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Goals

! Understand different concepts about temporal

constraints.

! Understand how temporal constraints can be

incorporated into a programming language.

! Discuss how you would design your language.
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Overview of Temporal Constraints
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Why Temporal Constraints?

! A number of control applications puts temporal
constraints on the control software.

o Engine simulation: 1kHz recording frequency over a distributed
system

o Clock synchronization: down to 1 nanosecond

o Industrial process control

o Drive-by-wire

o Anti-lock brakes

o Pacemakers

o Helicopter control

" 200 Hz pilot stick, 400 Hz sensors, 200 Hz flight control, 1kHz
actuator electronics

o Heating control: 10 seconds
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Temporal Constraints

! Real-time is about producing the correct result
at the right time.

! Temporal constraints are a way to specify,
when the value is on time.

OkOn timeCorrect

FailureToo lateCorrect

FailureOn timeWrong

FailureToo lateWrong

ResultTimingValue
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Types of Temporal Constraints

! Hard temporal constraints

! Soft temporal constraints

! Firm temporal constraints

! Deterministic temporal constraints
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Soft Temporal Constraints

! A soft real-time system is one where the response
time is normally specified as an average value. This
time is normally dictated by the business or market.

! A single computation arriving late is not significant to
the operation of the system, though many late arrivals
might be.

! Ex:  Airline reservation system - If a single computation
is late, the system’s response time may lag.  However,
the only consequence would be a frustrated potential
passenger.
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Hard Temporal Constraints

! A hard real-time system is one where the response
time is specified as an absolute value. This time is
normally dictated by the environment.

! A system is called a hard real-time if tasks always must
finish execution before their deadlines or if message
always can be delivered within a specified time interval.

! Hard real-time is often associated with safety critical
applications. A failure (e.g. missing a deadline) in a
safety-critical application can lead to loss of human life
or severe economical damage.
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Firm Temporal Constraints

! In a firm real-time system timing requirements

are a combination of both hard and soft ones.

Typically the computation will have a shorter

soft requirement and a longer hard requirement.

! Ex:  Ventilator – The system must ventilate a

patient so many times within a given time

period.  But a few second delay in the initiation

of the patient’s breath is allowed, but not more.
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Deterministic Temporal Constraints

! In a temporal deterministic real-time system timing
requirements are a deterministic. An external observer
can tell the temporal state at any time.

! A system with deterministic temporal constraints
finishes execution exactly at the deadline (not before
[hard] and not about [soft]).

! Ex. Similar to hard real-time systems, however,
temporal determinism simplifies guaranteeing
compositionality.
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Real-Time Spectrum

User

interface

Computer 

simulation

Internet

video, audio

Cruise

control

Tele

communication

Flight

control

Electronic 

engine

Soft RT Hard RTNo RT
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Terminology of Temporal

Constraints
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Tasks, Job

! A task is a piece of code that can be executed many

times with different input data. (thread or process)

! A job is an instance of a task.

computation

-----------

---------------

--------------

--------------

release time

start time

finishing time

deadline

job
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Parameters

! Release or Arrival Time (ri)

o is the time at which the task becomes ready for execution.

! Computation time (Ci)

o is the time necessary to the processor for executing the task

without interruption.

! Deadline (di) 

o is the time before which a task should be complete to avoid

damage to the system.

o Relative Deadline (Di): Di = di - ri

! Start time (si)

o is the time at which the task starts its execution.



CIS700-2 S. Fischmeister 15

Parameters

! Finishing time (fi)

o is the time at which the task finishes its execution.

! Laxity (Slack time) (Xi)

o Xi = di - ri - Ci is the maximum time a task can be delayed on its

activation to complete within its deadline.

ri fisi di

Ci

t

Di

Xi
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Jitter

! Jitter refers to the temporal variation of a periodic event

! E.g. Absolute Finishing
Jitter = maxk (fi,k- ri,k) – mink(fi,k - ri,k)

! E.g. Relative Finishing
Jitter = maxk |(fi,k - ri,k) – (fi,k-1 - ri,k-1)|

fi,1

t
fi,2 fi,3
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Jitter Types

! Start Jitter

! Completion Jitter, I/O Jitter

si,1

t

si,2 si,3

si,1

t

si,2 si,3fi,1 fi,2 fi,3
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Sampling

! Sample rejection

! Vacant sampling

t

Process 1

Process 2

Rejection Vacant

t
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Revisiting RT Types

NoneNoneDeterministic

RT

Soft DL: rej. and vac. s.

