
1

System and Language Support

for Timing Constraints

Sebastian Fischmeister

sfischme@seas.upenn.edu

Department of Computer and Information Science

University of Pennsylvania

CIS700-2 S. Fischmeister 2

Goals

! Understand different concepts about temporal

constraints.

! Understand how temporal constraints can be

incorporated into a programming language.

! Discuss how you would design your language.

3

Overview of Temporal Constraints

CIS700-2 S. Fischmeister 4

Why Temporal Constraints?

! A number of control applications puts temporal
constraints on the control software.

o Engine simulation: 1kHz recording frequency over a distributed
system

o Clock synchronization: down to 1 nanosecond

o Industrial process control

o Drive-by-wire

o Anti-lock brakes

o Pacemakers

o Helicopter control

" 200 Hz pilot stick, 400 Hz sensors, 200 Hz flight control, 1kHz
actuator electronics

o Heating control: 10 seconds

CIS700-2 S. Fischmeister 5

Temporal Constraints

! Real-time is about producing the correct result
at the right time.

! Temporal constraints are a way to specify,
when the value is on time.

OkOn timeCorrect

FailureToo lateCorrect

FailureOn timeWrong

FailureToo lateWrong

ResultTimingValue

CIS700-2 S. Fischmeister 6

Types of Temporal Constraints

! Hard temporal constraints

! Soft temporal constraints

! Firm temporal constraints

! Deterministic temporal constraints

CIS700-2 S. Fischmeister 7

Soft Temporal Constraints

! A soft real-time system is one where the response
time is normally specified as an average value. This
time is normally dictated by the business or market.

! A single computation arriving late is not significant to
the operation of the system, though many late arrivals
might be.

! Ex: Airline reservation system - If a single computation
is late, the system’s response time may lag. However,
the only consequence would be a frustrated potential
passenger.

CIS700-2 S. Fischmeister 8

Hard Temporal Constraints

! A hard real-time system is one where the response
time is specified as an absolute value. This time is
normally dictated by the environment.

! A system is called a hard real-time if tasks always must
finish execution before their deadlines or if message
always can be delivered within a specified time interval.

! Hard real-time is often associated with safety critical
applications. A failure (e.g. missing a deadline) in a
safety-critical application can lead to loss of human life
or severe economical damage.

CIS700-2 S. Fischmeister 9

Firm Temporal Constraints

! In a firm real-time system timing requirements

are a combination of both hard and soft ones.

Typically the computation will have a shorter

soft requirement and a longer hard requirement.

! Ex: Ventilator – The system must ventilate a

patient so many times within a given time

period. But a few second delay in the initiation

of the patient’s breath is allowed, but not more.

CIS700-2 S. Fischmeister 10

Deterministic Temporal Constraints

! In a temporal deterministic real-time system timing
requirements are a deterministic. An external observer
can tell the temporal state at any time.

! A system with deterministic temporal constraints
finishes execution exactly at the deadline (not before
[hard] and not about [soft]).

! Ex. Similar to hard real-time systems, however,
temporal determinism simplifies guaranteeing
compositionality.

CIS700-2 S. Fischmeister 11

Real-Time Spectrum

User

interface

Computer

simulation

Internet

video, audio

Cruise

control

Tele

communication

Flight

control

Electronic

engine

Soft RT Hard RTNo RT

12

Terminology of Temporal

Constraints

CIS700-2 S. Fischmeister 13

Tasks, Job

! A task is a piece of code that can be executed many

times with different input data. (thread or process)

! A job is an instance of a task.

computation

release time

start time

finishing time

deadline

job

CIS700-2 S. Fischmeister 14

Parameters

! Release or Arrival Time (ri)

o is the time at which the task becomes ready for execution.

! Computation time (Ci)

o is the time necessary to the processor for executing the task

without interruption.

! Deadline (di)

o is the time before which a task should be complete to avoid

damage to the system.

o Relative Deadline (Di): Di = di - ri

! Start time (si)

o is the time at which the task starts its execution.

CIS700-2 S. Fischmeister 15

Parameters

! Finishing time (fi)

o is the time at which the task finishes its execution.

