
Adaptive Middleware 
for Real-Time 
Software
Louise Avila
CIS 700-02
November 2, 2005



Topic

“An Adaptive Middleware for Context-Sensitive 
Communications for Real-Time Applications in 
Ubiquitous Computing Environments.” Real-
Time Systems Journal. January 2004. 
Stephen S. Yau and Fariaz Karim
Reconfigurable Context-Sensitive Middleware 
Research Project, Arizona State University



Ubiquitous Computing

Computing experience is everywhere but 
enabling technologies are invisible 
Makes the user the center of computing
Dynamically adapt to user’s needs and 
actions



Mobile Ad Hoc Networks (MANET)

Collection of connected autonomous mobile 
nodes such as wearable, handheld and other 
mobile devices
Free to move arbitrarily
Bandwidth and energy constraints
Dynamic network topologies

No dedicated network connectivity devices
Nodes form short- range wireless networks



Their Goal

Make MANET context-sensitive
Use data about environment and available 
resources
Adapt behavior and interactions
Schedule and execute time critical tasks
Context sensitive interactions between 
applications



Context-Sensitive Services

Detects, establishes and terminates 
communication channels 

New devices enter the environment 
Existing devices move away

Efficient 
Address heterogeneity of devices
One potential solution: middleware



Middleware: Definition

Software is distributed and developed 
using different languages, operating 
systems and hardware platforms
Middleware "glues together" or mediates 
between two separate programs or 
software packages



CORBA

Common Object Request Broker 
Architecture
Creating and managing distributed objects 
in a network
Industry standard developed by the Object 
Management Group 
http://www.omg.org/



CORBA Example

HR Application runs on a 
server in Denver

Employee
Application

HR Rep works in San Francisco



CORBA Example

Client programs don’t need to know:
Location of server program
Implementation of server

Platform Independent
Language Independent



Interface Definition Language

Employee server class:
public class Employee {

public String getEmployeeId(String name) {
return eid;

} 
}

Define interface for Employee class:
interface IEmployee {

String getEmployeeId(in String name); 
}



CORBA Example

Compile interface with IDL compiler
Client Stub

Proxy for the server that runs on the client
Converts method calls into messages
Client acts as though invoking on local object 
instance

Server Skeleton
Converts messages back to method calls



CORBA Architecture

Object Request 
Broker (ORB)
Locates and activates 
object
Delivers request
Returns response
Other services

Naming, Lifecycle, etc.



Middleware Benefits

Reduce effort required to develop software 
Provide runtime services for applications
Forces a separation between interface and 
implementation
ORB approach

Isolate transport protocols from applications



Middleware: Limitations

Existing middleware for enterprise and mobile 
networks:

Industry standards: CORBA, COM, EJB
Specialized “laboratory” versions: TAO

Assume stable network
Use client-server interaction semantics
Do not use different contexts
Laboratory versions have unique architectures –
problem of interoperability



Challenges

Systematic way to represent specific 
contexts and context awareness
Timely context data collection, analysis 
and propagation

Transparent
Device and application-specific



Challenges

Associating context with real-time actions
Support for spontaneous and ad hoc 
context-sensitive communication



Reconfigurable Context-Sensitive 
Middleware (RCSM)

Compliant with CORBA/OMA 
User- level application software as application objects 

Object Request Broker (R-ORB)
Enables application objects implemented in different 
languages to communicate in a distributed, 
heterogeneous environment
Provides context- sensitive communication

R-CAP performs low-level context monitoring 
and acquisition



RCSM Features

Context-aware interface definition language 
(CA-IDL)

Based on IDL
Separates interfaces from implementations

Adaptive Object Containers (ADC) 
Interface- specific context analyzer components. 
Communicate at runtime with other components to 
acquire context data
Communicates with the object implementation to 
invoke different methods when suitable contexts are 
detected.



RCSM Component Hierarchy
Client-server

objects
Context-sensitive

objects

O
perating System

RCSM Group
communication service

Other
services

Adaptive object containers
(ADCs) R-CAP

R-ORB

Transport layer protocols for ad hoc networks

Sensors
(optional)



Development and Runtime Support
Development Support Runtime Services

Developer registers object 
with ORB

Context analyzers and R-CAP 
monitor and analyze context

ORB performs object discovery

ORB establishes context-triggered
communication establishment

ADCs perform context-based
object activation

Developer specifies 
context-sensitive interface 

CA-IDL compiler generates 
interface-specific ADC

CA-IDL compiler generates
object skeleton

Developer implements real-time
object



Context-sensitive Application Object

Context 
expression

+ Method
signature

Context-independent implementation
(C++, C, C# or Java)

Context-sensitive interface 
(CA-IDL)



Specifying a Context

Types of context data available depend on 
host device and its context-sensing 
capabilities
Steps to port RCSM to a new device

