Adaptive Middleware for Real-Time Software

Louise Avila CIS 700-02 November 2, 2005

# Topic

- "An Adaptive Middleware for Context-Sensitive Communications for Real-Time Applications in Ubiquitous Computing Environments." *Real-Time Systems Journal.* January 2004.
- Stephen S. Yau and Fariaz Karim
- Reconfigurable Context-Sensitive Middleware Research Project, Arizona State University

## **Ubiquitous Computing**

- Computing experience is everywhere but enabling technologies are invisible
- Makes the user the center of computing
- Dynamically adapt to user's needs and actions

#### Mobile Ad Hoc Networks (MANET)

- Collection of connected autonomous mobile nodes such as wearable, handheld and other mobile devices
- Free to move arbitrarily
- Bandwidth and energy constraints
- Dynamic network topologies
  - No dedicated network connectivity devices
  - □ Nodes form short range wireless networks

## Their Goal

- Make MANET context-sensitive
- Use data about environment and available resources
- Adapt behavior and interactions
- Schedule and execute time critical tasks
- Context sensitive interactions between applications

#### **Context-Sensitive Services**

- Detects, establishes and terminates communication channels
  - New devices enter the environment
  - Existing devices move away
- Efficient
- Address heterogeneity of devices
- One potential solution: middleware

#### Middleware: Definition

- Software is distributed and developed using different languages, operating systems and hardware platforms
- Middleware "glues together" or mediates between two separate programs or software packages

## CORBA

- Common Object Request Broker Architecture
- Creating and managing distributed objects in a network
- Industry standard developed by the Object Management Group
- http://www.omg.org/

#### **CORBA Example**



HR Rep works in San Francisco

HR Application runs on a server in Denver

### **CORBA Example**

Client programs don't need to know:
 Location of server program
 Implementation of server
 Platform Independent
 Language Independent

## Interface Definition Language

#### Employee server class:

public class Employee {
 public String getEmployeeId(String name) {
 return eid;
 }
}

#### Define interface for Employee class:

interface IEmployee {
 String getEmployeeId(in String name);
}

## **CORBA Example**

- Compile interface with IDL compiler
   Client Stub
  - Proxy for the server that runs on the client
  - Converts method calls into messages
  - Client acts as though invoking on local object instance

#### Server Skeleton

□ Converts messages back to method calls

#### **CORBA** Architecture

- Object Request
   Broker (ORB)
- Locates and activates object
- Delivers request
- Returns response
- Other services
   Naming, Lifecycle, etc.



#### Middleware Benefits

- Reduce effort required to develop software
- Provide runtime services for applications
- Forces a separation between interface and implementation
- ORB approach
  - □ Isolate transport protocols from applications

#### Middleware: Limitations

- Existing middleware for enterprise and mobile networks:
  - □ Industry standards: CORBA, COM, EJB
  - □ Specialized "laboratory" versions: TAO
- Assume stable network
- Use client-server interaction semantics
- Do not use different contexts
- Laboratory versions have unique architectures problem of interoperability

## Challenges

- Systematic way to represent specific contexts and context awareness
- Timely context data collection, analysis and propagation
  - □ Transparent
  - Device and application-specific

## Challenges

- Associating context with real-time actions
- Support for spontaneous and ad hoc context-sensitive communication

#### Reconfigurable Context-Sensitive Middleware (RCSM)

#### Compliant with CORBA/OMA

□ User level application software as application objects

#### Object Request Broker (R-ORB)

- Enables application objects implemented in different languages to communicate in a distributed, heterogeneous environment
- Provides context sensitive communication
- R-CAP performs low-level context monitoring and acquisition

#### **RCSM Features**

 Context-aware interface definition language (CA-IDL)

Based on IDL

- □ Separates interfaces from implementations
- Adaptive Object Containers (ADC)
  - □ Interface specific context analyzer components.
  - Communicate at runtime with other components to acquire context data
  - Communicates with the object implementation to invoke different methods when suitable contexts are detected.