Hard DL: vacant s.

Soft DL: pos. and neg.

Hard DL: only negative

Firm RT

RejectionOnly negativeHard RT

Rejection and vacant

sampling

Positive and negativeSoft RT

SamplingJitterType

20

Temporal Constraint

Specifications
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Task Types

! A periodic task has invocations within regular

time intervals.

o E.g., reading a heat sensor.

! A sporadic task has unknown arrival times, but

have bounds such as maximum frequency.

o E.g., routinely memory status check.

! An aperiodic task has an unknown arrival time.

o E.g., an emergency shutoff.
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Frequency, Period

! Period, frequency:

o T1: Period=10ms, Frequency=2

! Period:

o T2: Period=10ms

! Frequency

o T3: Frequency=400Hz

 
t [ms]0 5 10 15

   T1

  
        

T2

T3



CIS700-2 S. Fischmeister 23

Additional Terms

! Execution time: total time of execution of a

specific task

! Elapse time: the task’s execution time + all

delays

! Maximum time constraint: no more than t time

units will elapse

! Minimum time constraint: no less than t time

units will elapse
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Hyper-Period

! Hyper-Period is the time span after which the

system repeats its behavior.

o T1: Period=10ms, Frequency=2

o T2: Period=10ms

o T3: Frequency=400Hz

o Hyper period = 10ms
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Example
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 T1
 T2
 T3

 T4

1 2 4 6:

T1: P=1s

T2: P=10s

T3: P=60s

T4: P=3600s

Idependent-Digit Clock

! Consider a clock with each

digit as an independent task.
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   Properties

! Timliness is key

o Invalid time value displayed

! Value outputs need to be synchronized.

! Nearly no computation required.

28

Implicit Temporal Control
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Foreground/Background System

! Using super-loops as the main routine with two levels:
the task level and the interrupt level.

o Task level (aka background): executes modules

o Interrupt level (aka foreground): handles asynchronous evens
via ISRs.

! Foreground can preempt the background, thus:

o Critical tasks must be in the foreground part.

o Task level response = an ISR prepares data for the super-loop.

! Used for small devices (e.g., microcontrollers in
microwaves, washers, dryers, radio)
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Foreground/Background System

Foreground

(Interrupt level)

Background

(Task level)

ISR

ISR

ISR

t

Super-loop
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Foreground/Background Properties

! Simple system/low overhead

o No maintenance, basically no “system” at all

! Not time deterministic

o F/B systems require hand tuning to meet a timing criteria; if the
system is not responsive enough, then the developer will
optimize the super-loop.

! Sensitive to changes

o Changing a module constantly changes the timing of the super-
loop.

o Changing code in an ISR changes may change the overall
timing behavior.

32

Programming-Language
Timing Control
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Temporal Scopes

! Source: [Lee1985], the Distributed Programming System (DPS).

! Temporal scopes and DPS describes a system to specify generic
temporal constraints at the statement level.

! The main goals for temporal scopes are:

o Provide language constructs for specifying timing constraints,

o Apt for distributed systems,

o Extend an existing language, and

o Run-time monitoring and exception handling.

! Its properties are:

o The program is configured offline.

o All processes are created before start-up.

" No dynamic create of RT processes.

o The system has two modes: initialization and operation.

! Timing support is specification-based.
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Timing Specification

! Deadline. The latest time in which the execution of a
temporal scope can be completed.

! Minimum delay. The minimum amount of time that
should pass before starting the execution of a temporal
scope.

! Maximum delay. the maximum amount of time that
should pass before starting the execution of a temporal
scope.

! Maximum execution time. The maximum computation
time necessary for the execution of a temporal scope.
Maximum elapse time. The maximum execution time
plus all user-defined delay during the execution of a
temporal scope.