Classify the context into categories
Define a structure type for each category



Device-specific Context

Context information specific to a device
Remaining battery power, current time, 
number of objects running
Example:

RCSMContext
DeviceSpecificContext {
double battery_power
double 

light_intensity
double 

net_trans_rate};



Environment-specific Context

Context information specific to surrounding 
environment

Current location, number of devices in vicinity, 
light intensity and current temperature
Example:

RCSMContext
EnvironmentSpecificContex
t {
unsigned int

num_peer_devices
char [16] location};



User-specific Context

Context information specific to the user
User information, number of times user runs 
an application
Example:

RCSMContext
UserSpecificContext {
unsigned int

calendar_usage_rate};



Context Variables
Use to express interest in the specific values of a context:
RCSMContext_var [category_type] [variable name] where 

[structure field] op [constant expression]

Examples:
RCSMContext_var DeviceSpecificContext C1 where 
(location = “GWC329”)

RCSMContext_var EnvironmentSpecificContext C3 
where (num_peer_devices > 2)and (net_trans_rate
>=40)

RCSMContext_var EnvironmentSpecificContext C2 
where (num_peer_devices > 1)



Temporal Operators
Specify temporal relationships among multiple 
context variables

Operator Usage Description
Union: + [(A1 + A2)t] Either A1 or A2 is true 

for last time period t
Concatenation: ^ [(A1 ^ A2)t] Both A1 and A2 are 

true for last time 
period t

Singular: () [(A1)t] A1 has been true for 
last time period t

Precedence: -> [(A1 -> A2)t] A2 becomes true 
within t time units A1’s 
being true



Context Expressions

Represent relations among context 
variables using temporal operators
We are interested in the condition that 
either C1 or C2 is true for the last 10 
seconds:
RCSMContext_var E1 where [(C1 + C2) 10]



Context-Sensitive Interface 
Specification

Developer defines an interface for a 
context-sensitive real-time object by 
associating context variables and 
expressions with the method signature

[incoming] or [outgoing] tag
[activate-at-context x] tag with a context 
variable or expression



Incoming and Outgoing Tags

Incoming: Invoke method after
Creating a context- triggered communication channel
Data is available from a remote object

Outgoing
Invoke method first 
Method generates data to transmit to a remote 
method with an incoming tag

Compatibility



Interface Example

ContextSensitivePrinter interface for an 
object that facilitates printing services by 
dynamically discovering printers in room 
GWC 329
Two methods:

void SendDocumentstoPrinter(…)
void NotifyUser(…) 



InterfaceExample
Interface
ContextSensitivePrinter{
[outgoing][activate at C1] 

void SendDocumentstoPrinter(…);
[outgoing][activate at (C1 ^ C2)5] 

void NotifyUser(…);

Invoke SendDocumentstoPrinter whenever device detects it is in 
room GWC329, 

Outgoing tag indicates method should generate data if a channel 
is established with another device (i.e. a printer)

Invoke NotifyUser to ask user’s preference when more than one 
printer detected for more than 5 seconds



Example: Sensor Network

System is a network of embedded sensors
Two different types of sensors monitor network:

Motion
Noise

Both types are stationary
Radio transmission range of up to 10 meters

Mobile Robot
Assume Object M, Object N and Object MB provide 
functionality for motion sensors, noise sensors and 
mobile robot



Example: Sensor Network

Mobile robot collects data from sensors 
whenever robot within 10m of either sensor

Motion 
Sensor

Motion 
Sensor

Motion 
Sensor

Motion 
Sensor

Noise 
Sensor

Noise 
Sensor

Noise 
Sensor

Noise 
Sensor

Noise 
Sensor

Noise 
Sensor

Mobile
Robot

Robot’s Path



Object MB: Mobile Robot Object
//Name: Mobile Robot Object
//Define a context variable
RCSMContext_var EnvironmentSpecificContext C 
where (num_peer_devices > 0);

//Interface Definition
Interface MB {
[incoming][activate at C] 
receive_noise_data([in] string data);

[incoming][activate at C] 
receive_motion_data ([in] string data);

};



Object M: Motion Data Collector
//Name: Motion Data Collector
//Define a context variable
RCSMContext_var EnvironmentSpecificContext C 
where (num_peer_devices > 0);

//Interface Definition
interface M {
[outgoing][activate at C] 
exchange_motion_data([out] string data);

};



Object N: Noise Data Collector
//Name: Noise Data Collector
//Define a context variable
RCSMContext_var EnvironmentSpecificContext C 
where (num_peer_devices > 0);

//Interface Definition
interface N {
[outgoing][activate at C] 
exchange_noise_data([out] string data);

};



Adaptive Object Containers

Context 
expression

+ Method
signature

Context-sensitive interface for Object O
(CA-IDL)

CA-IDL Compiler
(e.g. C++ mapping)