#### **RCSM Component Hierarchy**



#### **Development and Runtime Support**

#### **Development Support**

#### **Runtime Services**



#### **Context-sensitive Application Object**



### Specifying a Context

- Types of context data available depend on host device and its context-sensing capabilities
- Steps to port RCSM to a new device
   Classify the context into categories
   Define a structure type for each category

#### **Device-specific Context**

 Context information specific to a device
 Remaining battery power, current time, number of objects running

□ Example:

RCSMContext
DeviceSpecificContext {
 double battery\_power
 double
 light\_intensity
 double
 net\_trans\_rate};

#### **Environment-specific Context**

- Context information specific to surrounding environment
  - Current location, number of devices in vicinity, light intensity and current temperature

□ Example:

```
RCSMContext
EnvironmentSpecificContex
t {
    unsigned int
    num_peer_devices
    char [16] location};
```

#### **User-specific Context**

 Context information specific to the user
 User information, number of times user runs an application

□ Example:

RCSMContext
UserSpecificContext {
 unsigned int
 calendar\_usage\_rate};

#### **Context Variables**

 Use to express interest in the specific values of a context: RCSMContext\_var [category\_type] [variable name] where [structure field] op [constant expression]

#### Examples:

- RCSMContext\_var DeviceSpecificContext C1 where
   (location = "GWC329")
- RCSMContext\_var EnvironmentSpecificContext C3
  where (num\_peer\_devices > 2)and (net\_trans\_rate
  >=40)
- RCSMContext\_var EnvironmentSpecificContext C2
  where (num\_peer\_devices > 1)

#### **Temporal Operators**

 Specify temporal relationships among multiple context variables

| Operator         | Usage                  | Description                                                      |
|------------------|------------------------|------------------------------------------------------------------|
| Union: +         | [(A1 + A2) <i>t</i> ]  | Either A1 or A2 is true for last time period <i>t</i>            |
| Concatenation: ^ | [(A1 ^ A2) <i>t</i> ]  | Both A1 and A2 are true for last time period <i>t</i>            |
| Singular: ()     | [(A1) <i>t</i> ]       | A1 has been true for last time period <i>t</i>                   |
| Precedence: ->   | [(A1 -> A2) <i>t</i> ] | A2 becomes true<br>within <i>t</i> time units A1's<br>being true |

#### **Context Expressions**

- Represent relations among context variables using temporal operators
- We are interested in the condition that either C1 or C2 is true for the last 10 seconds:

RCSMContext\_var E1 where [(C1 + C2) 10]

#### Context-Sensitive Interface Specification

Developer defines an interface for a context-sensitive real-time object by associating context variables and expressions with the method signature

□ [incoming] or [outgoing] tag

[activate-at-context x] tag with a context variable or expression

# Incoming and Outgoing Tags

#### Incoming: Invoke method after

- Creating a context triggered communication channel
- Data is available from a remote object

#### Outgoing

- Invoke method first
- Method generates data to transmit to a remote method with an incoming tag
- Compatibility

#### Interface Example

- ContextSensitivePrinter interface for an object that facilitates printing services by dynamically discovering printers in room GWC 329
- Two methods:
  - void SendDocumentstoPrinter(...)
  - □ void NotifyUser(...)

## InterfaceExample

Interface

ContextSensitivePrinter{

[outgoing][activate at C1] void SendDocumentstoPrinter(...); [outgoing][activate at (C1 ^ C2)5]

void NotifyUser(...);

- Invoke SendDocumentstoPrinter whenever device detects it is in room GWC329,
  - Outgoing tag indicates method should generate data if a channel is established with another device (i.e. a printer)
- Invoke NotifyUser to ask user's preference when more than one printer detected for more than 5 seconds

#### Example: Sensor Network

- System is a network of embedded sensors
- Two different types of sensors monitor network:
  - □ Motion
  - Noise
- Both types are stationary
  - Radio transmission range of up to 10 meters
- Mobile Robot
- Assume Object M, Object N and Object MB provide functionality for motion sensors, noise sensors and mobile robot

#### Example: Sensor Network

Mobile robot collects data from sensors whenever robot within 10m of either sensor



## Object MB: Mobile Robot Object

//Name: Mobile Robot Object
//Define a context variable
RCSMContext\_var EnvironmentSpecificContext C
where (num\_peer\_devices > 0);

```
//Interface Definition
Interface MB {
 [incoming][activate at C]
  receive_noise_data([in] string data);
 [incoming][activate at C]
  receive_motion_data ([in] string data);
};
```