CIS700-2 S. Fischmeister 35

Timing Specification

Release exe1 Deadline
t

exe2

Min. delay

Max. delay

Gap

Max. elapse time

Max. execution time = WCET
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The Internal Temporal Scope

! Start <delay-part> [ <exe-part> ] [ <dl-part> ]
   <start-body>
   [<exceptions>]
end

! <delay-part>:==new|at <abs-time>|after <rel-time>

! <exe-part>:==execute <rel-time>|elapse <rel-time>

! <dl-part>:==by <abs-time>|within <rel-time>

! Examples:

! Start after 10 sec do … end

! Start at (9h:00m) within 10 sec do … end
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Repetitive Temporal Scope

! from <start_time> to <end time> every <period>

execute <exec_time> within <deadline> do

<stmts>

[<exceptions>]

end

! Example:

! from (8h:00m) to (18h:00m) every

(0h:30m) within 10 sec do
destress_eyes()

end
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Consecutive Temporal Scope

! cstart <delay1> [<execute1>] [<deadline1>] do
  <stmts1>
  [<exceptions1>]

! cstart <delay2> [<execute2>] [<deadline2>] do
  <stmts2>
  [<exceptions2>]

! cstart <delayn> [<executen>] [<deadlinen>] do
  <stmtsn>
  [<exceptionsn>]

! end

! Example:

! cstart within 2 sec do fill_glass_with_water()
cstart after 2 sec do empty_glass() end
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The Time Fence Protocol
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Time Fence in the ARTS Kernel

! Source: [Tokuda, Mercer,1998].

! The time-fence protocol allows for temporal constraints
in a distributed real-time system. The time-fence
protocol is built into the ARTS kernel.

! The ARTS kernel aims at distributed real-time systems.

! The artsobject is the abstraction for computation:

o The artsobject has a WCET.

o The artsobject minimizes inter-module dependence.

o It provides time-encapsulation (however, the designer must
guarantee this).

! Timing support is specification-based.
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Specification

// An example of a real-time thread

Thread Sample._Artobject::RT_Thread( )

//# priority, stack_size, wcet, period, phase, delay

{ //thread body …

ThreadExit( );

}

The implementation also allows for object methods:

type opt1 (type arg .... );//# within time except opr()
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The Time Fence Protocol

! The system scheduler checks for transient overloads
(not enough CPU cycles) and rejects tasks in case of
such an overload.

! Each RT computation has a WCET.

! The time fence uses the deadline to set a timer.

! The scheduler checks schedulability using the time
fence and the WCET.

! Comm can include communication overhead for the
distributed system.

Calleewrtv < Callerctv - 2*comm+clockdrift



43

Esterel
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Synchronous Model

Event Event

Synchronous

Computation

Synchronous Model

Event Deadline

Scheduled

Computation

Scheduled Model

Response

Time
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Synchronous Model

Synchronous Implementation

Event Deadline

Scheduled Implementation

Response

Time

Event Event

Response

Time
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Basic Concepts

! Specification language has been specialized for reactive systems.

! Reactive system:
o In continuous interaction with its environment.

o A reaction begins when the system receives an input event and ends
when it generates the corresponding output event.

! Black-box approach
o Inputs produce outputs, continuously.

o Only define relationships between input and output events.

o A task may be complex, but: you don‘t care.

Reactive System
Input

Events

Output

Events

Task A
Input

Events
Output

Events
Task B



CIS700-2 S. Fischmeister 47

Basic Concepts

! Based on synchronous model of time (synchrony hypothesis)
o The underlying machine is infinitely fast and, hence, the reaction of the

system to an input event is instantaneous; in between reactions, the
system is idle.

o No reaction intervals # only reaction instants # reactions do not
overlap.

o The synchrony hypothesis simplifies the behavioral specification of
reactive systems (see the example later on).

o Looks flawed, but the machine must
react to an input event before the
next input event arrives.

Event Event

Response

Time
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Basic Concepts

! Determinism

o A non-deterministic system does not have a unique response to
a given input event # the external observer cannot predict the
response.

o Example:

" Waiting for 60 seconds and then(??) signal “minute”.