! Laxity (Slack time) (Xi)

o Xi = di - ri - Ci is the maximum time a task can be delayed on its

activation to complete within its deadline.

ri fisi di

Ci

t

Di

Xi

CIS700-2 S. Fischmeister 16

Jitter

! Jitter refers to the temporal variation of a periodic event

! E.g. Absolute Finishing
Jitter = maxk (fi,k- ri,k) – mink(fi,k - ri,k)

! E.g. Relative Finishing
Jitter = maxk |(fi,k - ri,k) – (fi,k-1 - ri,k-1)|

fi,1

t
fi,2 fi,3

CIS700-2 S. Fischmeister 17

Jitter Types

! Start Jitter

! Completion Jitter, I/O Jitter

si,1

t

si,2 si,3

si,1

t

si,2 si,3fi,1 fi,2 fi,3

CIS700-2 S. Fischmeister 18

Sampling

! Sample rejection

! Vacant sampling

t

Process 1

Process 2

Rejection Vacant

t

CIS700-2 S. Fischmeister 19

Revisiting RT Types

NoneNoneDeterministic

RT

Soft DL: rej. and vac. s.

Hard DL: vacant s.

Soft DL: pos. and neg.

Hard DL: only negative

Firm RT

RejectionOnly negativeHard RT

Rejection and vacant

sampling

Positive and negativeSoft RT

SamplingJitterType

20

Temporal Constraint

Specifications

CIS700-2 S. Fischmeister 21

Task Types

! A periodic task has invocations within regular

time intervals.

o E.g., reading a heat sensor.

! A sporadic task has unknown arrival times, but

have bounds such as maximum frequency.

o E.g., routinely memory status check.

! An aperiodic task has an unknown arrival time.

o E.g., an emergency shutoff.

CIS700-2 S. Fischmeister 22

Frequency, Period

! Period, frequency:

o T1: Period=10ms, Frequency=2

! Period:

o T2: Period=10ms

! Frequency

o T3: Frequency=400Hz

t [ms]0 5 10 15

 T1

T2

T3

CIS700-2 S. Fischmeister 23

Additional Terms

! Execution time: total time of execution of a

specific task

! Elapse time: the task’s execution time + all

delays

! Maximum time constraint: no more than t time

units will elapse

! Minimum time constraint: no less than t time

units will elapse

CIS700-2 S. Fischmeister 24

Hyper-Period

! Hyper-Period is the time span after which the

system repeats its behavior.

o T1: Period=10ms, Frequency=2

o T2: Period=10ms

o T3: Frequency=400Hz

o Hyper period = 10ms

25

Example

CIS700-2 S. Fischmeister 26

 T1
 T2
 T3

 T4

1 2 4 6:

T1: P=1s

T2: P=10s

T3: P=60s

T4: P=3600s

Idependent-Digit Clock

! Consider a clock with each

digit as an independent task.

CIS700-2 S. Fischmeister 27

 Properties

! Timliness is key

o Invalid time value displayed

! Value outputs need to be synchronized.

! Nearly no computation required.

28

Implicit Temporal Control

CIS700-2 S. Fischmeister 29

Foreground/Background System

! Using super-loops as the main routine with two levels:
the task level and the interrupt level.

o Task level (aka background): executes modules

o Interrupt level (aka foreground): handles asynchronous evens
via ISRs.

! Foreground can preempt the background, thus:

o Critical tasks must be in the foreground part.

o Task level response = an ISR prepares data for the super-loop.

! Used for small devices (e.g., microcontrollers in
microwaves, washers, dryers, radio)

CIS700-2 S. Fischmeister 30

Foreground/Background System

Foreground

(Interrupt level)

Background

(Task level)

ISR

ISR

ISR

t

Super-loop

CIS700-2 S. Fischmeister 31

Foreground/Background Properties

! Simple system/low overhead

o No maintenance, basically no “system” at all

! Not time deterministic

o F/B systems require hand tuning to meet a timing criteria; if the
system is not responsive enough, then the developer will
optimize the super-loop.

