MaC

Monitoring and Checking at Runtime

Presented By
Usa Sammapun
CIS 700 Oct 10, 2005

What is MaC?

» A verification technique
— Goal: Ensure a software program runs correctly

» 10 understand software verification
— Know how software is developed
— Know how software is verified

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Software Development Process

» Requirement and Properties

* What program should do
— When AIBO dog walks, it must not fall

 Informal (English) - Formal (Logic, FSM)

Requirement

{ Design } { ImplementJ

UNIVERSITY of PENNSYLVANIA

Software Development Process

» Design Specification and Analysis

* How program fulfill requirements

— AIBO dog coordinates his 4 legs
« Formal modeling (UML, FSM, Control theory)
* Analysis

— Simulation

— Verification (Model checking)

[Requirement Implement }

Software Development Process

» Implementation
* Actual program (AIBO dog walking program in C++)
 Varification & Validation

— Testing
— Runtime verification

Implement

AIBO.c++

main() {
int legl,leg2;
int leg3, leg4;

}...

[Requirement} { Design

» Design
— Model Checking

» Implementation
— Testing
— Runtime Verification

m
MaC
Monitoring and Checking
At Runtime
/

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

» Design
— Model Checking

» Implementation
— Testing
— Runtime Verification

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Model Checking

> Given Walk > (Fa)

— Requirement & Properties
— Model
» Verify

— Explore all paths
— Violate requirement ??

all-leg-down

Iwalk

leg2-up, leq3-up legl-up, leq4-up

walk & !fall walk & !fall

/

[qul-up, leg2-up

walk & fall

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Model Checking

> Given Walk > (Fal)

— Requirement & Properties
— Model
» Verify

— Explore all paths
— Violate requirement ??

all-leg-down

Iwalk

leg2-up, leqg3-up legl-up, leq4-up
walk & !fall walk & !fall

leql-up, leg2-up

WEERE
) 4
& Penn

Model Checking - GOOD

» Rigorous and Formal
— Based on Mathematics

» Complete
— Explore all paths

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Model Checking - PROBLEM

» Check Design, not implementation
— What if implementation does not follow model?

» Not scalable

— What if the program is HUGH?
» Explore all paths might not be feasible

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

» Design
— Model Checking

» Implementation
— Testing
— Runtime Verification

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

» \We've seen it

— Run actual program with different inputs
— See if outputs are what we want

» EX. AIBO
— Run AIBO dog
— See whether or not AIBO dog falls

» Good
— Check directly the implementation

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Testing — PROBLEM

» Not rigorous, Not formal
— Possibly random inputs

» Not complete

— What if bugs never show up during test ??
— What if it's not AIBO, but a heart device !?!

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Verification

» Design
— Model Checking

» Implementation
— Testing
— Runtime Verification

o
MaC
Monitoring and Checking
At Runtime
/

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Runtime Verification

Walk = !(Fall)

\

» Given
— Requirement & Properties
— Implementation

» Ensures the current program
execution follows its formal
requirements

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Runtime Verification

1. Specify formal requirements (Walk = !Fall)

Program (ex. AIBO)

Verifier (MaC)

2. Executign

: I-nforrr.1at_ion
3. Check
n m m mam = Emm N = = === _>

4. Reedbagk . Sat / Unsat

Runtime Verification

» Rigorous and Formal

» Done at implementation

» Not complete
— Guarantee for current execution

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Runtime Verification

» MaC

— Monitoring and Checking at Runtime

— Components
« MaC verifier
« MaC formal language

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

MaC Verifier

Program

Execution_

Information

Feedback

MaC Verifier

Event Recognizer

lAbstract In

Checker %—

l Check

Injector

1fo

Sat t)
| Sat/ Unsa \’ﬁ .

P
& I'CI
JNIVERSITY of PENNSYLVANIA

U

MaC Verifier and Language

Where / when

to steer

System Properties

MaC %efification

1. Which program info to probe
2. How to map info to properties

e

Program

PEDL MEDL SADL
MaC Compiler
Instrumented
FeIfer Even_t Checker Injector
Recognizer
MaC Verifier

Penn

UNIVERSITY of PENNSYLVANIA

Abstract Information

» To capture roughly and abstractly what the program is doing

» Events

— Instantaneous incidents

— such as variable updates update(position)
» Conditions

— Proposition about the program that may be true/false/undefined for a
duration of time

— such as position <50

position = 60 position = 55 position = 40 position = 55
I posifion < 50 | position < 50
false true
............... =

position <50

position = 60 >® >® > position =55

& Penn

vV v v v VY

e

el|| e2
el && e2
start(c)
end(c)

e when c

variable update, start/end method
or

- and

instant when condition ¢ becomes true
- instant when condition ¢ becomes false
- e occurs when condition c is true

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Conditions

» Conditions interpreted over 3 values: true, false and undefined.