## **Object M: Motion Data Collector**

//Name: Motion Data Collector //Define a context variable RCSMContext\_var EnvironmentSpecificContext C where (num\_peer\_devices > 0);

```
//Interface Definition
interface M {
[outgoing][activate at C]
   exchange_motion_data([out] string data);
};
```

## **Object N: Noise Data Collector**

//Name: Noise Data Collector
//Define a context variable
RCSMContext\_var EnvironmentSpecificContext C
where (num\_peer\_devices > 0);

```
//Interface Definition
interface N {
[outgoing][activate at C]
   exchange_noise_data([out] string data);
};
```

#### Adaptive Object Containers



### Adaptive Object Containers

- Register context-sensitive object and its interests with the R-ORB
- Receive context data from R-ORB
- Analyze data to check if context is true
- Activate context-sensitive object and invokes appropriate method

## ADC Architecture

RCSMContext\_var DeviceContext C where num\_peer\_devices > 0



#### Generated ADC

#### Context variable table for Object MB in the mobile robot

| Row | Context Variable | Operator | Constant<br>Expression | Specified<br>Duration | V | True for duration | Method Id |
|-----|------------------|----------|------------------------|-----------------------|---|-------------------|-----------|
| 1   | Num_peer_devices | >        | 0                      | -                     | - | -                 | 1         |
| 2   | Num_peer_devices | >        | 0                      | -                     | - | -                 | 2         |

#### Context variable table for Object M in the motion detectors

| Row | Context Variable | Operator | Constant<br>Expression | Specified<br>Duration | v | True for duration | Method Id |
|-----|------------------|----------|------------------------|-----------------------|---|-------------------|-----------|
| 1   | Num_peer_devices | >        | 0                      | -                     | - | -                 | 1         |

#### Context variable table for Object N in the noise detectors

| Row | Context Variable | Operator | Constant<br>Expression | Specified<br>Duration | v | True for duration | Method Id |
|-----|------------------|----------|------------------------|-----------------------|---|-------------------|-----------|
| 1   | Noise_level      | >        | 0                      | -                     | - | -                 | 1         |

## **Context Propagation**

- Sensors cannot detect each other
- Mobile Robot not within 10 m of any sensor
  - R-CAP propagates number of peer devices(0) to ADCs

#### **Context Match Event**

- Object MB and Object M both satisfy condition C
  - $\Box$  num\_peer\_devices > 0
- ADCs generate a "context match" event
   Notifies R-ORB that context variable or expression is true

### **Object Discovery Messages**

- Allow R-ORB in other devices to discover objects in the local device
- Robot's R-ORB broadcasts:
  - {192.168.0.12, MB, receive\_noise\_data, {data, string}, none}
  - {192.168.0.12, MB, receive\_motion\_data, {data, string}, none}
- Motion Detector's R-ORB broadcasts:

{192.168.0.14, M, exchange\_motion\_data, {data, string}, none}

## **Object Match Events**

R-ORB in mobile robot checks for compatible methods □ receive\_motion data exchange\_motion\_data Generates an "object match" event Notifies ADC that a compatible remote object is found

#### **Inter-Object Communication**



#### **Mobile Robot**

**Motion Detector** 

#### Motion Detector Sends Data

- Notify ADC to invoke exchange\_motion\_data method and retrieve results
- Periodically check ADC to see if object data passed to R-ORB
- Create point-to-point communication channel with MB's R-ORB.
  - Transmit data.
  - Terminate channel.

#### **Object MB Receives Motion Data**

- Check for data transmission from remote R-ORB
- Notify ADC of receive\_motion\_data to invoke method and pass in data to ADC.

#### **R-ORB** Implementation

R-ORB also a context-sensitive object
 Context variables

 Number of new devices detected
 Number of existing devices no longer detected
 Any CM event pending?
 Any OM event pending?

Initiate object discovery communication

#### **Future Directions**

#### Situation Awareness

- Capture and analyze context and interrelationships between users actions and devices
- □ More intelligent; captures patterns over time
- Improving performance and energy efficiency
  - □ Hardware: Field programming gate arrays
  - Scalable cellular automata based coordination model
- Provide context-sensitive real-time scheduling support

#### **Future Directions**

- Smart Classroom for teaching and collaborative learning among college level students
  - Example: Instructor assigns students to work in groups
    - PDA's form ad hoc networks
    - Instructor can dynamically join each group
- http://www.eas.asu.edu/~rcsm