! Sensitive to changes

o Changing a module constantly changes the timing of the super-
loop.

o Changing code in an ISR changes may change the overall
timing behavior.

32

Programming-Language
Timing Control

CIS700-2 S. Fischmeister 33

Temporal Scopes

! Source: [Lee1985], the Distributed Programming System (DPS).

! Temporal scopes and DPS describes a system to specify generic
temporal constraints at the statement level.

! The main goals for temporal scopes are:

o Provide language constructs for specifying timing constraints,

o Apt for distributed systems,

o Extend an existing language, and

o Run-time monitoring and exception handling.

! Its properties are:

o The program is configured offline.

o All processes are created before start-up.

" No dynamic create of RT processes.

o The system has two modes: initialization and operation.

! Timing support is specification-based.

CIS700-2 S. Fischmeister 34

Timing Specification

! Deadline. The latest time in which the execution of a
temporal scope can be completed.

! Minimum delay. The minimum amount of time that
should pass before starting the execution of a temporal
scope.

! Maximum delay. the maximum amount of time that
should pass before starting the execution of a temporal
scope.

! Maximum execution time. The maximum computation
time necessary for the execution of a temporal scope.
Maximum elapse time. The maximum execution time
plus all user-defined delay during the execution of a
temporal scope.

CIS700-2 S. Fischmeister 35

Timing Specification

Release exe1 Deadline
t

exe2

Min. delay

Max. delay

Gap

Max. elapse time

Max. execution time = WCET

CIS700-2 S. Fischmeister 36

The Internal Temporal Scope

! Start <delay-part> [<exe-part>] [<dl-part>]
 <start-body>
 [<exceptions>]
end

! <delay-part>:==new|at <abs-time>|after <rel-time>

! <exe-part>:==execute <rel-time>|elapse <rel-time>

! <dl-part>:==by <abs-time>|within <rel-time>

! Examples:

! Start after 10 sec do … end

! Start at (9h:00m) within 10 sec do … end

CIS700-2 S. Fischmeister 37

Repetitive Temporal Scope

! from <start_time> to <end time> every <period>

execute <exec_time> within <deadline> do

<stmts>

[<exceptions>]

end

! Example:

! from (8h:00m) to (18h:00m) every

(0h:30m) within 10 sec do
destress_eyes()

end

CIS700-2 S. Fischmeister 38

Consecutive Temporal Scope

! cstart <delay1> [<execute1>] [<deadline1>] do
 <stmts1>
 [<exceptions1>]

! cstart <delay2> [<execute2>] [<deadline2>] do
 <stmts2>
 [<exceptions2>]

! cstart <delayn> [<executen>] [<deadlinen>] do
 <stmtsn>
 [<exceptionsn>]

! end

! Example:

! cstart within 2 sec do fill_glass_with_water()
cstart after 2 sec do empty_glass() end

39

The Time Fence Protocol

CIS700-2 S. Fischmeister 40

Time Fence in the ARTS Kernel

! Source: [Tokuda, Mercer,1998].

! The time-fence protocol allows for temporal constraints
in a distributed real-time system. The time-fence
protocol is built into the ARTS kernel.

! The ARTS kernel aims at distributed real-time systems.

! The artsobject is the abstraction for computation:

o The artsobject has a WCET.

o The artsobject minimizes inter-module dependence.

o It provides time-encapsulation (however, the designer must
guarantee this).

! Timing support is specification-based.

CIS700-2 S. Fischmeister 41

Specification

// An example of a real-time thread

Thread Sample._Artobject::RT_Thread()

//# priority, stack_size, wcet, period, phase, delay

{ //thread body …

ThreadExit();

}

The implementation also allows for object methods:

type opt1 (type arg);//# within time except opr()

CIS700-2 S. Fischmeister 42

The Time Fence Protocol

! The system scheduler checks for transient overloads
(not enough CPU cycles) and rejects tasks in case of
such an overload.

! Each RT computation has a WCET.

! The time fence uses the deadline to set a timer.

! The scheduler checks schedulability using the time
fence and the WCET.