" Broadcasting the signal, timing delays.

o Esterel guarantees determinism

" All statements and constructs are well defined (syntax and
semantics).

" A compiler checks the program and ensures determinism.

loop

  delay 60; B.MINUTE;   (C.MINUTE)

end
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Signal Handling: Example

! Example program:

pause;

emit A;

emit B;

present B then emit C; end

pause;

emit C;
A
B
C

C
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Example StopWatch

module SW1:

input START, STOP, MS;

output TIME(integer);

relation START # STOP;

var count := 0 : integer

in

  await immediate START;

% weak abort

  abort

    every immediate MS do

       count := count + 1;

       emit TIME(count);
    end

   when STOP

% pause;

  sustain TIME(count);

end var

end module

St
T1 T2 T3

Sp
T3

%T4
T3
%T
4
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PEARL
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PEARL Overview

! Sources: [Martin T, 1979]

! PEARL = Process and Experiment Automation
Realtime Language

! Developed in Germany around 1969 for programming
real-time systems. The major funding agency was the
German government (DIN 66253).

! Developed at the same time as PASCAL, so both share
similar syntax.

! PEARL forbids recursive procedures to eliminate out-of-
memory errors.

! Strong emphasis on the I/O part, because of its target
domain.
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PEARL Process Model

Plan Running

SuspendedTerminated

Suspend

Continue

Event

Terminate

Activate

Terminate

Plan

Prevent
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Timing Specification

Examples:
! ALL 0.00005 SEC ACTIVATE Highspeedcontroller;

! AT 12:00 ALL 4 SEC UNTIL 12:30 ACTIVATE lunchhour;

! WHEN fire ACTIVATE extinguish;
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Programmable Logic Controllers
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Introduction

! Source: [Bliesener, Ebel, Loeffler, … 1998]

! Created in 1968 by General Motors with the following
goals in mind:

o Replace relays,

o Simple programming (no CS required),

o Software instead of hard wiring,

o Smaller, cheaper, more reliable than relays, and

o Simple and cheap maintenance.

! 5 standardized languages (IEC_61131-3):

o FBD (Function Block Diagram), LD (Ladder Diagram), ST
(Structured Text, Pascal type language), IL (Instruction List)
and SFC (Sequential Function Chart)
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The Look of an PLC

! Internals are similar to a workstation.
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Operation of an PLC

! Inputs, which are shorter than one

cycle, are omitted.

! A reaction to an input can be two

cycles late.

! The PLC program executes

sequentially, so the instructions’

ordering is relevant.

! Some new PLCs support direct

value access.

Buffer Inputs
(Process image)

PLC Program

Buffer Outputs
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Sequential Function Charts

SFC Selection Branch SFC Simultaneous Branch

SFC Sequential configuration

Q. Var.Label

Action

Contents
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Action Qualifiers

Stored & timeLimited. Action starts when step becomes active, continues for

a set time or until reset.
SL

Delayed & Stored. If step is still active, action starts after time delay,

continues until reset.
DS

Stored and time Delayed Action starts after time delay, continues until reset.SD

Pulse. Start when the step becomes Active/Deactive and execute the action

only once.
P

Time Delayed. Start a delay timer when the step becomes active. If the step

is still active after the time delay, the action starts and continues until

deactivated.

D

Time Limited. Start when step becomes active and continue until the step

goes inactive or a set time passes.
L

Reset. Terminate the execution of an action previously started with the S,

SD, SL, or DS qualifier.
R

Set (stored). Continue after the step is deactivated, until the action is reset.S

Nonstored. Terminate when the step becomes inactive.N
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Timing Specification

S %QX12

Step

%QX12

N %QX12

Step

%QX12
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Timing Specification

P %QX12

Step

%QX12

L

T#10s %QX12

Step

%QX12
10s
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Timing Specification

DS

T#10s %QX12

Step

%QX12
10s 10s

SD

T#10s %QX12

Step

%QX12
10s
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Timing Specification

SL

T#20s %QX12

Step

%QX12
10s 20s
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Example: Hydraulic Press
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Example: Crosswalk
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Example: Hot Water Tank

http://www.searcheng.co.uk/articles/plc/

! 8 inputs, 1 output

! Motor control

o Emergency stop

o Motor overload

o Motor failed

o Combined alarms

o Automatic mode

o Manual mode

! Valves control

o Emergency stop

o Various valve
fault tolerance

68

Time-Triggered Message-

Triggered Object
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Introduction

! Source: [K.H. Kim, 1999]

! Developed in the early 1990s.