» C - boolean expression
» IC - hotc

» C. || C, - or

» C;&&cCc, - and

» C,>C, - imply

» defined(c) - true when c is defined
» [e,, e,) - interval

[e; .e,) e, .e))

O—CO O o O

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

MaC Language

» PEDL

— How execution information transform into events and
conditions

» MEDL
— Specify properties using events and conditions

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

PEDL and MEDL

Railroad Crossing Property: - If train is crossing, then gate must be down
- Train is crossing when position is between 30 and 50

Eposition =0 i Abstraction i Abstraction
- When train - When gate is
position = 20 ! position is between down

30 and 50

position = 40

- When gate : > 5]

! . . Check
, starts/en in : !
Gate.down() ! starts/ends being Q istartGD o 2
> down —No —— - If train is —o
| » o | . 0o
@ . crossing, then M)
position := 55 > E gate must be _‘“‘T: % '_>
. down 2
Gate.up() . endGD L = R

position = 60

JavaProgram | PEDL Penn . MEDL
| ." UNIVERSITY f PENNSYLVANIA E

Instrumentation

class Train { class Train {
int position; int position;
main () { main () {
position = 0; position = 0;
position = 20; Sené(f,O);
position = 40; position = 20;
position = 55; — SenC::l(J.CIZO);
})} position = 40;
send (x,40) ;
position = 55;
+ send (x,55) ;
o}
Train.position; Sent to Event Recognizer:
[(position,0), (position,20),
(position,40), (position,55)]

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

MaC Language - PEDL

Railroad Crossing Property: - If train is crossing, then gate must be down
- Train is crossing when position is between 30 and 50

iposition =0 . Abstraction

- When train position is between 30 and 50
position 5 20

- When gate starts/ends being down

position = 40

export event startGD, endGD; "
export condition cross;

Gate.down()

9 'startGD
| "
position = 55 | | monobj Train.position; @
" | monmeth Gate.up() ; : R
! monmeth Gate.down() ; -
Gate.upQ) , i
g | . o endGD
1 | condition cross = (30 < RRC.position) >
position = 60 | & (RRC.position < 50);

event startGD = endM(Gate.down()) ;
event endGD = startM(Gate.up());

P
<

Java Program PEDL P
: & Fenn

UNIVERSITY of PENNSYLVANIA

MEDL — Property Language

» Composed using
— Events
— Conditions
— Connectives

» Properties

— Alarms: events that must never occur
alarm elevator = door _open when ! floor level

— Safety Properties: conditions that must always hold
true
property rail road = train _cross > gate down

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

MaC Language - MEDL

Railroad Crossing Property: - If train is crossing, then gate must be down

v

I
SS049

v

PEDL

v

- Train is crossing when position is between 30 and 50

Abstraction
- When gate is down
Check

- If train is crossing, then gate must be down

I I
SS049

import event startGD, endGD;

import conditions cross;

umogoaleb
b

condition gateDown = [startGD, endGD);

property safeRRC = cross -> gateDown;

% enn

UNIVERSITY of PENNSYLVANIA

Current Work

» Timing properties
» Probabilistic properties
» Dynamic MaC

» Steering using control theory

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

Quantitative Properties

» Time bound interval: [61,62)5 d) [61,62){< d} [61,62){: d)

Example

» A real-time task T must finish within 100 time units
— startT — event when task T starts executing
— endT — event when task T finishes executing

[startT,endT){< 100}

N gy 4 0
[]
V'S
UNIVERSITY of PENNSYLVANIA

	MaCMonitoring and Checking at Runtime
	What is MaC?
	Software Development Process
	Software Development Process
	Software Development Process
	Verification
	Verification
	Model Checking
	Model Checking
	Model Checking - GOOD
	Model Checking - PROBLEM
	Verification
	Testing
	Testing – PROBLEM
	Verification
	Runtime Verification
	Runtime Verification
	Runtime Verification
	Runtime Verification
	MaC Verifier and Language
	Abstract Information
	Events
	Conditions
	MaC Language
	PEDL and MEDL
	Instrumentation
	MaC Language - PEDL
	MEDL – Property Language
	MaC Language - MEDL
	Current Work
	Quantitative Properties
	Example