! Comm can include communication overhead for the
distributed system.

Calleewrtv < Callerctv - 2*comm+clockdrift

43

Esterel

CIS700-2 S. Fischmeister 44

Synchronous Model

Event Event

Synchronous

Computation

Synchronous Model

Event Deadline

Scheduled

Computation

Scheduled Model

Response

Time

CIS700-2 S. Fischmeister 45

Synchronous Model

Synchronous Implementation

Event Deadline

Scheduled Implementation

Response

Time

Event Event

Response

Time

CIS700-2 S. Fischmeister 46

Basic Concepts

! Specification language has been specialized for reactive systems.

! Reactive system:
o In continuous interaction with its environment.

o A reaction begins when the system receives an input event and ends
when it generates the corresponding output event.

! Black-box approach
o Inputs produce outputs, continuously.

o Only define relationships between input and output events.

o A task may be complex, but: you don‘t care.

Reactive System
Input

Events

Output

Events

Task A
Input

Events
Output

Events
Task B

CIS700-2 S. Fischmeister 47

Basic Concepts

! Based on synchronous model of time (synchrony hypothesis)
o The underlying machine is infinitely fast and, hence, the reaction of the

system to an input event is instantaneous; in between reactions, the
system is idle.

o No reaction intervals # only reaction instants # reactions do not
overlap.

o The synchrony hypothesis simplifies the behavioral specification of
reactive systems (see the example later on).

o Looks flawed, but the machine must
react to an input event before the
next input event arrives.

Event Event

Response

Time

CIS700-2 S. Fischmeister 48

Basic Concepts

! Determinism

o A non-deterministic system does not have a unique response to
a given input event # the external observer cannot predict the
response.

o Example:

" Waiting for 60 seconds and then(??) signal “minute”.

" Broadcasting the signal, timing delays.

o Esterel guarantees determinism

" All statements and constructs are well defined (syntax and
semantics).

" A compiler checks the program and ensures determinism.

loop

 delay 60; B.MINUTE; (C.MINUTE)

end

CIS700-2 S. Fischmeister 49

Signal Handling: Example

! Example program:

pause;

emit A;

emit B;

present B then emit C; end

pause;

emit C;
A
B
C

C

CIS700-2 S. Fischmeister 50

Example StopWatch

module SW1:

input START, STOP, MS;

output TIME(integer);

relation START # STOP;

var count := 0 : integer

in

 await immediate START;

% weak abort

 abort

 every immediate MS do

 count := count + 1;

 emit TIME(count);
 end

 when STOP

% pause;

 sustain TIME(count);

end var

end module

St
T1 T2 T3

Sp
T3

%T4
T3
%T
4

51

PEARL

CIS700-2 S. Fischmeister 52

PEARL Overview

! Sources: [Martin T, 1979]

! PEARL = Process and Experiment Automation
Realtime Language

! Developed in Germany around 1969 for programming
real-time systems. The major funding agency was the
German government (DIN 66253).

! Developed at the same time as PASCAL, so both share
similar syntax.

! PEARL forbids recursive procedures to eliminate out-of-
memory errors.

! Strong emphasis on the I/O part, because of its target
domain.

CIS700-2 S. Fischmeister 53

PEARL Process Model

Plan Running

SuspendedTerminated

Suspend

Continue

Event

Terminate

Activate

Terminate

Plan

Prevent

CIS700-2 S. Fischmeister 54

Timing Specification

Examples:
! ALL 0.00005 SEC ACTIVATE Highspeedcontroller;

! AT 12:00 ALL 4 SEC UNTIL 12:30 ACTIVATE lunchhour;

! WHEN fire ACTIVATE extinguish;

55

Programmable Logic Controllers

CIS700-2 S. Fischmeister 56

Introduction

! Source: [Bliesener, Ebel, Loeffler, … 1998]

! Created in 1968 by General Motors with the following
goals in mind:

o Replace relays,

o Simple programming (no CS required),

o Software instead of hard wiring,

o Smaller, cheaper, more reliable than relays, and

o Simple and cheap maintenance.

