
MaC
Monitoring and Checking at Runtime

Presented By
Usa Sammapun
CIS 700 Oct 10, 2005

What is MaC?

► A verification technique
– Goal: Ensure a software program runs correctly

► To understand software verification
– Know how software is developed
– Know how software is verified

Software Development Process

► Requirement and Properties
• What program should do

– When AIBO dog walks, it must not fall
• Informal (English) Formal (Logic, FSM)

Requirement

Design ImplementWalk !(Fall)

Software Development Process

► Design Specification and Analysis
• How program fulfill requirements

– AIBO dog coordinates his 4 legs
• Formal modeling (UML, FSM, Control theory)
• Analysis

– Simulation
– Verification (Model checking)

Requirement

Design

Implement

Software Development Process

► Implementation
• Actual program (AIBO dog walking program in C++)
• Varification & Validation

– Testing
– Runtime verification

Requirement

Implement

Design
AIBO.c++

main() {
int leg1,leg2;
int leg3, leg4;
…

}

Verification

► Design
– Model Checking

► Implementation
– Testing
– Runtime Verification

MaC
Monitoring and Checking

At Runtime

Verification

► Design
– Model Checking

► Implementation
– Testing
– Runtime Verification

leg1

leg2
leg4leg3

Model Checking
Walk !(Fall)► Given

– Requirement & Properties
– Model

► Verify
– Explore all paths
– Violate requirement ??

all-leg-down

!walk

leg1-up, leg4-up

walk & !fall

leg2-up, leg3-up

walk & !fall

leg1-up, leg2-up

walk & fall

leg1

leg2
leg4leg3

Model Checking
Walk !(Fall)► Given

– Requirement & Properties
– Model

► Verify
– Explore all paths
– Violate requirement ??

all-leg-down

!walk

leg1-up, leg4-up

walk & !fall

leg2-up, leg3-up

walk & !fall

leg1-up, leg2-up

walk & fall

Model Checking - GOOD

► Rigorous and Formal
– Based on Mathematics

► Complete
– Explore all paths

Model Checking - PROBLEM
► Check Design, not implementation

– What if implementation does not follow model?

► Not scalable
– What if the program is HUGH?

• Explore all paths might not be feasible

Verification

► Design
– Model Checking

► Implementation
– Testing
– Runtime Verification

Testing

► We’ve seen it
– Run actual program with different inputs
– See if outputs are what we want

► Ex. AIBO
– Run AIBO dog
– See whether or not AIBO dog falls

► Good
– Check directly the implementation

Testing – PROBLEM

► Not rigorous, Not formal
– Possibly random inputs

► Not complete
– What if bugs never show up during test ??
– What if it’s not AIBO, but a heart device !?!

Verification

► Design
– Model Checking

► Implementation
– Testing
– Runtime Verification

MaC
Monitoring and Checking

At Runtime

Runtime Verification

► Given
– Requirement & Properties
– Implementation

► Ensures the current program
execution follows its formal
requirements

Walk !(Fall)

Runtime Verification

1. Specify formal requirements (Walk !Fall)

Program (ex. AIBO) Verifier (MaC)

2. Execution

Information
3. Check

4. Sat / Unsat4. Feedback

User

Runtime Verification

► Rigorous and Formal

► Done at implementation

► Not complete
– Guarantee for current execution

Runtime Verification

► MaC
– Monitoring and Checking at Runtime

– Components
• MaC verifier
• MaC formal language

MaC Verifier

MaC VerifierProgram

Execution

Information

Check

Sat / Unsat

Feedback

User

Event Recognizer

Checker

Injector

Abstract Info

MaC Verifier and Language

Program

Instrumented
Program

MaC Compiler

PEDL MEDL

MaC Specification

Event
Recognizer Checker Injector

MaC Verifier

SADL

1. Which program info to probe
2. How to map info to properties

System Properties Where / when
to steer

Abstract Information
► To capture roughly and abstractly what the program is doing

► Events
– Instantaneous incidents
– such as variable updates update(position)

► Conditions
– Proposition about the program that may be true/false/undefined for a

duration of time
– such as position < 50

position = 40 position = 55position = 60

true
Time

position < 50position < 50

false

position = 55

position = 60

s1 s2 s3 s4

position = 55 position = 40 position = 55

position < 50

Events
► e - variable update, start/end method
► e1 || e2 - or
► e1 && e2 - and
► start(c) - instant when condition c becomes true
► end(c) - instant when condition c becomes false
► e when c - e occurs when condition c is true

Conditions
► Conditions interpreted over 3 values: true, false and undefined.