ADC (in C++) for object O

Provides object-
specific context-
awareness



Adaptive Object Containers

Register context-sensitive object and its 
interests with the R-ORB
Receive context data from R-ORB
Analyze data to check if context is true
Activate context-sensitive object and 
invokes appropriate method



ADC Architecture
RCSMContext_var DeviceContext C where num_peer_devices > 0

Object Base

Dispatcher

Context Analyzer

Object 
Impl

Interface MB {
Incoming   Activate at C void    receive_noise_data([in] string data)

};

Method Invocation

OM event
from R-ORB

CM event
to R-ORB



Generated ADC
Context variable table for Object MB in the mobile robot

Row Context Variable Operator
Constant 
Expression

Specified 
Duration V

True for 
duration Method Id

1 Num_peer_devices > 0 - - - 1

2 Num_peer_devices > 0 - - - 2

Context variable table for Object M in the motion detectors

Row Context Variable Operator
Constant 
Expression

Specified 
Duration V

True for 
duration Method Id

1 Num_peer_devices > 0 - - - 1

Context variable table for Object N in the noise detectors

Row Context Variable Operator
Constant 
Expression

Specified 
Duration V

True for 
duration Method Id

1 Noise_level > 0 - - - 1



Context Propagation

Sensors cannot detect each other
Mobile Robot not within 10 m of any 
sensor

R-CAP propagates number of peer devices 
(0) to ADCs



Context Match Event

Object MB and Object M both satisfy 
condition C 

num_peer_devices > 0
ADCs generate a “context match” event

Notifies R-ORB that context variable or 
expression is true



Object Discovery Messages

Allow R-ORB in other devices to discover 
objects in the local device
Robot’s R-ORB broadcasts:
{192.168.0.12, MB, receive_noise_data, {data, 
string}, none}

{192.168.0.12, MB, receive_motion_data, {data, 
string}, none}

Motion Detector’s R-ORB broadcasts:
{192.168.0.14, M, exchange_motion_data, {data, 
string}, none}



Object Match Events

R-ORB in mobile robot checks for 
compatible methods

receive_motion_data
exchange_motion_data

Generates an “object match” event
Notifies ADC that a compatible remote object 
is found



Inter-Object Communication

R-ORB

MB Object

MB ADC

R-ORB

Object Activation

Context 
Propagation

M Object

M ADC

R-ORB

ODD

CTC

Mobile Robot Motion Detector



Motion Detector Sends Data

Notify ADC to invoke exchange_motion_data
method and retrieve results
Periodically check ADC to see if object data 
passed to R-ORB
Create point-to-point communication channel 
with MB’s R-ORB.

Transmit data.
Terminate channel.



Object MB Receives Motion Data

Check for data transmission from remote 
R-ORB 
Notify ADC of receive_motion_data to 
invoke method and pass in data to ADC.



R-ORB Implementation

R-ORB also a context-sensitive object
Context variables

Number of new devices detected
Number of existing devices no longer 
detected
Any CM event pending?
Any OM event pending?

Initiate object discovery communication



Future Directions

Situation Awareness
Capture and analyze context and interrelationships 
between users actions and devices
More intelligent; captures patterns over time

Improving performance and energy efficiency
Hardware: Field programming gate arrays
Scalable cellular automata based coordination model

Provide context-sensitive real-time scheduling 
support



Future Directions

Smart Classroom for teaching and 
collaborative learning among college level 
students

Example: Instructor assigns students to work 
in groups

PDA’s form ad hoc networks
Instructor can dynamically join each group

http://www.eas.asu.edu/~rcsm


	Adaptive Middleware for Real-Time Software
	Topic
	Ubiquitous Computing
	Mobile Ad Hoc Networks (MANET)
	Their Goal
	Context-Sensitive Services
	Middleware: Definition
	CORBA
	CORBA Example
	CORBA Example
	Interface Definition Language
	CORBA Example
	CORBA Architecture
	Middleware Benefits
	Middleware: Limitations
	Challenges
	Challenges
	Reconfigurable Context-Sensitive Middleware (RCSM)
	RCSM Features
	RCSM Component Hierarchy
	Development and Runtime Support
	Context-sensitive Application Object
	Specifying a Context
	Device-specific Context
	Environment-specific Context
	User-specific Context
	Context Variables
	Temporal Operators
	Context Expressions
	Context-Sensitive Interface Specification
	Incoming and Outgoing Tags
	Interface Example
	InterfaceExample
	Example: Sensor Network
	Example: Sensor Network
	Object MB: Mobile Robot Object
	Object M: Motion Data Collector
	Object N: Noise Data Collector
	Adaptive Object Containers
	Adaptive Object Containers
	ADC Architecture
	Generated ADC
	Context Propagation
	Context Match Event
	Object Discovery Messages
	Object Match Events
	Inter-Object Communication
	Motion Detector Sends Data
	Object MB Receives Motion Data
	R-ORB Implementation
	Future Directions
	Future Directions