! 5 standardized languages (IEC_61131-3):

o FBD (Function Block Diagram), LD (Ladder Diagram), ST
(Structured Text, Pascal type language), IL (Instruction List)
and SFC (Sequential Function Chart)

CIS700-2 S. Fischmeister 57

The Look of an PLC

! Internals are similar to a workstation.

CIS700-2 S. Fischmeister 58

Operation of an PLC

! Inputs, which are shorter than one

cycle, are omitted.

! A reaction to an input can be two

cycles late.

! The PLC program executes

sequentially, so the instructions’

ordering is relevant.

! Some new PLCs support direct

value access.

Buffer Inputs
(Process image)

PLC Program

Buffer Outputs

CIS700-2 S. Fischmeister 59

Sequential Function Charts

SFC Selection Branch SFC Simultaneous Branch

SFC Sequential configuration

Q. Var.Label

Action

Contents

CIS700-2 S. Fischmeister 60

Action Qualifiers

Stored & timeLimited. Action starts when step becomes active, continues for

a set time or until reset.
SL

Delayed & Stored. If step is still active, action starts after time delay,

continues until reset.
DS

Stored and time Delayed Action starts after time delay, continues until reset.SD

Pulse. Start when the step becomes Active/Deactive and execute the action

only once.
P

Time Delayed. Start a delay timer when the step becomes active. If the step

is still active after the time delay, the action starts and continues until

deactivated.

D

Time Limited. Start when step becomes active and continue until the step

goes inactive or a set time passes.
L

Reset. Terminate the execution of an action previously started with the S,

SD, SL, or DS qualifier.
R

Set (stored). Continue after the step is deactivated, until the action is reset.S

Nonstored. Terminate when the step becomes inactive.N

CIS700-2 S. Fischmeister 61

Timing Specification

S %QX12

Step

%QX12

N %QX12

Step

%QX12

CIS700-2 S. Fischmeister 62

Timing Specification

P %QX12

Step

%QX12

L

T#10s %QX12

Step

%QX12
10s

CIS700-2 S. Fischmeister 63

Timing Specification

DS

T#10s %QX12

Step

%QX12
10s 10s

SD

T#10s %QX12

Step

%QX12
10s

CIS700-2 S. Fischmeister 64

Timing Specification

SL

T#20s %QX12

Step

%QX12
10s 20s

CIS700-2 S. Fischmeister 65

Example: Hydraulic Press

CIS700-2 S. Fischmeister 66

Example: Crosswalk

CIS700-2 S. Fischmeister 67

Example: Hot Water Tank

http://www.searcheng.co.uk/articles/plc/

! 8 inputs, 1 output

! Motor control

o Emergency stop

o Motor overload

o Motor failed

o Combined alarms

o Automatic mode

o Manual mode

! Valves control

o Emergency stop

o Various valve
fault tolerance

68

Time-Triggered Message-

Triggered Object

CIS700-2 S. Fischmeister 69

Introduction

! Source: [K.H. Kim, 1999]

! Developed in the early 1990s.

! Vision: Future RT computing must be realized in the
form of a generalization of the non-RT computing,
rather than in a form looking like an esoteric
specialization. (=> same as RTSJ)

! Uses object orientation for strong modularity
characteristics.

! Specification-based timing constraints.

! Side note: started with H. Kopetz (TT domain)

CIS700-2 S. Fischmeister 70

Overview

! TMO = (ODS, EAC, SpM, SvM)
ODS … object-data-store section sec.
EAC … environment access-capability sec.
SpM … spontaneous-method sec.
SvM … service-method sec.

! Interesting for this discussion:

o SpM … time-triggered execution by the RT system

o SvM … event-triggered (e.g., service request msg)

o TMO incorporates deadlines; the designer guarantees and
advertises ET windows by start time and completion time

CIS700-2 S. Fischmeister 71

Overview

P
ic

tu
re

 t
a

k
e

n
 f
ro

m
 c

n
e

ti
a

.c
o

m
.