! Vision: Future RT computing must be realized in the
form of a generalization of the non-RT computing,
rather than in a form looking like an esoteric
specialization. (=> same as RTSJ)

! Uses object orientation for strong modularity
characteristics.

! Specification-based timing constraints.

! Side note: started with H. Kopetz (TT domain)
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Overview

! TMO = (ODS, EAC, SpM, SvM)
ODS … object-data-store section sec.
EAC … environment access-capability sec.
SpM … spontaneous-method sec.
SvM … service-method sec.

! Interesting for this discussion:

o SpM … time-triggered execution by the RT system

o SvM … event-triggered (e.g., service request msg)

o TMO incorporates deadlines; the designer guarantees and
advertises ET windows by start time and completion time
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Overview
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Time-Triggered Actions

! Time-constraint specification

! Examples
o {“start-during (10am, 10:05am) finish-by 10:10am”,

“start-during (10:30am, 10:35am) finish-by 10:40am”}

o for t = from 10am to 10:50am every 30min
start-during (t,t+5min) finish-by t+10min

ab “timing specification begin”

  for <time-var> = from <activation-time>

  to <deactivation-time>

  [every <period>]

  start-during (<earliest-start-time, latest-start-time)

  finish-by <deadline>

ae “timing specification end”
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Time-Triggered Actions

! Possible computations can be:

o Statements,

o Blocks,

o Function & procedures, and

o Object methods

! TMO implementations so far only handle SpM’s

and SvM’s (I.e., object methods).

74

Real-Time Specification for Java

(RTSJ)
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Introduction

! The correct name is: Real-Time Specification for Java (RTSJ).

! Started in 1999 as Sun Microsystems' Java Community Process under
Real-Time for Java Expert Group (RTJEG).

! Guiding Principles:

o Applicability to Java Environments: The RTSJ shall not include
specifications that restrict its use to particular Java environments.

o Backward Compatibility: The RTSJ shall not prevent existing, properly written,
non-real-time Java programs from executing on implementations of the RTSJ.

o Write Once, Run Anywhere.

o Current Practice vs. Advanced Features: The RTSJ should address current
real-time system practice as well as allow future implementations to include
advanced features.

o Predictable Execution: The RTSJ shall hold predictable execution as first
priority in all trade-offs.

o No Syntactic Extension.

o Allow Variation in Implementation Decisions.
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Overview

! RT Java consists of an RTJVM and the RTSJ class
library.

! RTSJ-compliant JVMs can be considered Real-Time
Java Virtual Machines (RTJVMs).

! Resides in the packet javax.realtime with modifications
to the non RT Java such as

o A RT Thread class extending java.lang.Thread

o Sophisticated scheduling support

o No mandatory RT garbage collection, instead memory
partitioning

o Raw memory access for device drivers
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Handling of Time

! Clock:

o A clock marks the passing of time.

o System.getRealtimeClock() for singletons.

o Can have an arbitrary resolution (see RelativeTime).

! Based on the clock, a number of classes dealing with time exist:

o HighResolutionTime: is an abstract class and the base class for all
time-related classes. Used to express time with nanosecond accuracy.

o AbsoluteTime: represents a specific point in time given by
milliseconds plus nanoseconds past some point in time fixed by the
clock.

o RationalTime: represents a time interval that is divided into
subintervals by some frequency. Used to periodic events, threads, and
feasibility analysis.

o RelativeTime: is generally used to represent a time relative to now

! All time objects must maintain nanosecond precision.
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Real-Time Threads

! Two types of threads:

o NoHeapRealtimeThread

o RealtimeThread

! Release parameters specify the thread’s behavior in the
time domain:

o PeriodicParameters: indicates that the schedulable object is
released on a regular basis.

o SporadicParameters: notes that the associated schedulable
object's run method will be released aperiodically but with a
minimum time between releases.

o AperiodicParameters: characterizes a schedulable object that
may be released at any time.
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Giotto
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Overview

! Source: [T. Henzinger et al, 2002]

! One of the main issues was to create verifiable RT
programs.