► c - boolean expression
► !c - not c
► c1 || c2 - or
► c1 && c2 - and
► c1 -> c2 - imply
► defined(c) - true when c is defined
► [e1, e2) - interval

e1 e2

[e1 ,e2) [e1 ,e2)

MaC Language

► PEDL
– How execution information transform into events and

conditions

► MEDL
– Specify properties using events and conditions

PEDL and MEDL

Abstraction

- When train
position is between
30 and 50

- When gate
starts/ends being
down

Java Program PEDL MEDL

Railroad Crossing Property: - If train is crossing, then gate must be down
- Train is crossing when position is between 30 and 50

Abstraction

- When gate is
down

Check

- If train is
crossing, then
gate must be
down

position = 0

position = 20

position = 40

Gate.down()

position = 55

Gate.up()

position = 60

startGD

endGD
cross

Violation

gateD
ow

n
cross

Instrumentation

class Train {
int position;
main() {
position = 0;
position = 20;
position = 40;
position = 55;

} }

Train.position;

class Train {
int position;
main() {
position = 0;
send(x,0);
position = 20;
send(x,20);
position = 40;
send(x,40);
position = 55;
send(x,55);

} }
+

=

Sent to Event Recognizer:
[(position,0), (position,20),
(position,40), (position,55)]

MaC Language - PEDL

Abstraction

- When train position is between 30 and 50

- When gate starts/ends being down

position = 0

position = 20

position = 40

Gate.down()

position = 55

Gate.up()

position = 60

Java Program PEDL

export event startGD, endGD;
export condition cross;

monobj Train.position;
monmeth Gate.up();
monmeth Gate.down();

condition cross = (30 < RRC.position)
&& (RRC.position < 50);
event startGD = endM(Gate.down());
event endGD = startM(Gate.up());

startGD

endGD

cross

Railroad Crossing Property: - If train is crossing, then gate must be down
- Train is crossing when position is between 30 and 50

position = 0

position = 20

position = 40

Gate.down()

position = 55

Gate.up()

position = 60

MEDL – Property Language

► Composed using
– Events
– Conditions
– Connectives

► Properties
– Alarms: events that must never occur

alarm elevator = door_open when ! floor_level

– Safety Properties: conditions that must always hold
true

property rail_road = train_cross gate_down

MaC Language - MEDL

PEDL MEDL

Railroad Crossing Property: - If train is crossing, then gate must be down
- Train is crossing when position is between 30 and 50

import event startGD, endGD;

import conditions cross;

condition gateDown = [startGD, endGD);

property safeRRC = cross -> gateDown;

startGD

endGD

cross

Violation

gateD
ow

n
cross

Abstraction

- When gate is down

Check

- If train is crossing, then gate must be down

Current Work

► Timing properties

► Probabilistic properties

► Dynamic MaC

► Steering using control theory

Quantitative Properties
► Time bound interval: d}{21)e,[e ≤ d}{21)e,[e < d}{21)e,[e =

e1 e2

d}{21)e,[e ≤

d>

d}{21)e,[e ≤

e1 e2

d≤

d}{21)e,[e ≤ d}{21)e,[e ≤ d}{21)e,[e ≤ d}{21)e,[e ≤

s1 s2 s3 s4 s5

s1 s2 s3 s4 s5

Example
► A real-time task T must finish within 100 time units

– startT – event when task T starts executing
– endT – event when task T finishes executing

100}{endT)[startT, ≤

	MaCMonitoring and Checking at Runtime
	What is MaC?
	Software Development Process
	Software Development Process
	Software Development Process
	Verification
	Verification
	Model Checking
	Model Checking
	Model Checking - GOOD
	Model Checking - PROBLEM
	Verification
	Testing
	Testing – PROBLEM
	Verification
	Runtime Verification
	Runtime Verification
	Runtime Verification
	Runtime Verification
	MaC Verifier and Language
	Abstract Information
	Events
	Conditions
	MaC Language
	PEDL and MEDL
	Instrumentation
	MaC Language - PEDL
	MEDL – Property Language
	MaC Language - MEDL
	Current Work
	Quantitative Properties
	Example