CIS700-2 S. Fischmeister 72

Time-Triggered Actions

! Time-constraint specification

! Examples
o {“start-during (10am, 10:05am) finish-by 10:10am”,

“start-during (10:30am, 10:35am) finish-by 10:40am”}

o for t = from 10am to 10:50am every 30min
start-during (t,t+5min) finish-by t+10min

ab “timing specification begin”

 for <time-var> = from <activation-time>

 to <deactivation-time>

 [every <period>]

 start-during (<earliest-start-time, latest-start-time)

 finish-by <deadline>

ae “timing specification end”

CIS700-2 S. Fischmeister 73

Time-Triggered Actions

! Possible computations can be:

o Statements,

o Blocks,

o Function & procedures, and

o Object methods

! TMO implementations so far only handle SpM’s

and SvM’s (I.e., object methods).

74

Real-Time Specification for Java

(RTSJ)

CIS700-2 S. Fischmeister 75

Introduction

! The correct name is: Real-Time Specification for Java (RTSJ).

! Started in 1999 as Sun Microsystems' Java Community Process under
Real-Time for Java Expert Group (RTJEG).

! Guiding Principles:

o Applicability to Java Environments: The RTSJ shall not include
specifications that restrict its use to particular Java environments.

o Backward Compatibility: The RTSJ shall not prevent existing, properly written,
non-real-time Java programs from executing on implementations of the RTSJ.

o Write Once, Run Anywhere.

o Current Practice vs. Advanced Features: The RTSJ should address current
real-time system practice as well as allow future implementations to include
advanced features.

o Predictable Execution: The RTSJ shall hold predictable execution as first
priority in all trade-offs.

o No Syntactic Extension.

o Allow Variation in Implementation Decisions.

CIS700-2 S. Fischmeister 76

Overview

! RT Java consists of an RTJVM and the RTSJ class
library.

! RTSJ-compliant JVMs can be considered Real-Time
Java Virtual Machines (RTJVMs).

! Resides in the packet javax.realtime with modifications
to the non RT Java such as

o A RT Thread class extending java.lang.Thread

o Sophisticated scheduling support

o No mandatory RT garbage collection, instead memory
partitioning

o Raw memory access for device drivers

CIS700-2 S. Fischmeister 77

Handling of Time

! Clock:

o A clock marks the passing of time.

o System.getRealtimeClock() for singletons.

o Can have an arbitrary resolution (see RelativeTime).

! Based on the clock, a number of classes dealing with time exist:

o HighResolutionTime: is an abstract class and the base class for all
time-related classes. Used to express time with nanosecond accuracy.

o AbsoluteTime: represents a specific point in time given by
milliseconds plus nanoseconds past some point in time fixed by the
clock.

o RationalTime: represents a time interval that is divided into
subintervals by some frequency. Used to periodic events, threads, and
feasibility analysis.

o RelativeTime: is generally used to represent a time relative to now

! All time objects must maintain nanosecond precision.

CIS700-2 S. Fischmeister 78

Real-Time Threads

! Two types of threads:

o NoHeapRealtimeThread

o RealtimeThread

! Release parameters specify the thread’s behavior in the
time domain:

o PeriodicParameters: indicates that the schedulable object is
released on a regular basis.

o SporadicParameters: notes that the associated schedulable
object's run method will be released aperiodically but with a
minimum time between releases.

o AperiodicParameters: characterizes a schedulable object that
may be released at any time.

79

Giotto

CIS700-2 S. Fischmeister 80

Overview

! Source: [T. Henzinger et al, 2002]

! One of the main issues was to create verifiable RT
programs.

! Rigid control of the system’s behavior.

o Input/output values are buffered in ports
(similar to the process image with PLCs)

o Value determinism

o Time determinism

! An embedded machine controls the task’s execution.

CIS700-2 S. Fischmeister 81

Logical Execution Time

Release Terminate

Logical execution time = Logical computation time

Reading

input

ports

Writing

output

ports

t t +T

Task t

SuspenStart d Resum Stope

CIS700-2 S. Fischmeister 82

Example

Task

Q Q

t+10ms t+10ms

P

S
li
d
e
 b

y
 C

.M
.K

ir
s
c
h
 e

t
a
l.