! Rigid control of the system’s behavior.

o Input/output values are buffered in ports
(similar to the process image with PLCs)

o Value determinism

o Time determinism

! An embedded machine controls the task’s execution.
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Logical Execution Time

Release Terminate

Logical execution time = Logical computation time

Reading

input

ports

Writing

output

ports

t t +T

Task t

SuspenStart d Resum Stope
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Example

Task

Q Q

t+10ms t+10ms

P

S
li
d
e
 b

y
 C

.M
.K

ir
s
c
h
 e

t 
a
l.
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Runtime Environment

off-line

on-line

Application 

object code

calls

E code

executes

ActuatorSensor

DriverDriver

Environment

Platform

E machine

runs on
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E-Code

lbl1: call d [ t1 ]

call d [ t2 ]

schedule t1

schedule t2

future, 200, lbl2

return

lbl2: call d[ t2 ]

schedule t2

future, 200, lbl1

return

! E-Code controls the execution behavior

! Call: executes drivers

! Schedule: enqueues tasks

! Future: schedules a resume

! Return: exists the interpreter
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Timing Specification

mode Flight ( ) period 10ms 

   { 

        actfreq 1 do Actuator ( actuating ) ; 

        taskfreq 1 do Control ( input ) ; 

        taskfreq 2 do Navigation ( sensing ) ; 

   } 

! Only allows periodic tasks.

! Defined by period and frequency.

! Each mode has a period.

! Each task has a frequency within the mode.

86

Timed Atomic Commitment
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Overview

! Source: [Davidson et al. 1991]

! Motivation: Atomic commitment is necessary for

a number of applications. For real-time

systems, time constraints need to be part of the

algorithm.

! Example: Two robot arms together lift defective

containers from a conveyor belt.

! Timing specification bases on timed scopes.
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Overview

! Three possible outcomes:

o Commit: action done

o Abort: no action done

o Exception: something done, need recovery function

! TAC has the following correctness criteria:

o TAC1: All participants, which reach a decision, reach the same one.

o TAC2: The decision is to commit only if all participants vote YES.

o TAC3: At the deadline, the local state either reflects the completed
action or is EXCEPTION.

o TAC4: (minimum success criterion)

" All participants reach a decision.

" If all participants vote YES, then the decision is to commit.

" All participants complete the decided-upon action by the deadline.

" At the deadline, the local state reflects the completed action.
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Two Algorithms
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Distributed Timed 2 Phase Commit (DT2PC)
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Take Away Messages

! Timing constraints are a topic since 1968.

o What are the right abstractions?

(Modules, tasks, statements)

o What is the right notion of time?

(Zero, continuous, discrete time)

o Who checks timing constraints?

(Offline, online)

o How to you specify timing?

(Specification-based vs. programming)

o How to ensure timing constraints?

(Verification, runtime checking, offline, online)
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Summary

! Timing constraints specify, how computation is done with respect to

time.

! There are different types of real-time systems, each with its own

requirements regarding timing constraints.

! A number of real-time programming languages, systems, and

concepts exist. The following categories exist:

o Intrinsic vs external control: e.g., language-specific constructs vs

runtime control.

o Specification-based vs program-based: e.g., at 12:00 do XY vs new

event(new timer(12:00)).

o Language extension (retrofitting) vs first-order citizen: e.g., RTSJ vs

Giotto.

o Deterministic vs. approximation and best-effort: e.g., Esterel vs RTSJ.
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Summary
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Personal Note & Observations

! PLCs & Sequential Function Charts are a rock solid
method, sold billion times, defeats many theoretic and
academic models.

! Synchronous languages are about to become a huge
industry-strength concept: Airbus uses SCADE.

! Temporal scopes present a general abstraction, but did
not catch on.

! Simple, but effective solutions - or - a complete tool
chain.

! Retrofitting does not work - it did not for security, it will
not for RT systems.
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