that it would do the same trick for
the Systems Engineering field as UML did for the loads of
modeling languages in Software.

Short Comings….hold till the end.

University of Pennsylvania

Design principles -

1. Parsimony – Surgical reduction and augmentation of UML

2. Reuse – Reuse of UML 2.0

3. Modularity – Principle of strong cohesion and loose coupling

4. Layering – SysML packages as extensions layer to UML
meta model.

5 Partitioning – Configure concept ional areas within some layer.

6 Extensibility – It offers the same extension mechanism as UML (meta
classes, stereotypes, model libraries).

7 Interoperability – SysML is aligned with the semantics of ISO AP-
232,same as XMI in UML.

University of Pennsylvania

Relationship shared by the SysML and UML
Standards.

UML 2 SysML

University of Pennsylvania

Architecture

SysML reuses and extends packages from UML, extension
Mechanisms like stereotypes, meta classes and model
libraries.

Structure still remains the same for the Constructs .

It uses combination of profiling and meta modeling
techniques that use precise language to specify
constraints and semantics.

University of Pennsylvania

Meta Model of SysML defines the
packages for –

- Structural Constructs
- Behavioral Constructs

- Auxiliary Constructs

+ State machines , Interactions Diagram, Use cases remain the same

+ New extensions to packages of activity, classes and auxiliary diags.

+ New constructs in the form of Requirements, Allocation and
Parametric Diagrams

University of Pennsylvania

• Package hierarchy in SysML

University of Pennsylvania

Structural Constructs
Class Diagram

Addition to UML specification

-Dependency Set added to group dependency relationships

-Root notation added to depict multi level hierarchy

University of Pennsylvania

Structural Constructs
Class Diagram

University of Pennsylvania

Structural Constructs
Assembly Diagram

Capability to model systems as tree of modular components. Can be
used throughout the development process multiple times.

Views and allocations specifically for multiple representation in SysML.

University of Pennsylvania

Structural Constructs
Assembly Diagram

University of Pennsylvania

Structural Constructs
Parametric Diagram

Parametric models are analysis models that define a set of system
properties & parametric relationships among them.

Used essentially with Assembly level diagram

Time can be modeled as a additional property & other properties may
depend on it.

University of Pennsylvania

Structural Constructs
Parametric Diagram

University of Pennsylvania

Behavioral Constructs
Activity Diagram

Extensions to UML2

1. Control as Data –
- Control can disable the actions that are executing.
- Transform its inputs to produce an output to control other

actions.
2. Continuous systems –

- Any sort of distributed flow of information & physical items
through system.

- “Nobuffer” and “Overwrite” features added.
3. Probability –

- Edges which have probabilities associated for the likelihood of
values traveling on an edge.

University of Pennsylvania

Activity Diagram

University of Pennsylvania

Behavioral Constructs
Activity Diagram

University of Pennsylvania

In SysML we only have the Timing Diagrams and Sequence diagrams
Defined. The support for Interaction Overview diagram has been
removed.

Behavioral Constructs
Interaction Diagram

University of Pennsylvania

Behavioral Constructs
Timing Diagram

Same as UML standard .No additions have been made to the
Timing Diagram.

University of Pennsylvania

Behavioral Constructs
Sequence Diagram

University of Pennsylvania

Represents behavior as the state history of an object in terms of\
transitions and states.

Behavioral Constructs
State Machine Diagram

University of Pennsylvania

Remains unchanged same as from UML 2.0

Behavioral Constructs
Use Case Diagram

University of Pennsylvania

Cross Cutting Constructs
Requirement Diagram

- Requirement may specify a function ,a system must
perform/performance condition a system must satisfy.

- Formalized to connect to other modeling elements(itself, analysis,
design, testing and implementing elements) .

- Type of modeling element can be controlled by using the
requirement diagram.

- Requirement may have its own property, hence computable value
not only text.

University of Pennsylvania

Cross Cutting Constructs
Requirement Diagram

University of Pennsylvania

Cross Cutting Constructs
Allocation Diagram

• Term used by SE’s to denote organized cross-association of
elements within the various structures /hierarchies of a user model.
Support allocation in broad sense.

University of Pennsylvania

Auxiliary Constructs
Includes notations and elements for the following
auxiliary items –

- Item Flows

- Views & View Points – View formed by importing the elements from
other packages.

- Additional Data types – Complex/ Real

- Dimensional Quantities – Fundamental type that defines basic type
of values expressed as quantity.

- Probability Distribution – Parametric constraints that constrain
properties

- Property value Constraints

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

No. Still has a long way to go.

Shortcomings of SysML still present as of now …

1. No comprehensive verification and validation techniques.
2. No provision to do trade studies related to a product.
3. No testing support.
4. Fully executable functional behavior
5. No support for decision trees.

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Bibliography
• Something different…..

University of Pennsylvania

Bibliography

- SysML Specification
- UML SuperStructure specification
- Borland :Practical UML
- Systems Modeling Language (SysML) – Artisan Software white

paper
- Software Architecture : David Garlan
- Modeling Real-Time Systems – Challenges and Work Directions

: Joseph Sifakis
- MDA Specification
- Lots of Google…..

University of Pennsylvania

• Abstract view on things
• Modeling Requirement of RT Systems
• OMG’ s MDA
• UML overview
• Finally…. SysML spec.
• Case Study
• Is it the anecdote we look for ??
• Still to come ……
• Bibliography
• Something different…..

University of Pennsylvania

	SysML
	Goals