CIS700-2 S. Fischmeister 83

Runtime Environment

off-line

on-line

Application

object code

calls

E code

executes

ActuatorSensor

DriverDriver

Environment

Platform

E machine

runs on

CIS700-2 S. Fischmeister 84

E-Code

lbl1: call d [t1]

call d [t2]

schedule t1

schedule t2

future, 200, lbl2

return

lbl2: call d[t2]

schedule t2

future, 200, lbl1

return

! E-Code controls the execution behavior

! Call: executes drivers

! Schedule: enqueues tasks

! Future: schedules a resume

! Return: exists the interpreter

CIS700-2 S. Fischmeister 85

Timing Specification

mode Flight () period 10ms

 {

 actfreq 1 do Actuator (actuating) ;

 taskfreq 1 do Control (input) ;

 taskfreq 2 do Navigation (sensing) ;

 }

! Only allows periodic tasks.

! Defined by period and frequency.

! Each mode has a period.

! Each task has a frequency within the mode.

86

Timed Atomic Commitment

CIS700-2 S. Fischmeister 87

Overview

! Source: [Davidson et al. 1991]

! Motivation: Atomic commitment is necessary for

a number of applications. For real-time

systems, time constraints need to be part of the

algorithm.

! Example: Two robot arms together lift defective

containers from a conveyor belt.

! Timing specification bases on timed scopes.

CIS700-2 S. Fischmeister 88

Overview

! Three possible outcomes:

o Commit: action done

o Abort: no action done

o Exception: something done, need recovery function

! TAC has the following correctness criteria:

o TAC1: All participants, which reach a decision, reach the same one.

o TAC2: The decision is to commit only if all participants vote YES.

o TAC3: At the deadline, the local state either reflects the completed
action or is EXCEPTION.

o TAC4: (minimum success criterion)

" All participants reach a decision.

" If all participants vote YES, then the decision is to commit.

" All participants complete the decided-upon action by the deadline.

" At the deadline, the local state reflects the completed action.

CIS700-2 S. Fischmeister 89

Two Algorithms

S

Generate votes

Start Vote

Wait and

decide

Do action

Decision Local state

Determine

result
Coordinator

Participant

Centralized Timed 2 Phase Commit (CT2PC)

S

Generate votes

Start Vote

Wait and

decide
Do action

Local state

Determine

result

* Vote

Coordinator

Participant

Distributed Timed 2 Phase Commit (DT2PC)

CIS700-2 S. Fischmeister 90

Take Away Messages

! Timing constraints are a topic since 1968.

o What are the right abstractions?

(Modules, tasks, statements)

o What is the right notion of time?

(Zero, continuous, discrete time)

o Who checks timing constraints?

(Offline, online)

o How to you specify timing?

(Specification-based vs. programming)

o How to ensure timing constraints?

(Verification, runtime checking, offline, online)

CIS700-2 S. Fischmeister 91

Summary

! Timing constraints specify, how computation is done with respect to

time.

! There are different types of real-time systems, each with its own

requirements regarding timing constraints.

! A number of real-time programming languages, systems, and

concepts exist. The following categories exist:

o Intrinsic vs external control: e.g., language-specific constructs vs

runtime control.

o Specification-based vs program-based: e.g., at 12:00 do XY vs new

event(new timer(12:00)).

o Language extension (retrofitting) vs first-order citizen: e.g., RTSJ vs

Giotto.

o Deterministic vs. approximation and best-effort: e.g., Esterel vs RTSJ.

CIS700-2 S. Fischmeister 92

Summary

Bases on

temporal sc.

RuntimeImpl.SpecTransactionTAC

E-CodeBy constr.Exact (??)Spec.ThreadGiotto

By popular

demand

RuntimeBest eff.Prog.ThreadRTSJ

RuntimeBest eff.Spec.MethodTMO

Simpler

temporal

scopes

RuntimeImpl.Spec.Thread/Op

level

Time

Fences

SimpleNoneNoneProg.SuperloopF/B Sys

CommercialRuntimeBest eff.SpecBlockPLC

ToolchainCompilerExactProg.Stmt.Esterel

ExceptionsRuntimeImpl.Spec.Statement levelTemporal

Scopes

NoteEnforcementGuaranteeTypeAbstraction

level

Name

CIS700-2 S. Fischmeister 93

Personal Note & Observations

! PLCs & Sequential Function Charts are a rock solid
method, sold billion times, defeats many theoretic and
academic models.

! Synchronous languages are about to become a huge
industry-strength concept: Airbus uses SCADE.

! Temporal scopes present a general abstraction, but did
not catch on.

! Simple, but effective solutions - or - a complete tool
chain.

! Retrofitting does not work - it did not for security, it will
not for RT systems.

CIS700-2 S. Fischmeister 94

Bibliography

! [1] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers, 2000.

! [2] C. M. Kirsch. Principles of real-time programming. In A. Sangiovanni-Vincentelli and J.
Sifakis, editors, Proc. of the Second International Conference on Embedded Software
(EMSOFT), volume 2491 of LNCS, pages 61ﾐ75. Springer, 2002.

! [3] S. Fischmeister and K. Winkler. Non-blocking deterministic replacement of functionality,
timing, and data-flow for hard real-time systems at runtime. In Proc. of the Euromicro
Conference on Real-Time Systems (ECRTSﾕ05), 2005.

! [4] Jean J. Labrosse. MicroC OS II: The Real Time Kernel. CMP Books, 2002. 3

! [5] A. Burns and A.J. Wellings. Real-Time Systems and Programming Languages: ADA 95, Real-
Time Java, and Real-Time POSIX. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

! [8] I. Lee and V. Gehlot. Language constructs for distributed real-time programming. In Proc. of
the IEEE Real-time Systems Symposium (RTSSﾕ85), 1985.

! [9] G. Berry. The Esterel v5 Language Primer. Centre de Mathematiques Appliquees, Ecole des
Mines and INRIA, 2004 Route des Lucioles, 06565 Sophia-Antipolis, version 5.21 release 2.0
edition, April 1999. [

! 10] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1997.

! [11] H. Tokuda and C. W. Mercer. Arts: a distributed real-time kernel. SIGOPS Oper. Syst. Rev.,
23(3):29ﾐ53, 1989.

! [12] L. Frevert. Echtzeit-Praxis mit PEARL. Teubner, 1985.

CIS700-2 S. Fischmeister 95

Bibliography

! [14] A. Wellings. Concurrent and real-time programming in Java. Wiley, 2004.

! [16] K.H. Kim. Real-time object-oriented distributed software engineering and the TMO scheme.
Int. Journal of Software Engineering & Knowledge Engineering, 2:251ﾐ276, 1999.

! [17] S.B. Davidson, V. Wolfe, and I. Lee. Timed atomic commitment. IEEE Trans. Comput.,
40(5):573ﾐ 583, 1991.

! [20] R. Bliesener. Speicherprogrammierbare Steuerungen. Springer, 1997.

! [21] T. A. Henzinger, C. M. Kirsch, and B. Horowitz. Giotto: A time-triggered language for
embedded programming. In T. A. Henzinger and C. M. Kirsch, editors, Proc. of the 1st
International Workshop on Embedded Software (EMSOFT), number 2211 in LNCS. Springer,
October 2001.

! [22] T.A. Henzinger, C.M. Kirsch, M.A.A. Sanvido, and W. Pree. From control models to real-
time code using Giotto. IEEE Control Systems Magazine, February 2003. 4

! [26] Yutaka Ishikawa and Hideyuki Tokuda. Object-oriented real-time language design:
constructs for timing constraints. In OOPSLA/ECOOP ﾕ90: Proceedings of the European
conference on object- oriented programming on Object-oriented programming systems,
languages, and applications, pages 289ﾐ298, New York, NY, USA, 1990. ACM Press.

! [27] Jozef Hooman and Onno Van Roosmalen. An approach to platform independent real-time
programming: (1) formal description. Real-Time Syst., 19(1):61ﾐ85, 2000.

